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Abstract

There is increasing demand to extend Object Request Bro-
ker (ORB) middleware to support distributed applications with
stringent real-time requirements. However, conventional ORB
implementations, such as CORBA ORBs, exhibit substantial
priority inversion and non-determinism, which makes them un-
suitable for applications with deterministic real-time require-
ments. This paper provides two contributions to the study and
design of real-time ORB middleware. First, it illustrates em-
pirically why conventional ORBs do not yet support real-time
quality of service. Second, it evaluates connection and concur-
rency software architectures to identify strategies that reduce
priority inversion and non-determinism in real-time CORBA
ORBs. The results presented in this paper demonstrate the
feasibility of using standard OO middleware like CORBA to
support certain types of real-time applications over the Inter-
net.

Keywords: Real-time CORBA Object Request Broker, QoS-
enabled OO Middleware, Performance Measurements

1 Introduction

Next-generation distributed real-time applications, such as
video conferencing, avionics mission computing, and process
control, require endsystems that can provide statistical and de-
terministic quality of service (QoS) guarantees for latency [1],
bandwidth, and reliability [2]. The following trends are shap-
ing the evolution of software development techniques for these
distributed real-time applications and endsystems:

Increased focus on middleware and integration frame-
works: There is a trend in real-time R&D projects away

�This work was supported in part by AFOSR grant F49620-00-1-0330,
Boeing, CDI/GDIS, DARPA contract 9701516, Lucent, Motorola, NSF grant
NCR-9628218, Siemens, and Sprint.

from developing real-time applications from scratch toin-
tegrating applications using reusable components based on
object-oriented (OO) middleware [3]. The objective of mid-
dleware is to increase quality and decrease the cycle-time and
effort required to develop software by supporting the integra-
tion of reusable components implemented by different suppli-
ers.

Increased focus on QoS-enabled components and open sys-
tems: There is increasing demand for remote method invo-
cation and messaging technology to simplify the collaboration
of open distributed application components [4] that possess
deterministic and statistical QoS requirements. These compo-
nents must be customizable to meet the functionality and QoS
requirements of applications developed in diverse contexts.

Increased focus on standardizing and leveraging real-time
COTS hardware and software: To leverage development
effort and reduce training, porting, and maintenance costs,
there is increasing demand to exploit the rapidly advancing
capabilities of standard common-off-the-shelf (COTS) hard-
ware and COTS operating systems. Several international stan-
dardization efforts are currently addressing QoS-related issues
associated with COTS hardware and software.

One particularly noteworthy standardization effort has
yielded the Object Management Group’s (OMG) Common
Object Request Broker Architecture (CORBA) specifica-
tion [5]. CORBA is OO middleware software that allows
clients to invoke operations on objects without concern for
where the objects reside, what language the objects are writ-
ten in, what OS/hardware platform they run on, or what com-
munication protocols and networks are used to interconnect
distributed objects [6].

There has been recent progress towards standardizing
CORBA for real-time [7] and embedded [8] systems. Sev-
eral OMG groups, most notably the Real-Time Special Interest
Group (RT SIG), are defining standard extensions to CORBA
to support distributed real-time applications. The goal of stan-
dardizing real-time CORBA is to enable real-time applications
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to interwork throughout embedded systems and heterogeneous
distributed environments, such as the Internet.

However, developing, standardizing, and leveraging dis-
tributed real-time Object Request Broker (ORB) middleware
remains hard, notwithstanding the significant efforts of the
OMG RT SIG. There are few successful examples of stan-
dard, widely deployed distributed real-time ORB middle-
ware running on COTS operating systems and COTS hard-
ware. Conventional CORBA ORBs are generally unsuited for
performance-sensitive, distributed real-time applications due
to their (1) lack of QoS specification interfaces, (2) lack of
QoS enforcement, (3) lack of real-time programming features,
and (4) overall lack of performance and predictability [9].

Although some operating systems, networks, and protocols
now support real-time scheduling, they do not provide inte-
grated end-to-end solutions [10]. Moreover, relatively little
systems research has focused on strategies and tactics for real-
time ORB endsystems. For instance, QoS research at the net-
work and OS layers is only beginning to address key require-
ments and programming models of ORB middleware [11].

Historically, research on QoS for high-speed networks, such
as ATM, has focused largely on policies for allocating virtual
circuit bandwidth [12]. Likewise, research on real-time op-
erating systems has focused largely on avoiding priority in-
versions in synchronization and dispatching mechanisms for
multi-threaded applications [13]. An important open research
topic, therefore, is to determine how best to map the results
from QoS work at the network and OS layers onto the OO
programming model familiar to many real-time applications
developers who use ORB middleware.

This paper is organized as follows: Section 2 outlines the
general factors that impact real-time ORB endsystem perfor-
mance and predictability; Section 3 describes software ar-
chitectures for real-time ORB Cores, focusing on alternative
ORB Core concurrency and connection software architectures;
Section 4 presents empirical results from systematically mea-
suring the efficiency and predictability of alternative ORB
Core architectures in four contemporary CORBA implemen-
tations: CORBAplus, miniCOOL, MT-Orbix, and TAO; Sec-
tion 5 compares our research with related work; and Section 6
presents concluding remarks. For completeness, Appendix A
provides an overview of the CORBA reference model.

2 Factors Impacting Real-time ORB
Endsystem Performance

Meeting the QoS needs of next-generation distributed appli-
cations requires much more than defining Interface Defini-
tion Language (IDL) interfaces or adding preemptive real-time
scheduling into an OS. It requires a vertically and horizontally

integratedORB endsystemarchitecture that can deliver end-to-
end QoS guarantees at multiple levels throughout a distributed
system [10]. The key levels in an ORB endsystem include the
network adapters, OS I/O subsystems, communication pro-
tocols, ORB middleware, and higher-level services shown in
Figure 1.
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Figure 1: Components in the TAO Real-time ORB Endsystem

The main focus of this paper is on software architectures
that are suitable for real-time ORB Cores. The ORB Core
is the component in the CORBA reference model that man-
ages transport connections, delivers client requests to an Ob-
ject Adapter, and returns responses (if any) to clients. The
ORB Core also typically implements the transport endpoint
demultiplexing and concurrency architecture used by applica-
tions. Figure 1 illustrates how an ORB Core interacts with
other CORBA components. Appendix A describes the stan-
dard CORBA components in more detail.

For completeness, Section 2.1 briefly outlines the general
sources of performance overhead in ORB endsystems. Sec-
tion 2.2 describes the key sources of priority inversion and
non-determinism that affect the predictability and utilization
of real-time ORB endsystems. After this overview, Section 3
explores alternative ORB Core concurrency and connection ar-
chitectures.

2.1 General Sources of ORB Endsystem Per-
formance Overhead

Our experience [14, 15, 16, 17] measuring the throughput
and latency of CORBA implementations indicates that perfor-
mance overheads in real-time ORB endsystems arise from in-
efficiencies in the following components:

1. Network connections and network adapters: These
endsystem components handle heterogeneous network con-
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nections and bandwidths, which can significantly increase la-
tency and cause variability in performance. Inefficient design
of network adapters can cause queueing delays and lost pack-
ets [18], which are unacceptable for certain types of real-time
systems.

2. Communication protocol implementations and integra-
tion with the I/O subsystem and network adapters: In-
efficient protocol implementations and improper integration
with I/O subsystems can adversely affect endsystem perfor-
mance. Specific factors that cause inefficiencies include the
protocol overhead caused by flow control, congestion control,
retransmission strategies, and connection management. Like-
wise, lack of proper I/O subsystem integration yields excessive
data copying, fragmentation, reassembly, context switching,
synchronization, checksumming, demultiplexing, marshaling,
and demarshaling overhead [19].

3. ORB transport protocol implementations: Inefficient
implementations of ORB transport protocols, such as the
CORBA Internet Inter-ORB protocol (IIOP) [5] and Simple
Flow Protocol (SFP) [20], can cause significant performance
overhead and priority inversion. Specific factors responsible
for these inversions include improper connection management
strategies, inefficient sharing of endsystem resources, and ex-
cessive synchronization overhead in ORB protocol implemen-
tations.

4. ORB core implementations and integration with OS
services: An improperly designed ORB Core can yield
excessive memory accesses, cache misses, heap alloca-
tions/deallocations, and context switches [21]. In turn, these
factors can increase latency and jitter, which is unacceptable
for distributed applications with deterministic real-time re-
quirements. Specific ORB Core factors that cause inefficien-
cies include data copying, fragmentation/reassembly, context
switching, synchronization, checksumming, socket demul-
tiplexing, timer handling, request demultiplexing, marshal-
ing/demarshaling, framing, error checking, connection and
concurrency architectures. Many of these inefficiencies are
similar to those listed in bullet 2 above. Since they occur at
the user-level rather than at the kernel-level, however, ORB
implementers can often address them more readily.

Figure 2 pinpoints where the various factors outlined above
impact ORB performance and where optimizations can be ap-
plied to reduce key sources of ORB endsystem overhead, pri-
ority inversion, and non-determinism. Below, we describe the
components in an ORB endsystem that are chiefly responsible
for priority inversion and non-determinism.

2.2 Sources of Priority Inversion and Non-
determinism in ORB Endsystems

Minimizing priority inversion and non-determinism is impor-
tant for real-time operating systems and ORB middleware in
order to bound application execution times. In ORB endsys-
tems, priority inversion and non-determinism generally stem
from resources that are shared between multiple threads or
processes. Common examples of shared ORB endsystem re-
sources include (1) TCP connections used by a CORBA IIOP
protocol engine, (2) threads used to transfer requests through
client and server transport endpoints, (3) process-wide dy-
namic memory managers, and (4) internal ORB data struc-
tures like connection tables for transport endpoints and de-
multiplexing maps for client requests. Below, we describe key
sources of priority inversion and non-determinism in conven-
tional ORB endsystems.

