
An Empirical Evaluation of OS Support for
Real-time CORBA Object Request Brokers

David L. Levine, Sergio Flores-Gaitan, and Douglas C. Schmidt
flevine,sergio,schmidtg@cs.wustl.edu

Department of Computer Science, Washington University
St. Louis, MO 63130, USA�

Submitted to the Real-Time Technology and Applications
Symposium (RTAS), Vancouver, British Columbia, Canada,
June 2–4, 1999.

Abstract

There is increasing demand to extend Object Request Bro-
ker (ORB) middleware to support distributed applications with
stringent real-time requirements. However, lack of proper OS
support can yield substantial inefficiency and unpredictability
for ORB middleware. This paper provides two contributions
to the study of OS support for real-time ORBs.

First, we empirically compare and evaluate the suitabil-
ity of real-time operating systems, VxWorks and LynxOS, and
general-purpose operating systems with real-time extensions,
Windows NT, Solaris, and Linux, for real-time ORB middle-
ware. While holding the hardware and ORB constant, we
vary the operating system and measure platform-specific vari-
ations, such as latency, jitter, operation throughput, and CPU
processing overhead. Second, we describe key areas where
these operating systems must improve to support predictable,
efficient, and scalable ORBs.

Our findings illustrate that general-purpose operating sys-
tems like Windows NT and Solaris are not yet suited to meet
the demands of applications with stringent QoS requirements.
However, LynxOS does enable predictable and efficient ORB
performance, thereby making it a compelling OS platform for
real-time CORBA applications. Linux provides good raw per-
formance, though it is not a real-time operating system. Sur-
prisingly, VxWorks does not scale robustly. In general, our re-
sults underscore the need for a measure-driven methodology
to pinpoint sources of priority inversion and non-determinism
in real-time ORB endsystems.

Keywords: Real-time CORBA Object Request Broker, QoS-
enabled OO Middleware, Performance Measurements

�This work was supported in part by Boeing, CDI/GDIS, DARPA con-
tract 9701516, Lucent, Motorola, NSF grant NCR-9628218, Siemens, and US
Sprint.

1 Introduction

Next-generation distributed real-time applications, such as
teleconferencing, avionics mission computing, and process
control, require endsystems that can provide statistical and de-
terministic quality of service (QoS) guarantees for latency [1],
bandwidth, and reliability [2]. The following trends are shap-
ing the evolution of software development techniques for these
distributed real-time applications and endsystems:

Increased focus on middleware and integration frame-
works: There is a trend in real-time R&D projects away
from developing real-time applications from scratch toin-
tegrating applications using reusable components based on
object-oriented (OO) middleware [3]. The objective of mid-
dleware is to increase quality and decrease the cycle-time and
effort required to develop software by supporting the integra-
tion of reusable components implemented by different suppli-
ers.

Increased focus on QoS-enabled components and open sys-
tems: There is increasing demand for remote method invo-
cation and messaging technology to simplify the collaboration
of open distributed application components [4] that possess
deterministic and statistical QoS requirements. These compo-
nents must be customizable to meet the functionality and QoS
requirements of applications developed in diverse contexts.

Increased focus on standardizing and leveraging real-time
COTS hardware and software: To leverage development
effort and reduce training, porting, and maintenance costs,
there is increasing demand to exploit the rapidly advancing
capabilities of standard common-off-the-shelf (COTS) hard-
ware and COTS operating systems. Several international stan-
dardization efforts are currently addressing QoS-related issues
associated with COTS hardware and software.

One particularly noteworthy standardization effort has
yielded the OMG CORBA specification [5]. CORBA is OO
middleware software that allows clients to invoke operations
on objects without concern for where the objects reside, what

1

language the objects are written in, what OS/hardware plat-
form they run on, or what communication protocols and net-
works are used to interconnect distributed objects [6].

There has been recent progress towards standardizing
CORBA for real-time [7] and embedded [8] systems. Sev-
eral OMG groups, most notably the Real-Time Special Interest
Group (RT SIG), are actively investigating standard extensions
to CORBA to support distributed real-time applications. The
goal of standardizing real-time CORBA is to enable real-time
applications to interwork throughout embedded systems and
heterogeneous distributed environments, such as the Internet.

However, developing, standardizing, and leveraging dis-
tributed real-time ORB middleware remains hard, notwith-
standing the significant efforts of the OMG RT SIG. There
are few successful examples of standard, widely deployed dis-
tributed real-time ORB middleware running on COTS oper-
ating systems and COTS hardware. Conventional CORBA
ORBs are generally unsuited for performance-sensitive, dis-
tributed real-time applications due to their (1) lack of QoS
specification interfaces, (2) lack of QoS enforcement, (3) lack
of real-time programming features, and (4) overall lack of per-
formance and predictability [9].