2.2.1 The OS I/O Subsystem

An I/O subsystem is the component in an OS responsible
for mediating ORB and application access to low-level net-
work and OS resources, such as device drivers, protocol
stacks, and the CPU(s). Key challenges in building a high-
performance, real-time I/O subsystem are (1) to minimize con-
text switching and synchronization overhead and (2) to enforce
QoS guarantees while minimizing priority inversion and non-
determinism [22].

A context switch is triggered when an executing thread re-
linquishes the CPU it is running on voluntarily or involuntar-
ily. Depending on the underlying OS and hardware platform,
a context switch may require hundreds of instructions to flush
register windows, memory caches, instruction pipelines, and
translation look-aside buffers [23]. Synchronization overhead
arises from locking mechanisms that serialize access to shared
resources like I/O buffers, message queues, protocol connec-
tion records, and demultiplexing maps used during protocol
processing in the OS and ORB.

The I/O subsystems of general-purpose operating systems,
such as Solaris and Windows NT, do not perform preemptive,
prioritized protocol processing [24]. Therefore, the protocol
processing of lower priority packets isnotdeferred due to the
arrival of higher priority packets. Instead, incoming packets
are processed by their arrival order, rather than by their prior-
ity.

For instance, in Solaris if a low-priority request arrives im-
mediately before a high priority request, the I/O subsystem
will process the lower priority packet and pass it to an applica-
tion servant before the higher priority packet. The time spent
in the low-priority servant represents the degree of priority in-
version incurred by the ORB endsystem and application.

[22] examines key issues that cause priority inversion in I/O
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Figure 2: Optimizing Real-time ORB Endsystem Performance

subsystems and describes how TAO’s real-time I/O subsys-
tem avoids many forms of priority inversion by co-scheduling
pools of user-level and kernel-level real-time threads. Interest-
ingly, the results in Section 4 illustrate that much of the over-
head, priority inversion, and non-determinism in ORB endsys-
tems doesnot stem from protocol implementations in the I/O
subsystem, but arises instead from the software architecture of
the ORB Core.

2.2.2 The ORB Core

An ORB Core is the component in CORBA that implements
the General Inter-ORB Protocol (GIOP) [5], which defines a
standard format for interoperating between (potentially hetero-
geneous) ORBs. The ORB Core establishes connections and
implements concurrency architectures that process GIOP re-
quests. The following discussion outlines common sources of
priority inversion and non-determinism in conventional ORB
Core implementations.

Connection architecture: The ORB Core’sconnection ar-
chitecture, which defines how requests are mapped onto net-
work connections, has a major impact on real-time ORB be-
havior. Therefore, a key challenge for developers of real-time
ORBs is to select a connection architecture that can utilize the
transport mechanisms of an ORB endsystem efficiently and
predictably. The following discussion outlines the key sources
of priority inversion and non-determinism exhibited by con-
ventional ORB Core connection architectures:

� Dynamic connection management: Conventional
ORBs create connections dynamically in response to client
requests. Dynamic connection management can incur sig-
nificant run-time overhead and priority inversion, however.

For instance, a high-priority client may need to wait for the
connection establishment of a lower-priority client. In ad-
dition, the time required to establish connections can vary
widely, ranging from microseconds to milliseconds, depend-
ing on endsystem load and network congestion.

Connection establishment overhead is difficult to bound.
For instance, if an ORB needs to dynamically establish con-
nections between a client and a server, it is hard to provide
a reasonable guarantee of the worst-case execution time since
this time must include the (often variable) connection estab-
lishment time. Moreover, connection establishment often oc-
curs outside the scope of general end-to-end OS QoS proto-
col enforcement mechanisms, such as retransmission timers
[25]. To support applications with deterministic real-time
QoS requirements, therefore, ORB endsystems often must pre-
allocate connectionsa priori.

� Connection multiplexing: Conventional ORB Cores
typically share a single multiplexed TCP connection for all ob-
ject references to servants in a server process that are accessed
by threads in a client process. This connection multiplexing
is shown in Figure 3. The goal of connection multiplexing is
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Figure 3: A Multiplexed Connection Architecture
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to minimize the number of connections open to each server,
e.g., to improve server scalability over TCP. However, con-
nection multiplexing can yield substantial packet-level prior-
ity inversions and synchronization overhead, as shown in Sec-
tions 4.2.1 and 4.2.2.

Concurrency architecture: The ORB Core’sconcurrency
architecture, which defines how requests are mapped onto
threads, also has a substantial impact on its real-time behavior.
Therefore, another key challenge for developers of real-time
ORBs is to select a concurrency architecture that can effec-
tively share the aggregate processing capacity of an ORB end-
system and its application operations in one or more threads.
The following outlines the key sources of priority inversion
and non-determinism exhibited by conventional ORB Core
concurrency architectures:

� Two-way operation reply processing: On the client-
side, conventional ORB Core concurrency architectures for
two-way operations can incur significant priority inversion.
For instance, multi-threaded ORB Cores that use connec-
tion multiplexing incur priority inversions when low-priority
threads awaiting replies from a server block out higher prior-
ity threads awaiting replies from the same server.

� Thread pools: On the server-side, ORB Core con-
currency architectures often usethread pools[26] to select
a thread in which to process an incoming request. How-
ever, conventional ORBs do not provide programming inter-
faces that allow real-time applications to assign the priority
of threads in this pool. Therefore, the priority of a thread in
the pool is often inappropriate for the priority of the servant
that ultimately executes the request. An improperly designed
ORB Core increases the potential for, and duration of, priority
inversion and non-determinism [27].

2.2.3 The Object Adapter

An Object Adapter is the component in CORBA that is re-
sponsible for demultiplexing incoming requests to servant op-
erations that handle the request. A standard GIOP-compliant
client request contains the identity of its object and operation.
An object is identified by an object key, which is anoctet
sequence . An operation is represented as astring . As
shown in Figure 4, the ORB endsystem must perform the fol-
lowing demultiplexing tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times, starting from the net-
work interface, through the data link, network, and transport
layers up to the user/kernel boundary (e.g., the socket layer),
where the data is passed to the ORB Core in a server process.
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Figure 4: CORBA 2.2 Logical Server Architecture

Steps 3, and 4: The ORB Core uses the addressing informa-
tion in the client’s object key to locate the appropriate POA
and servant. POAs can be organized hierarchically. There-
fore, locating the POA that contains the designated servant can
involve a number of demultiplexing steps through the nested
POA hierarchy.

Step 5 and 6: The POA uses the operation name to find the
appropriate IDL skeleton, which demarshals the request buffer
into operation parameters and performs the upcall to code sup-
plied by servant developers to implement the object’s opera-
tion.

The conventional deeply-layered ORB endsystem demulti-
plexing implementation shown in Figure 4 is generally inap-
propriate for high-performance and real-time applications for
the following reasons [28]:

Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that
must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers can be expensive, par-
ticularly when a large number of operations appear in an IDL
interface and/or a large number of servants are managed by an
Object Adapter.

Increased priority inversion and non-determinism: Lay-
ered demultiplexing can cause priority inversions because
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servant-level quality of service (QoS) information is inacces-
sible to the lowest-level device drivers and protocol stacks in
the I/O subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
order of arrival. FIFO demultiplexing can cause higher prior-
ity packets to wait for a non-deterministic period of time while
lower priority packets are demultiplexed and dispatched [29].

Conventional implementations of CORBA incur significant
demultiplexing overhead. For instance, [15, 17] show that con-
ventional ORBs spend�17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform, scalable QoS guarantees to real-time appli-
cations.

[14] presents alternative ORB demultiplexing techniques
and describes how TAO’s real-time Object Adapter provides
optimal demultiplexing strategies that execute deterministi-
cally in constant time. The demultiplexing strategies used in
TAO also avoid priority inversion viade-layered demultiplex-
ing, which removes unnecessary layering within TAO’s Object
Adapter.

3 Alternative ORB Core Concurrency
and Connection Architectures

This section describes a number of common ORB Core con-
currency and connection architectures. Each architecture is
used by one or more commercial or research CORBA imple-
mentations. Below, we qualitatively evaluate how each ar-
chitecture manages the aggregate processing capacity of ORB
endsystem components and application operations. Section 4
then presents quantitative results that illustrate how efficiently
and predictably these alternatives perform in practice.

3.1 Alternative ORB Core Connection Archi-
tectures

There are two general strategies for structuring the connec-
tion architecture of an ORB Core:multiplexedand non-
multiplexed. We describe and evaluate various design alter-
natives for each approach below, focusing on client-side con-
nection architectures in our examples.

3.1.1 Multiplexed Connection Architectures

Most conventional ORBs multiplex all client requests emanat-
ing from threads in a single process through one TCP connec-
tion to their corresponding server process. This multiplexed
connection architecture is used to build scalable ORBs by min-
imizing the number of TCP connections open to each server.

When multiplexing is used, however, a key challenge is to de-
sign an efficient ORB Core connection architecture that sup-
ports concurrentread andwrite operations.

TCP provides untyped bytestream data transfer semantics.
Therefore, multiple threads cannotread or write from the
same socket concurrently. Likewise,write s to a socket
shared within an ORB process must be serialized. Serializa-
tion is typically implemented by having a client thread acquire
a lock before writing to a shared socket.

For one-way operations, there is no need for additional lock-
ing or processing once a request is sent. Implementing two-
way operations over a shared connection is more complicated,
however. In this case, the ORB Core must allow multiple
threads to concurrently “read ” from a shared socket end-
point.

If server replies are multiplexed through a single TCP con-
nection then multiple threads cannotread simultaneously
from that socket endpoint. Instead, the ORB Core must de-
multiplex incoming replies to the appropriate client thread by
using the GIOP sequence number sent with the original client
request and returned with the servant’s reply.

Several common ways of implementing connection multi-
plexing to allow concurrentread andwrite operations are
described below.
Active connection architecture:

�Overview: One approach is theactive connectionarchi-
tecture shown in Figure 5. An application thread (1) invokes
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a two-way operation, which enqueues the request in the ORB
(2). A separate thread in the ORB Core services this queue (3)
and performs awrite operation on the multiplexed socket.
The ORB threadselect s1 (4) on the socket waiting for the

1Theselect call is typically used since a client may have multiple mul-
tiplexed connections to multiple servers.
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server to reply,read s the reply from the socket (5), and en-
queues the reply in a message queue (6). Finally, the applica-
tion thread retrieves the reply from this queue (7) and returns
back to its caller.

� Advantages: The advantage of the active connection ar-
chitecture is that it simplifies ORB implementations by using
a uniform queueing mechanism. In addition, if every socket
handles packets of the same priority level,i.e., packets of dif-
ferent priorities are not received on the same socket, the active
connection can handle these packets in FIFO order without
causing request-level priority inversion [22].

� Disadvantages: The disadvantage with this architec-
ture, however, is that the active connection forces an extra con-
text switch on all two-way operations. Therefore, to minimize
this overhead, many ORBs use a variant of the active connec-
tion architecture described next.

Leader/Followers connection architecture:

� Overview: An alternative to the active connection
model is theleader/followersarchitecture shown in Figure 6.
As before, an application thread invokes a two-way operation
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Figure 6: Leader/Follower Connection Architecture

call (1). Rather than enqueueing the request in an ORB mes-
sage queue, however, the request is sent across the socket im-
mediately (2), using the application thread that invoked the
operation to perform thewrite . Moreover, no single thread
in the ORB Core is dedicated to handling all the socket I/O in
the leader/follower architecture. Instead, the first thread that
attempts to wait for a reply on the multiplexed connection will
block inselect waiting for a reply (3). This thread is called
the leader.

To avoid corrupting the socket bytestream, only the leader
thread canselect on the socket(s). Thus, all client threads
that “follow the leader” toread replies from the shared socket
will block on semaphores managed by the ORB Core. If
replies return from the server in FIFO order this strategy is
optimal since there is no unnecessary processing or context
switching. Since replies may arrive in non-FIFO order, how-
ever, the next reply from a server could be for any one of the
client threads blocked on semaphores.

When the next reply arrives from the server, the leader
read s the reply (4). It uses the sequence number returned
in the GIOP reply header to identify the correct thread to re-
ceive the reply. If the reply is for the leader’s own request, the
leader thread releases the semaphore of the next follower (5)
and returns to its caller (6). The next follower thread becomes
the new leader and blocks onselect .

If the reply isnot for the leader thread, however, the leader
must signal the semaphore of the appropriate thread. This sig-
naled thread then wakes up,read s its reply, and returns to its
caller. Meanwhile, the leader thread continues toselect for
the next reply.

� Advantages: Compared with active connections, the
advantage of the leader/follower connection architecture is
that it minimizes the number of context switches incurredif
replies arrive in FIFO order.

� Advantages: The disadvantage of the leader/follower
model is that the complex implementation logic can yield sig-
nificant locking overhead and priority inversion. The locking
overhead stems from the need to acquire mutexes when send-
ing requests and to block on the semaphores while waiting for
replies. The priority inversion occurs if the priorities of the
waiting threads are not respected by the leader thread when it
demultiplexes replies to client threads.

3.1.2 Non-multiplexed Connection Architectures

� Overview: One technique for minimizing ORB Core
priority inversion is to use a non-multiplexed connection ar-
chitecture, such as the one shown in Figure 7. In this connec-
tion architecture, each client thread maintains a table of pre-
established connections to servers in thread-specific storage
[30]. A separate connection is maintained in each thread for
every priority level,e.g., P1, P2, P3, etc. As a result, when a
two-way operation is invoked (1) it shares no socket endpoints
with other threads. Therefore, thewrite , (2), select (3),
read (4), and return (5) operations can occur without con-
tending for ORB Core resources with other threads in the pro-
cess.

� Advantages: The primary advantages of a non-
multiplexed connection architecture is that it preserves end-to-
end priorities and minimizes priority inversion while sending
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Figure 7: Non-multiplexed Connection Architecture

requests through ORB endsystems. In addition, since connec-
tions are not shared, this design incurs low synchronization
overhead because no additional locks are required in the ORB
Core when sending and receiving two-way requests [31].

� Disadvantages: The disadvantage with a non-
multiplexed connection architecture is that it can use a larger
number of socket endpoints than the multiplexed connection
model, which may increase the ORB endsystem memory
footprint. Moreover, this approach does not scale with the
number of priority levels. Therefore, it is most effective when
used for statically configured real-time applications, such as
avionics mission computing systems [22], which possess a
small, fixed number of connections and priority levels, where
each priority level maps to an OS thread priority.

3.2 Alternative ORB Core Concurrency Archi-
tectures

There are a variety of strategies for structuring the concurrency
architecture in an ORB [26]. Below, we describe a number of
alternative ORB Core concurrency architectures, focusing on
server-side concurrency.

3.2.1 The Worker Thread Pool Architecture

� Overview: This ORB concurrency architecture uses a
design similar to the active connection architecture described
in Section 3.1.1. As shown in Figure 8, the components in
a worker thread pool include an I/O thread, a request queue,
and a pool of worker threads. The I/O threadselect s (1) on
the socket endpoints,reads (2) new client requests, and (3)
inserts them into the tail of the request queue. A worker thread
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Figure 8: Server-side Worker Thread Pool Concurrency Ar-
chitecture

in the pool dequeues (4) the next request from the head of the
queue and dispatches it (5).

� Advantages: The chief advantage of the worker thread
pool concurrency architecture is its ease of implementation. In
particular, the request queue provides a straightforward pro-
ducer/consumer design.

� Disadvantages: The disadvantages of this model stem
from the excessive context switching and synchronization re-
quired to manage the request queue, as well as request-level
priority inversion caused by connection multiplexing. Since
different priority requests share the same transport connec-
tion, a high-priority request may wait until a low-priority re-
quest that arrived earlier is processed. Moreover, thread-level
priority inversions can occur if the priority of the thread that
originally read s the request is lower than the priority of the
servant that processes the request.

3.2.2 The Leader/Follower Thread Pool Architecture

� Overview: The leader/follower thread pool architecture
is an optimization of the worker thread pool model. It is sim-
ilar to the leader/follower connection architecture discussed
in Section 3.1.1. As shown in Figure 9, a pool of threads is
allocated and a leader thread is chosen toselect (1) on con-
nections for all servants in the server process. When a request
arrives, this thread reads (2) it into an internal buffer. If this
is a valid request for a servant, a follower thread in the pool
is released to become the new leader (3) and the leader thread
dispatches the upcall (4). After the upcall is dispatched, the
original leader thread becomes a follower and returns to the
thread pool. New requests are queued in socket endpoints un-
til a thread in the pool is available to execute the requests.
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Figure 9: Server-side Leader/Follower Concurrency Architec-
ture

�Advantages: Compared with the worker thread pool de-
sign, the chief advantage of the leader/follower thread pool
architecture is that it minimizes context switching overhead
incurred by incoming requests. Overhead is minimized since
the request need not be transferred from the thread that read it
to another thread in the pool that processes it.

� Disadvantages: The leader/follower architecture’s dis-
advantages are largely the same as with the worker thread de-
sign. In addition, it is harder to implement the leader/follower
model than the worker thread pool model.

3.2.3 Threading Framework Architecture

� Overview: A very flexible way to implement an ORB
concurrency architecture is to allow application developers to
customize hook methods provided by athreading framework.
One way of structuring this framework is shown in Figure 10.
This design is based on the MT-Orbix thread filter framework,
which implements a variant of the Chain of Responsibility pat-
tern [32].

In MT-Orbix, an application can install a thread filter at the
top of a chain of filters. Filters are application-programmable
hooks that can perform a number of tasks. Common tasks in-
clude intercepting, modifying, or examining each request sent
to and from the ORB.

In the thread framework architecture, a connection thread
in the ORB Coreread s (1) a request from a socket endpoint
and enqueues the request on a request queue in the ORB Core
(2). Another thread then dequeues the request (3) and passes
it through each filter in the chain successively. The topmost
filter, i.e., the thread filter, determines the thread to handle this
request. In thethread-poolmodel, the thread filter enqueues
the request into a queue serviced by a thread with the appropri-
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Figure 10: Server-side Thread Framework Concurrency Ar-
chitecture

ate priority. This thread then passes control back to the ORB,
which performs operation demultiplexing and dispatches the
upcall (4).

� Advantages: The main advantage of a threading frame-
work is its flexibility. The thread filter mechanism can be
programmed by server developers to support various concur-
rency strategies. For instance, to implement a thread-per-
request [33] strategy, the filter can spawn a new thread and
pass the request to this new thread. Likewise, the MT-Orbix
threading framework can be configured to implement other
concurrency architectures such as thread-per-object [34] and
thread pool [35].

� Disadvantages: There are several disadvantages with
the thread framework design, however. First, since there is
only a single chain of filters, priority inversion can occur be-
cause each request must traverse the filter chain in FIFO or-
der. Second, there may be FIFO queueing at multiple levels
in the ORB endsystem. Therefore, a high priority request may
be processed only after several lower priority requests that ar-
rived earlier. Third, the generality of the threading framework
can substantially increase locking overhead since locks must
be acquired to insert requests into the queue of the appropriate
thread.

3.2.4 The Reactor-per-Thread-Priority Architecture

� Overview: TheReactor -per-thread-priority architec-
ture is based on the Reactor pattern [36], which integrates
transport endpoint demultiplexing and the dispatching of the

9



corresponding event handlers. This threading architecture as-
sociates a group ofReactor s with a group of threads run-
ning at different priorities. As shown in Figure 11, the compo-
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Figure 11: Server-side Reactor-per-Thread-Priority Concur-
rency Architecture

nents in theReactor -per-thread-priorityarchitecture include
multiple pre-allocatedReactor s, each of which is associated
with its own real-time thread of control for each priority level,
e.g., P1 . . .P4, in the ORB. For instance, avionics mission
computing systems [37] commonly execute their tasks in fixed
priority threads corresponding to therates, e.g., 20 Hz, 10 Hz,
5 Hz, and 1 Hz, at which operations are called by clients.

Within each thread, theReactor demultiplexes (1) all in-
coming client requests to the appropriate connection handler,
i.e., connect1, connect2, etc. The connection handlerread s
(2) the request and dispatches (3) it to a servant that executes
the upcall at its thread priority.

EachReactor in an ORB server thread is also associated
with an Acceptor [38]. The Acceptor is a factory that
listens on a particular port number for clients to connect to that
thread and creates a connection handler to process the GIOP
requests. In the example in Figure 11, there is a listener port
for each priority level.

� Advantages: The advantage of theReactor -per-
thread-priority architecture is that it minimizes priority in-
version and non-determinism. Moreover, it reduces context
switching and synchronization overhead by requiring the state
of servants to be locked only if they interact across different
thread priorities. In addition, this concurrency architecture
supports scheduling and analysis techniques that associate pri-
ority with rate, such as Rate Monotonic Scheduling (RMS) and
Rate Monotonic Analysis (RMA) [39, 40].

� Disadvantages: The disadvantage with theReactor -
per-thread-priority architecture is that it serializes all client re-

quests for eachReactor within a single thread of control,
which can reduce parallelism. To alleviate this problem, a
variant of this architecture can associate apoolof threads with
each priority level. Though this will increase potential par-
allelism, it can incur greater context switching overhead and
non-determinism, which may be unacceptable for certain types
of real-time applications.

3.3 Integrating Connection and Concurrency
Architectures

The Reactor -per-thread-priority architecture can be inte-
grated seamlessly with the non-multiplexed connection model
described in Section 3.1.2 to provide end-to-end priority
preservation in real-time ORB endsystems, as shown in . Fig-
ure 12. In this diagram, theAcceptor s listen on ports that
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Figure 12: End-to-end Real-time ORB Core Software Archi-
tecture

correspond to the 20 Hz, 10 Hz, 5 Hz, and 1 Hz rate group
thread priorities, respectively. Once a client connects, its
Acceptor creates a new socket queue and connection han-
dler to service that queue. The I/O subsystem uses the port
number contained in arriving requests as a demultiplexing key
to associate requests with the appropriate socket queue. Each
queue is served by an ORB Core thread that runs at the appro-
priate priority.

The combination of theReactor -per-thread-priority ar-
chitecture and the non-multiplexed connection architecture
minimizes priority inversion through the entire distributed
ORB endsystem by eagerly demultiplexing incoming requests
onto the appropriate real-time thread that services the priority
level of the target servant. As shown in Section 4.2, this de-
sign is well suited for real-time applications with deterministic
QoS requirements.
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4 Real-time ORB Core Performance
Experiments

This section describes the results of experiments that mea-
sure the real-time behavior of several commercial and research
ORBs, including IONA MT-Orbix 2.2, Sun miniCOOL 4.32,
Expersoft CORBAplus 2.1.1, and TAO 1.0. MT-Orbix and
CORBAplus are not real-time ORBs,i.e., they were not ex-
plicitly designed to support applications with real-time QoS
requirements. Sun miniCOOL is a subset of the COOL ORB
that is specifically designed for embedded systems with small
memory footprints. TAO was designed at Washington Univer-
sity to support real-time applications with deterministic and
statistical quality of service requirements, as well as best ef-
fort requirements. TAO has been used in a number of produc-
tion real-time systems at companies like Boeing [37], SAIC,
Lockheed Martin, and Raytheon.

4.1 Benchmarking Testbed

This section describes the experimental testbed we designed
to systematically measure sources of latency and throughput
overhead, priority inversion, and non-determinism in ORB
endsystems. The architecture of our testbed is depicted in Fig-
ure 13. The hardware and software components used in the
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Figure 13: ORB Endsystem Benchmarking Testbed

experiments are outlined below.

4.1.1 Hardware Configuration

The experiments in this section were conducted using a
FORE systems ASX-1000 ATM switch connected to two
dual-processor UltraSPARC-2s running Solaris 2.5.1. The
ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each

2COOL was previously developed by Chorus, which was acquired by Sun.
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ASX ASX 200200BXBX
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SPARCSPARC    22
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Figure 14: Hardware for the CORBA/ATM Testbed

UltraSPARC-2 contains two 168 MHz Super SPARC CPUs
with a 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP/IP
protocol stack is implemented using the STREAMS commu-
nication framework [41].

Each UltraSPARC-2 has 256 Mbytes of RAM and an ENI-
155s-MF ATM adaptor card, which supports 155 Megabits
per-sec (Mbps) SONET multimode fiber. The Maximum
Transmission Unit (MTU) on the ENI ATM adaptor is 9,180
bytes. Each ENI card has 512 Kbytes of on-board memory.
A maximum of 32 Kbytes is allotted per ATM virtual circuit
connection for receiving and transmitting frames (for a total of
64 Kb). This allows up to eight switched virtual connections
per card. The CORBA/ATM hardware platform is shown in
Figure 14.

4.1.2 Client/Server Configuration and Benchmarking
Methodology

Server benchmarking configuration: As shown in Fig-
ure 13, our testbed server consists of two servants within an
ORB’s Object Adapter. One servant runs in a higher priority
thread than the other. Each thread processes requests that are
sent to its servant by client threads on the other UltraSPARC-2.

Solaris real-time threads [42] are used to implement ser-
vant priorities. The high-priority servant thread has thehigh-
estreal-time priority available on Solaris and the low-priority
servant has thelowestreal-time priority. The server bench-
marking configuration is implemented in the various ORBs as
follows:

� CORBAplus: which uses the worker thread pool archi-
tecture described in Section 3.2.1. In version 2.1.1 of COR-
BAplus, multi-threaded applications have an event dispatcher
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thread and a pool of worker threads. The dispatcher thread
receives the requests and passes them to application worker
threads, which process the requests. In the simplest configu-
ration, a server application can choose to create no additional
threads and rely upon the main thread to process all requests.

�miniCOOL: which uses the leader/follower thread pool
architecture described in Section 3.2.2. Version 4.3 of mini-
COOL allows application-level concurrency control. Appli-
cation developers can choose between thread-per-request or
thread-pool. The thread-pool concurrency architecture was
used for our benchmarks because it is better suited for deter-
ministic real-time applications than thread-per-request. In the
thread-pool concurrency architecture, the application initially
spawns a fixed number of threads. In addition, when the initial
thread pool size is insufficient, miniCOOL can be configured
to handle requests on behalf of server applications by spawn-
ing threads dynamically up to a maximum limit.

� MT-Orbix: which uses the thread pool framework ar-
chitecture based on the Chain of Responsibility pattern de-
scribed in Section 3.2.3. Version 2.2 of MT-Orbix is used
to create two real-time servant threads at startup. The high-
priority thread is associated with the high-priority servant and
the low-priority thread is associated with the low-priority ser-
vant. Incoming requests are assigned to these threads using the
Orbix thread filter mechanism, as shown in Figure 10. Each
priority has its own queue of requests to avoid priority inver-
sion within the queue. This inversion could otherwise occur
if a high-priority servant and a low-priority servant dequeued
requests from the same queue.

� TAO: which uses theReactor -per-thread-priority
concurrency architecture described in Section 3.2.4. Version
1.0 of TAO integrates theReactor -per-thread-priority con-
currency architecture with a non-multiplexed connection ar-
chitecture, as shown in Figure 15. In contrast, the other three
ORBs multiplex all requests from client threads in each pro-
cess over a single connection to the server process.

Client benchmarking configuration: Figure 13 shows how
the benchmarking test used one high-priority clientC0 andn
low-priority clients,C1 . . . Cn. The high-priority client runs
in a high-priority real-time OS thread and invokes operations
at 20 Hz,i.e., it invokes 20 CORBA two-way calls per second.
All low-priority clients have the same lower priority OS thread
priority and invoke operations at 10 Hz,i.e., they invoke 10
CORBA two-way calls per second. In each call, the client
sends a value of typeCORBA::Octet to the servant. The
servant cubes the number and returns it to the client.

When the test program creates the client threads, they block
on a barrier lock so that no client begins work until the others
are created and ready to run. When all threads inform the main
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Figure 15: TAO’sReactor -per-Thread-Priority Thread Pool
Architecture

thread they are ready to begin, the main thread unblocks all
client threads. These threads execute in an order determined
by the Solaris real-time thread dispatcher. Each client invokes
4,000 CORBA two-way requests at its prescribed rate.

4.2 Performance Results on Solaris

Two categories of tests were used in our benchmarking exper-
iments:blackboxandwhitebox.

Blackbox benchmarks: We computed the average two-way
response time incurred by various clients. In addition, we
computed two-way operation jitter, which is the standard de-
viation from the average two-way response time. High levels
of latency and jitter are undesirable for real-time applications
since they degrade worst-case execution time and reduce CPU
utilization. Section 4.2.1 explains the blackbox results.

Whitebox benchmarks: To precisely pinpoint thesources
of priority inversion and performance non-determinism, we
employed whitebox benchmarks. These benchmarks used
profiling tools, such as UNIXtruss andQuantify [43].
These tools trace and log the activities of the ORBs and mea-
sure the time spent on various tasks, as explained in Sec-
tion 4.2.2.

Together, the blackbox and whitebox benchmarks indicate
the end-to-end latency/jitter incurred by CORBA clients and
help explain the reason for these results. In general, the re-
sults reveal why ORBs like MT-Orbix, CORBAplus, and mini-
COOL are not yet suited for applications with real-time per-
formance requirements. Likewise, the results illustrate empir-
ically how and why the non-multiplexed, priority-based ORB
Core architecture used by TAO is more suited for many types
of real-time applications.
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4.2.1 Blackbox Results

As the number of low-priority clients increases, the number of
low-priority requests sent to the server also increases. Ideally,
a real-time ORB endsystem should exhibit no variance in the
latency observed by the high-priority client, irrespective of the
number of low-priority clients. Our measurements of end-to-
end two-way ORB latency yielded the results in Figure 16.
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Figure 16: Comparative Latency for CORBAplus, MT-Orbix,
miniCOOL, and TAO

Figure 16 shows that as the number of low-priority clients
increases, MT-Orbix and CORBAplus incur significantly
higher latencies for their high-priority client thread. Com-
pared with TAO, MT-Orbix’s latency is 7 times higher and
CORBAplus’ latency is 25 times higher. In addition, note
the irregular behavior of the average latency that miniCOOL
displays,i.e., from 10 msec latency running 20 low-priority
clients down to 2 msec with 25 low-priority clients. Such non-
determinism is undesirable for real-time applications.

The low-priority clients for MT-Orbix, CORBAplus and
miniCOOL also exhibit very high levels of jitter. Compared
with TAO, CORBAplus incurs 300 times as much jitter and
MT-Orbix 25 times as much jitter in the worst case, as shown
in Figure 17. Likewise, miniCOOL’s low-priority clients dis-
play an erratic behavior with several high bursts of jitter, which
makes it undesirable for deterministic real-time applications.

The blackbox results for each ORB are explained in more
detail below.
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Figure 17: Comparative Jitter for CORBAplus, MT-Orbix,
miniCOOL and TAO

CORBAplus results: CORBAplus incurs priority inversion
at various points in the graph shown in Figure 16. After dis-
playing a high amount of latency for a small number of low-
priority clients, the latency drops suddenly at 10 clients, then
eventually rises again. This erratic behavior is not suitable for
deterministic real-time applications. Section 4.2.2 reveals how
the poor performance and priority inversions stem largely from
CORBAplus’ concurrency architecture. Figure 17 shows that
CORBAplus generates high levels of jitter, particularly when
tested with 40, 45, and 50 low-priority clients. These results
show an erratic and undesirable behavior for applications that
require real-time guarantees.

MT-Orbix results: MT-Orbix incurs substantial priority in-
version as the number of low-priority clients increase. After
the number of clients exceeds 10, the high-priority client per-
forms increasingly worse than the low-priority clients. This
behavior is not conducive to deterministic real-time applica-
tions. Section 4.2.2 reveals how these inversions stem largely
from the MT-Orbix’s concurrency architecture on the server.
In addition, MT-Orbix produces high levels of jitter, as shown
in Figure 17. This behavior is caused by priority inversions in
its ORB Core, as explained in Section 4.2.2.

miniCOOL results: As the number of low-priority clients
increase, the latency observed by the high-priority client also
increases, reaching�10 msec, at 20 clients, at which point it
decreases suddenly to 2.5 msec with 25 clients. This erratic
behavior becomes more evident as more low-priority clients
are run. Although the latency of the high-priority client is
smaller than the low-priority clients, the non-linear behavior
of the clients makes miniCOOL problematic for deterministic
real-time applications.
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The difference in latency between the high- and the low-
priority client is also unpredictable. For instance, it ranges
from 0.55 msec to 10 msec. Section 4.2.2 reveals how this
behavior stems largely from the connection architecture used
by the miniCOOL client and server.

The jitter incurred by miniCOOL is also fairly high, as
shown in Figure 17. This jitter is similar to that observed
by the CORBAplus ORB since both spend approximately the
same percentage of time executing locking operation. Sec-
tion 4.2.2 evaluates ORB locking behavior.

TAO results: Figure 16 reveals that as the number of low-
priority clients increase from 1 to 50, the latency observed
by TAO’s high-priority client grows by�0.7 msecs. How-
ever, the difference between the low-priority and high-priority
clients starts at 0.05 msec and ends at 0.27 msec. In contrast,
in miniCOOL, it grows from 0.55 msec to 10 msec, and in
CORBAplus it grows from 0.42 msec to 15 msec. Moreover,
the rate of increase of latency with TAO is significantly lower
than MT-Orbix, Sun miniCOOL, and CORBAplus. In partic-
ular, when there are 50 low-priority clients competing for the
CPU and network bandwidth, the low-priority client latency
observed with MT-Orbix is more than 7 times that of TAO, the
miniCOOL latency is�3 times that of TAO, and CORBAplus
is�25 times that of TAO.

In contrast to the other ORBs, TAO’s high-priority client al-
ways performs better than its low-priority clients. This demon-
strates that the connection and concurrency architectures in
TAO’s ORB Core are better suited to maintaining real-time re-
quest priorities end-to-end. The key difference between TAO
and other ORBs is that its GIOP protocol processing is per-
formed on a dedicated connection by a dedicated real-time
thread with a suitable end-to-end real-time priority. Thus,
TAO shares the minimal amount of ORB endsystem resources,
which substantially reduces opportunities for priority inver-
sion and locking overhead.

The TAO ORB also exhibits very low jitter (less than 11
msecs) for the low-priority requests and lower jitter (less than
1 msec) for the high-priority requests. The stability of TAO’s
latency is clearly desirable for applications that require pre-
dictable end-to-end performance.

In general, the blackbox results described above demon-
strate that improper choice of ORB Core concurrency and
connection software architectures can play a significant role
in exacerbating priority inversion and non-determinism. The
fact that TAO achieves such low levels of latency and jitter
when run over the non-real-time Solaris I/O subsystem further
demonstrates the feasibility of using standard OO middleware
like CORBA to support real-time applications.

4.2.2 Whitebox Results

For the whitebox tests, we used a configuration of ten con-
current clients similar to the one described in Section 4.1.
Nine clients were low-priority and one was high-priority. Each
client sent 4,000 two-way requests to the server, which had a
low-priority servant and high-priority servant thread.

Our previous experience using CORBA for real-time avion-
ics mission computing [37] indicated that locks constitute a
significant source of overhead, non-determinism and potential
priority inversion for real-time ORBs. UsingQuantify and
truss , we measured the time the ORBs consumed perform-
ing tasks like synchronization, I/O, and protocol processing.

In addition, we computed a metric that records
the number of calls made to user-level locks
(mutex lock and mutex unlock ) and kernel-level
locks ( lwp mutex lock , lwp mutex unlock ,
lwp sema post and lwp sema wait ). This metric

computes the average number of lock operations per-request.
In general, kernel-level locks are considerably more expensive
since they incur kernel/user mode switching overhead.

The whitebox results from our experiments are presented
below.

CORBAplus whitebox results: Our whitebox analysis of
CORBAplus reveals high levels of synchronization overhead
from mutex and semaphore operations at the user-level for
each two-way request, as shown in Figure 22. Synchroniza-
tion overhead arises from locking operations that implement
the connection and concurrency architecture used by COR-
BAplus.

As shown in Figure 18, CORBAplus exhibits high synchro-
nization overhead (52%) using kernel-level locks in the client
and the server incurs high levels of processing overhead (45%)
due to kernel-level lock operations.

For each CORBA request/response, CORBAplus’s client
ORB performs 199 lock operations, whereas the server per-
forms 216 user-level lock operations, as shown in Figure 22.
This locking overhead stems largely from excessive dynamic
memory allocation, as described in Section 4.4. Each dynamic
allocation causes two user-level lock operations,i.e., one ac-
quire and one release.

The CORBAplus connection and concurrency architectures
are outlined briefly below.

� CORBAplus connection architecture: The COR-
BAplus ORB connection architecture uses the active connec-
tion model described in Section 3.1.1 and depicted in Figure 8.
This design multiplexes all requests to the same server through
one active connection thread, which simplifies ORB imple-
mentations by using a uniform queueing mechanism.

� CORBAplus concurrency architecture: The COR-
BAplus ORB concurrency architecture uses the thread pool
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Figure 18: Whitebox Results for CORBAplus

architecture described in Section 3.2.1 and depicted in Fig-
ure 8. This architecture uses a single I/O thread toaccept
andread requests from socket endpoints. This thread inserts
the request on a queue that is serviced by a pool of worker
threads.

The CORBAplus connection architecture and the server
concurrency architecture help reduce the number of simulta-
neous open connections and simplify the ORB implementa-
tion. However, concurrent requests to the shared connection
incur high overhead because each send operation incurs a con-
text switch. In addition, on the client-side, threads of different
priorities can share the same transport connection, which can
cause priority inversion. For instance, a high-priority thread
may be blocked until a low-priority thread finishes sending its
request. Likewise, the priority of the thread that blocks on
the semaphore to receive a reply from a two-way connection
may not reflect the priority of therequestthat arrives from the
server, thereby causing additional priority inversion.

miniCOOL whitebox results: Our whitebox analysis of
miniCOOL reveals that synchronization overhead from mu-
tex and semaphore operations consume a large percentage of
the total miniCOOL ORB processing time. As with COR-
BAplus, synchronization overhead in miniCOOL arises from
locking operations that implement its connection and concur-
rency architecture. Locking overhead accounted for�50% on
the client-side and more than 40% on the server-side, as shown
in Figure 19).

For each CORBA request/response, miniCOOL’s client
ORB performs 94 lock operations at the user-level, whereas
the server performs 231 lock operations, as shown in Fig-
ure 22. As with CORBAplus, this locking overhead stems
largely from excessive dynamic memory allocation. Each dy-
namic allocation causes two user-level lock operations,i.e.,
one acquire and one release.

The number of calls per-request to kernel-level locking
mechanisms at the server (shown in Figure 23) are unusually
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Figure 19: Whitebox Results for miniCOOL

high. This overhead stems from the fact that miniCOOL uses
“system scoped” threads on Solaris, which require kernel in-
tervention for all synchronization operations [44].

The miniCOOL connection and concurrency architectures
are outlined briefly below.

� miniCOOL connection architecture: The mini-
COOL ORB connection architecture uses a variant of the
leader/followers model described in Section 3.1.1. This ar-
chitecture allows the leader thread to block inselect on
the shared socket. All following threads block on semaphores
waiting for one of two conditions: (1) the leader thread will
read their reply message and signal their semaphore or (2)
the leader thread willread its own reply and signal another
thread to enter and block inselect , thereby becoming the
new leader.

� miniCOOL concurrency architecture: The Sun
miniCOOL ORB concurrency architecture uses the
leader/followers thread pool architecture described in
Section 3.2.2. This architecture waits for connections in a
single thread. Whenever a request arrives and validation
of the request is complete, the leader thread (1) signals a
follower thread in the pool to wait for incoming requests and
(2) services the request.

The miniCOOL connection architecture and the server con-
currency architecture help reduce the number of simultaneous
open connections and the amount of context switching when
replies arrive in FIFO order. As with CORBAplus, however,
this design yields high levels of priority inversion. For in-
stance, threads of different priorities can share the same trans-
port connection on the client-side. Therefore, a high-priority
thread may block until a low-priority thread finishes sending
its request. In addition, the priority of the thread that blocks on
the semaphore to access a connection may not reflect the pri-
ority of theresponsethat arrives from the server, which yields
additional priority inversion.
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MT-Orbix whitebox results: Figure 20 shows the whitebox
results for the client-side and server-side of MT-Orbix.
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Figure 20: Whitebox Results for MT-Orbix

� MT-Orbix connection architecture: Like miniCOOL,
MT-Orbix uses the leader/follower multiplexed connection ar-
chitecture. Although this model minimizes context switching
overhead, it causes intensive priority inversions.

� MT-Orbix concurrency architecture: In the MT-
Orbix implementation of our benchmarking testbed, multiple
servant threads were created, each with the appropriate pri-
ority, i.e., the high-priority servant had the highest priority
thread. A thread filter was then installed to look at each re-
quest, determine the priority of the request (by examining the
target object), and pass the request to the thread with the cor-
rect priority. The thread filter mechanism is implemented by a
high-priority real-time thread to minimize dispatch latency.

The thread pool instantiation of the MT-Orbix mechanism
described in Section 3.2.3 is flexible and easy to use. However,
it suffers from high levels of priority inversion and synchro-
nization overhead. MT-Orbix provides onlyonefilter chain.
Thus, all incoming requests must be processed sequentially by
the filters before they are passed to the servant thread with an
appropriate real-time priority. As a result, if a high-priority
request arrives after a low-priority request, it must wait until
the low-priority request has been dispatched before the ORB
processes it.

In addition, a filter can only be called after (1) GIOP pro-
cessing has completed and (2) the Object Adapter has deter-
mined the target object for this request. This processing is
serialized since the MT-Orbix ORB Core is unaware of the re-
quest priority. Thus, a higher priority request that arrived after
a low-priority request must wait until the lower priority request
has been processed by MT-Orbix.

MT-Orbix’s concurrency architecture is chiefly responsible
for its substantial priority inversion shown in Figure 16. This
figure shows how the latency observed by the high-priority
client increases rapidly, growing from�2 msecs to�14 msecs
as the number of low-priority clients increase from 1 to 50.

The MT-Orbix filter mechanism also causes an increase in
synchronization overhead. Because there is just one filter
chain, concurrent requests must acquire and release locks to
be processed by the filter. The MT-Orbix client-side performs
175 user-level lock operations per-request, while the server-
side performs 599 user-level lock operations per-request, as
shown in Figure 22. Moreover, MT-Orbix displays a high
number of kernel-level locks per-request, as shown in Fig-
ure 23.

TAO whitebox results: As shown in Figure 21, TAO ex-
hibits negligible synchronization overhead. TAO performs no
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Figure 21: Whitebox Results for TAO

user-level lock operations on the client-side, nor on the server-
side. This absence of synchronization results from the design
of TAO’s ORB Core, which allocates a separate connection for
each priority, as shown in Figure 12. Therefore, TAO’s ORB
Core uses no user-level locking operations and no kernel-level
locks.

� TAO connection architecture: TAO uses a non-
multiplexed connection architecture, which pre-establishes
connections to servants, as described in Section 3.1.2. One
connection is pre-established for each priority level, thereby
avoiding the non-deterministic delay involved in dynamic con-
nection setup. In addition, different priority levels have their
own connection. This design avoids request-level priority in-
version, which would otherwise occur from FIFO queueing
acrossclient threads with different priorities.

� TAO concurrency architecture: TAO supports sev-
eral concurrency architectures, as described in [22]. The
Reactor -per-thread-priority architecture described in Sec-
tion 3.2.4 was used for the benchmarks in this paper. In this
concurrency architecture, a separate thread is created for each
priority level, i.e., each rate group. Thus, the low-priority
client issues CORBA requests at a lower rate than the high-
priority client (10 Hz vs. 20 Hz, respectively).

On the server-side, client requests sent to the high-priority
servant are processed by a high-priority real-time thread. Like-
wise, client requests sent to the low-priority servant are han-
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dled by the low-priority real-time thread. Locking overhead is
minimized since these two servant threads share minimal ORB
resources,i.e., they have separateReactor s, Acceptor s,
Object Adapters, etc. In addition, the two threads service sep-
arate client connections, thereby eliminating the priority inver-
sion that would otherwise arises from connection multiplex-
ing, as exhibited by the other ORBs we tested.

Locking overhead: Our whitebox tests measured user-level
locking overhead (shown in Figure 22) and kernel-level lock-
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Figure 22: User-level Locking Overhead in ORBs

ing overhead (shown in Figure 23) in the CORBAplus, MT-
Orbix, miniCOOL, and TAO ORBs. User-level locks are typ-
ically used to protect shared resources within a process. A
common example is dynamic memory allocation using global
C++ operatorsnew and delete . These operators allocate
memory from a globally managed heap in each process.

Kernel-level locks are more expensive since they typically
require mode switches between user-level and the kernel. The
semaphore and mutex operations depicted in the whitebox re-
sults for the ORBs evaluated above arise from kernel-level
lock operations.

Figures 22 and 23 illustrate how unlike the other three
ORBs, TAO incurs no user-level or kernel-level locking. TAO
can be configured so that ORB resources are not shared be-
tween its threads. For instance, it eliminates dynamic alloca-
tion, and the associated locking operations, by using buffers
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Figure 23: Kernel-level Locking Overhead in ORBs

that are pre-allocated off the run-time stack. Each buffer is
subdivided to accommodate the various fields of the request.

4.3 Performance Results on Chorus ClassiX

The performance results in Section 4.2 were obtained on
Solaris 2.5.1, which provides real-time scheduling but not
real-time I/O [42]. Therefore, Solaris cannot guarantee the
availability of resources like I/O buffers and network band-
width [22]. Moreover, the scheduling performed by the Solaris
I/O subsystem is not integrated with the rest of its resource
management strategies.

So-called real-time operating systems typically provide
mechanisms for priority-controlled access to OS resources.
This allows applications to ensure that QoS requirements are
met. QoS mechanisms provided by real-time operating sys-
tems typically include real-time scheduling classes that en-
force QoS usage policies, as well as real-time I/O to specify
processing requirements and operation periods.

Chorus3 ClassiX is a real-time OS that can scale down to
small embedded configurations, as well as scale up to dis-
tributed POSIX-compliant platforms [45]. ClassiX provides
a real-time scheduler that supports several scheduling algo-
rithms, including priority-based FIFO preemptive scheduling.
It supports real-time applications and general-purpose appli-
cations.

3Chorus has been purchased by Sun Microsystems.
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The IPC mechanism used on ClassiX, Chorus IPC, provides
an efficient, location-transparent message-based communica-
tion facility on a single board and between multiple intercon-
nected boards. In addition, ClassiX has a TCP/IP protocol
stack, accessible via the Socket API, that enables internet-
working connectivity with other OS platforms.

To determine the impact of a real-time OS on ORB perfor-
mance, this subsection presents blackbox results for TAO and
miniCOOL using ClassiX.

4.3.1 Hardware Configuration:

The following experiments were conducted using two
MVME177 VMEbus single-board computers. Each
MVME177 contains a 60 MHz MC68060 processor and
64 Mbytes of RAM. The MVME177 boards are mounted on
a MVME954A 6-slot, 32-bit, VME-compatible backplane. In
addition, each MVME177 module has an 82596CA Ethernet
transceiver interface.

4.3.2 Software Configuration:

The experiments were run on version 3.1 of ClassiX. The
ORBs benchmarked were miniCOOL 4.3 and TAO 1.0. The
client/server configurations run were (1) locally,i.e., client
and server on one board and (2) remotely,i.e., between two
MVME177 boards on the same backplane.

The client/server benchmarking configuration implemented
is the same4 as the one run on Solaris 2.5.1 that is described in
Section 4.1.2. MiniCOOL was configured to send messages
on one board or across boards using the Chorus IPC com-
munication facility, which is more efficient than the Chorus
TCP/IP protocol stack. In addition, we conducted benchmarks
of miniCOOL and TAO using the TCP protocol. In general,
miniCOOL performs more predictably using Chorus IPC as
its transport mechanism.

4.3.3 Blackbox results:

We computed the average two-way response time incurred by
various clients. In addition, we computed two-way operation
jitter. High levels of latency and jitter are undesirable for real-
time applications since they complicate the computation of
worst-case execution time and reduce CPU utilization.

miniCOOL using Chorus IPC: As the number of low-
priority clients increase, the latency observed by the remote
high- and low-priority client also increases. It reaches�34
msec, increasing linearly, when the client and the server are

4Note the number of low-priority clients used was 5 rather than 50 due to a
bug in ClassiX that causedselect to fail if used to wait for events on more
than 16 sockets.

on different processor boards (remote) as shown in Figure 24.
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Figure 24: Latency for miniCOOL with Chorus IPC on Clas-
siX

When the client and server are collocated, the behavior is
more stable on both the high and low-priority client,i.e., they
are essentially identical since their lines in Figure 24 over-
lap. The latencies start at�2.5 msec of latency and reaches
�12.5 msecs. Both high- and low-priority clients incur ap-
proximately the same average latency.

In all cases, the latency for the high-priority client is always
lower than the latency for the low-priority client. Thus, there is
no significant priority inversion, which is expected for a real-
time system. However, there is still variance in the latency
observed by the high-priority client, in both, the remote and
local configurations.

In general, miniCOOL performs more predictably on Clas-
siX than its version for Solaris. This is due to the use of TCP
on Solaris versus Chorus IPC on ClassiX. The Solaris latency
and jitter results were relatively erratic, as shown in the black-
box results from Solaris described in Section 4.2.1.

Figure 25 shows that as the number of low-priority clients
increases, the jitter increases progressively manner, for remote
high- and low-priority clients. In addition, Figure 25 illustrates
that the jitter incurred by miniCOOL’s remote clients is fairly
high. The unpredictable behavior of high- and low-priority
clients is more evident when the client and the server run on
separate processor boards, as shown in Figure 24. Moreover,
Figure 24 illustrates the difference in latency between the local
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Figure 25: Jitter for miniCOOL with Chorus IPC on ClassiX

and remote configurations, which appears to stem from the
latency incurred by the network I/O driver.

miniCOOL using TCP: We also configured the miniCOOL
client/server benchmark to use the Chorus TCP/IP protocol
stack. The TCP/IP implementation on ClassiX is not as ef-
ficient as Chorus IPC. However, it provided a base for com-
parison between miniCOOL and TAO, which uses TCP as its
transport protocol.

The results we obtained for miniCOOL over TCP show that
as the number of low-priority clients increase, the latency ob-
served by the remote high- and low-priority client also in-
creased linearly. The maximum latency was�59 msec, when
the client and the server are on the same processor board (lo-
cal) as shown in Figure 26.

The increase in latency for the local configuration is unusual
since one would expect the ORB to perform best when client
and server are collocated on the same processor. However,
when client and server reside in different processor boards,
illustrated in Figure 27, the average latency was more stable.
This appears to be due to the implementation of the TCP/IP
protocol stack, which may not to be optimized for local IPC.

When the client and server are on separate boards, the be-
havior is similar to the remote clients using Chorus IPC. This
indicates that some bottlenecks reside in the Ethernet driver.

In all cases, the latency for the high-priority client is al-
ways lower than the latency for the low-priority client,i.e.,
there appears to be no significant priority inversion, which is
expected for a real-time system. However, there is still vari-
ance in the latency observed by the high-priority client, in
both the remote and local configurations, as shown in Fig-
ure 28. The remote configurations incurred the highest vari-
ance, with the exception of TAO’s remote high-priority clients,
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Figure 26: Latency for miniCOOL-TCP, miniCOOL-IPC, and
TAO-TCP on ClassiX, local configuration
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Figure 28: Jitter for miniCOOL-TCP, miniCOOL-IPC and
TAO-TCP on ClassiX

whose jitter remained fairly stable. This stability stems from
TAO’s Reactor -per-thread-priorityconcurrency architecture
described in Section 3.2.4.

TAO using TCP: Figure 26 reveals that as the number of
low-priority clients increase from 0 to 5, the latency observed
by TAO’s high-priority client grows by�0.005 msecs for the
local configuration and Figure 27 shows�1.022 msecs for
the remote one. Although the remote high-priority client per-
forms as well as the local one, the difference between the low-
priority and high-priority remote clients evolves from 0 msec
to 6 msec. This increase is unusual and appears to stem from
factors external to the ORB, such as the ClassiX OS schedul-
ing algorithm and network latency. In general, TAO performs
more predictably in other platforms tested with higher band-
width, e.g. 155 Mbps ATM networks. The local client/server
test, in contrast, perform very predictably and have little in-
crease in latency.

The TAO ORB produces very low jitter, less than 2 msecs,
for the low-priority requests and lower jitter (less than 1 msec)
for the high-priority requests. On this platform, the exception
is the remote low-priority client, which may be attributed to
the starvation of the low-priority clients by the high-priority
one, and the latency incurred by the network. The stability of
TAO’s latency is clearly desirable for applications that require
predictable end-to-end performance.

4.4 Evaluation and Recommendations

The results of our benchmarks illustrate the non-deterministic
performance incurred by applications running atop conven-

tional ORBs. In addition, the results show that priority
inversion and non-determinism are significant problems in
conventional ORBs. As a result, these ORBs are not cur-
rently suitable for applications with deterministic real-time
requirements. Based on our results, and our prior experi-
ence [14, 15, 16, 17] measuring the performance of CORBA
ORB endsystems, we suggest the following recommendations
to decrease non-determinism and limit priority inversion in
real-time ORB endsystems.

1. Real-time ORBs should avoid dynamic connection es-
tablishment: ORBs that establish connections dynamically
suffer from high jitter. Thus, performance seen by individ-
ual clients can vary significantly from the average. Neither
CORBAplus, miniCOOL, nor MT-Orbix provide APIs for pre-
establishing connections; TAO provides these APIs as exten-
sions to CORBA.

We recommend that ORBs be enhanced to allow pre-
establishment of connections in accordance to the “explicit
binding” mechanism provided in the forthcoming OMG stan-
dard for real-time CORBA [46, 7].

2. Real-time ORBs should minimize dynamic mem-
ory management: Thread-safe implementations of dynamic
memory allocators require user-level locking. For instance, the
C++new operator allocates memory from a global pool shared
by all threads in a process. Likewise, the C++delete opera-
tion, which releases allocated memory, also requires user-level
locking to update the global shared pool. This lock sharing
contributes to the overhead shown in Figure 22. In addition,
locking also increases non-determinism due to contention and
queueing.

We recommend that real-time ORBs avoid excessive shar-
ing of dynamic memory locks via the use of mechanisms such
as thread-specific storage [30], which allocates memory from
separate heaps that are unique to each thread.

3. Real-time ORBs should avoid multiplexing requests
of different priorities over a shared connection: Sharing
connections among multiple threads requires synchronization.
Not only does this increase locking overhead, but it also in-
creases opportunities for priority inversion. For instance, high-
priority requests can be blocked until low-priority threads re-
lease the shared connection lock. Priority inversion can be
further exacerbated if multiple threads with multiple levels of
thread priorities share common locks. For instance, medium
priority threads can preempt a low-priority thread that is hold-
ing a lock required by a high-priority thread, which can lead
to unbounded priority inversion [13].

We recommend that real-time ORBs allow application de-
velopers to determine whether requests with different pri-
orities are multiplexed over shared connections. Currently,
neither miniCOOL, CORBAplus, nor MT-Orbix support this
level of control, though TAO provides this model by default.
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4. Real-time ORB concurrency architectures should be
flexible, efficient, and predictable: Many ORBs, such as
miniCOOL and CORBAplus, create threads on behalf of
server applications. This design is inflexible because it pre-
vents application developers from customizing ORB perfor-
mance via a different concurrency architecture. Conversely,
other ORB concurrency architectures are flexible, but ineffi-
cient and unpredictable, as shown by Section 4.2.2’s explana-
tion of the MT-Orbix performance results. Thus, a balance is
needed between flexibility and efficiency.

We recommend that real-time ORBs provide APIs that al-
low application developers to select concurrency architec-
tures that are flexible, efficient,and predictable. For in-
stance, TAO offers a range of concurrency architectures, such
asReactor -per-thread-priority, thread pool, and thread-per-
connection. Developers can configure TAO [47] to mini-
mize unnecessary sharing of ORB resources by using thread-
specific storage.

5. Real-time ORBs should avoid reimplementing OS mech-
anisms: Conventional ORBs incur substantial performance
overhead because they reimplement native OS mechanisms
for endpoint demultiplexing, queueing, and concurrency con-
trol. For instance, much of the priority inversion and non-
determinism miniCOOL, CORBAplus, and MT-Orbix stem
from the complexity of their ORB Core mechanisms for multi-
plexing multiple client threads through a single connection to
a server. These mechanism reimplement the connection man-
agement and demultiplexing features in the OS in a manner
that (1) increases overhead and (2) does not consider the pri-
ority of the threads that make the requests for two-way opera-
tions.

We recommend that real-time ORB developers attempt to
use the native OS mechanisms as much as possible,e.g., de-
signing the ORB Core to work in concert with the underlying
mechanisms rather than reimplementing them at a higher level.
A major reason that TAO performs predictably and efficiently
is because the connection management and concurrency model
used in its ORB Core is closely integrated with the underlying
OS features.

6. The design of real-time ORB endsystem architectures
should be guided by empirical performance benchmarks:
Our prior research on pinpointing performance bottlenecks
and optimizing middleware like Web servers [48, 49] and
CORBA ORBs [15, 14, 17, 16] demonstrates the efficacy of
a measurement-driven research methodology.

We recommend that ORB vendors and end-users work with
the OMG to standardize real-time CORBA benchmarking
techniques and metrics [50]. These benchmarks will simplify
communication between researchers and developers. In ad-
dition, they will facilitate the comparison of performance re-
sults and real-time ORB behavior patterns between different

ORBs and different OS/hardware platforms. The real-time
ORB benchmarking test suite described in this section is avail-
able atwww.cs.wustl.edu/ �schmidt/TAO.html .

5 Related Work

An increasing number of research efforts are focusing on in-
tegrating QoS into CORBA. The work presented in this paper
is based on the TAO project [10]. This section compares TAO
with related work.

Krupp, et al., at MITRE Corporation were among the first
to elucidate the needs of real-time CORBA systems [51]. They
identified key requirements and outlined mechanisms for sup-
porting end-to-end timing constraints [52]. A system consist-
ing of a commercial off-the-shelf RTOS, a CORBA-compliant
ORB, and a real-time object-oriented database management
system is under development [53]. Similar to the TAO ap-
proach, the initial static scheduling approach is rate mono-
tonic, but a strategy for dynamic deadline monotonic schedul-
ing support has been designed [52]. Other dynamic scheduling
approaches may be considered in the future.

Wolfe, et al., are developing a real-time CORBA system at
the US Navy Research and Development Laboratories (NRaD)
and the University of Rhode Island (URI) [54]. The sys-
tem supports expression and enforcement of dynamic end-
to-end timing constraints through timed distributed operation
invocations (TDMIs) [55]. A TDMI corresponds to TAO’s
RT Operation [22] and anRT Environment structure
contains QoS parameters similar to those in TAO’sRT Info
[10].

One difference between TAO and the URI approaches is
that TDMIs [52] express required timing constraints,e.g.,
deadlines relative to the current time. In contrast, TAO’s
RT Operation s publish their resource requirements,e.g.,
CPU time. The difference in approaches may reflect the differ-
ent time scales, seconds versus milliseconds, respectively, and
scheduling requirements, dynamic versus static, of the initial
application targets. However, the approaches should be equiv-
alent with respect to system schedulability and analysis.

The QuO project at BBN [56] has defined a model for com-
municating changes in QoS characteristics between applica-
tions, middleware, and the underlying endsystems and net-
work. The QuO model uses the concept of a connection be-
tween a client and an object to define QoS characteristics, and
treats these characteristics as first-class objects. These objects
can then be aggregated to enable the characteristics to be de-
fined at various levels of granularity,e.g., for a single method
invocation, for all method invocations on a group of objects,
and similar combinations. The model also uses several QoS
definition languages (QDLs) that describe the QoS charac-
teristics of various objects, such as expected usage patterns,
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structural details of objects, and resource availability.
The QuO architecture differs from our work on real-time

QoS provision since QuO does not provide hard real-time
guarantees of ORB endsystem CPU scheduling. Furthermore,
the QuO programming model involves the use of several QDL
specifications, in addition to OMG IDL, based on the separa-
tion of concerns advocated by Aspect-Oriented Programming
(AOP) [57]. Though we believe the AOP paradigm is quite
powerful, the proliferation of definition languages may be
overly complex for common application use-cases. Therefore,
the TAO programming model focuses on theRT Operation
andRT Info QoS specifiers, which can be expressed in stan-
dard OMG IDL.

The Epiq project [58] defines an open real-time CORBA
scheme that provides QoS guarantees and runtime scheduling
flexibility. Epiq extends TAO’s off-line scheduling model to
provide on-line scheduling. In addition, Epiq allows clients to
be added and removed dynamically via an admission test at
runtime. The Epiq project is work-in-progress and empirical
results are not yet available.

The ARMADA project [59] defines a set of communication
and middleware services that supports fault-tolerant and end-
to-end guarantees for real-time distributed applications. AR-
MADA provides real-time communication services based on
the X-kernel and the Open Group’s MK microkernel. This
infrastructure serves as a foundation for constructing higher-
level real-time middleware services. TAO differs from AR-
MADA in that most of the real-time features in TAO are built
using TAO’s ORB Core. In addition, TAO implements the
OMG’s CORBA standard, while also providing the hooks that
are necessary to integrate with an underlying real-time I/O
subsystem. Thus, the real-time services provided by AR-
MADA’s communication system can be utilized by TAO’s
ORB Core to support a vertically integrated real-time system.

6 Concluding Remarks

Conventional CORBA ORBs exhibit substantial priority inver-
sion and non-determinism. Consequently, they are not yet suit-
able for distributed, real-time applications with deterministic
QoS requirements. Meeting these demands requires that ORB
Core software architectures be designed to reduce priority in-
version and increase end-to-end determinism.

The TAO ORB Core described in this paper reduces priority
inversion and enhances determinism by using a priority-based
concurrency architecture and non-multiplexed connection ar-
chitecture that share a minimal amount of resources among
threads within a process. The architectural principles used in
TAO can be applied to other ORBs and other real-time soft-
ware systems. Furthermore, our results demonstrate the feasi-
bility of using OO middleware like CORBA to develop real-

time applications that can perform well over (1) standard In-
ternet protocols, (2) upper layer protocols such as IIOP that
are based on the Internet protocols, and (3) off-the-shelf hard-
ware/software.

TAO has been used to develop a number of real-time ap-
plications, including a real-time audio/video streaming ser-
vice [60] and a real-time ORB endsystem for avionics mis-
sion computing [37]. The avionics application manages sen-
sors and operator displays, navigates the aircraft’s course, and
controls weapon release. To meet the scheduling demands of
real-time applications, TAO supports predictable scheduling
and dispatching of periodic processing operations [10], as well
as efficient event filtering and correlation mechanisms [37].
The C++ source code for TAO and ACE is freely available at
www.cs.wustl.edu/ �schmidt/TAO.html .
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A Overview of the CORBA ORB Ref-
erence Model

CORBA Object Request Brokers (ORBs) allow clients to in-
voke operations on distributed objects without concern for ob-
ject location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware [6]. Fig-
ure 29 illustrates the key components in the CORBA reference
model [61] that collaborate to provide this degree of portabil-
ity, interoperability, and transparency.5 Each component in the
CORBA reference model is outlined below:

Client: A client is a role that obtains references to objects
and invokes operations on them to perform application tasks.
A client has no knowledge of the implementation of the ob-
ject but does know its logical structure according to its inter-
face. It also doesn’t know of the object’s location - objects
can be remote or collocated relative to the client. Ideally, a
client can access a remote object just like a local object,i.e.,

5This overview only focuses on the CORBA components relevant to this
paper. For a complete synopsis of CORBA’s components see [62].
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model

object !operation(args) . Figure 29 shows how the
underlying ORB components described below transmit remote
operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an OMG
Interface Definition Language (IDL) interface. Each object
is identified by anobject reference, which associates one or
more paths through which a client can access an object on a
server. Anobject ID associates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but
always through objects identified by object references.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is implemented as a run-time library linked
into client and server applications. For objects executing re-
motely, a CORBA-compliant ORB Core communicates via a
version of the General Inter-ORB Protocol (GIOP), such as
the Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
transport protocol. In addition, custom Environment-Specific
Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs implement theProxypattern [32] and mar-
shal application parameters into a common message-level rep-
resentation. Conversely, skeletons implement theAdapterpat-
tern [32] and demarshal the message-level representation back
into typed parameters that are meaningful to an application.

IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [63].

Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate
operation upcall on a servant. Object Adapters enable ORBs
to support various types of servants that possess similar re-
quirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties. Even
though different types of Object Adapters may be used by an
ORB, the only Object Adapter defined in the CORBA specifi-
cation is the Portable Object Adapter (POA).
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