Although some operating systems, networks, and protocols
now support real-time scheduling, they do not provide inte-
grated end-to-end solutions [10]. Moreover, relatively little
systems research has focused on strategies and tactics for real-
time ORB endsystems. For instance, QoS research at the net-
work and OS layers is only beginning to address key require-
ments and programming models of ORB middleware [11].

Historically, research on QoS for high-speed networks, such
as ATM, has focused largely on policies for allocating virtual
circuit bandwidth [12]. Likewise, research on real-time op-
erating systems has focused largely on avoiding priority in-
versions in synchronization and dispatching mechanisms for
multi-threaded applications [13]. An important open research
topic, therefore, is to determine how best to map the results
from QoS work at the network and OS layers onto the OO
programming model familiar to many developers and users of
ORB middleware.

Our prior research on CORBA middleware has explored
several dimensions of real-time ORB endsystem design in-
cluding static [10] and dynamic [14] real-time scheduling,
real-time request demultiplexing [15], real-time event process-
ing [16], real-time I/O subsystems [17], real-time ORB Core
connection and concurrency architectures [18], real-time IDL
compiler stub/skeleton optimizations [19], and performance
comparisons of various commercial ORBs [20]. This paper fo-
cuses on a previously unexamined point in the real-time ORB
endsystem design space:the impact of OS performance and
predictability on ORB performance and predictability. A com-
panion paper [21] covers additional aspects of ORB/OS per-
formance and predictability.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines the architecture and design goals of TAO [10],
which is a real-time implementation of CORBA developed
at Washington University; Section 3 presents empirical re-
sults from systematically benchmarking the efficiency and
predictability of TAO in several real-time operating systems,
i.e., VxWorks and LynxOS, and operating systems with real-
time extensions,i.e., Solaris, Windows NT, and Linux; Sec-
tion 4 compares our research with related work; and Section 5
presents concluding remarks. For completeness, Appendix A
explores the general factors that impact the performance of
real-time ORB endsystems.

2 Overview of TAO

TAO is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as “best-effort” requirements. The TAO
ORB endsystem contains the network interface, OS, commu-
nication protocol, and CORBA-compliant middleware com-
ponents and features shown in Figure 1. TAO supports the

NETWORK

ORB RUN-TIME

SCHEDULER

REAL-TIME
ORB CORE

operation()

RIDL
STUBS

REAL-TIME

OBJECT

ADAPTER

RIDL
SKELETON

in args

out args + return value

CLIENT

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

GIOP/RIOP

OBJECT
(SERVANT)

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

ACE COMPONENTS

OBJ

REF

Figure 1: Components in the TAO Real-time ORB Endsystem

standard OMG CORBA reference model [5], with the follow-
ing enhancements designed to overcome the shortcomings of
conventional ORBs [18] for high-performance and real-time
applications:

Real-time IDL Stubs and Skeletons: TAO’s IDL stubs and
skeletons efficiently marshal and demarshal operation param-
eters, respectively [22]. In addition, TAO’s Real-time IDL
(RIDL) stubs and skeletons extend the OMG IDL specifica-
tions to ensure that application timing requirements are speci-
fied and enforced end-to-end [23].

2

Real-time Object Adapter: An Object Adapter associates
servants with the ORB and demultiplexes incoming requests
to servants. TAO’s real-time Object Adapter [19] uses perfect
hashing [24] and active demultiplexing [15] optimizations to
dispatch servant operations in constantO(1) time, regardless
of the number of active connections, servants, and operations
defined in IDL interfaces.

ORB Run-time Scheduler: A real-time scheduler [7] maps
application QoS requirements, such as include bounding end-
to-end latency and meeting periodic scheduling deadlines,
to ORB endsystem/network resources, such as ORB endsys-
tem/network resources include CPU, memory, network con-
nections, and storage devices. TAO’s run-time scheduler sup-
ports both static [10] and dynamic [14] real-time scheduling
strategies.

Real-time ORB Core: An ORB Core delivers client re-
quests to the Object Adapter and returns responses (if any) to
clients. TAO’s real-time ORB Core [18] uses a multi-threaded,
preemptive, priority-based connection and concurrency archi-
tecture [22] to provide an efficient and predictable CORBA
IIOP protocol engine.

Real-time I/O subsystem: TAO’s real-time I/O subsystem
[25] extends support for CORBA into the OS. TAO’s I/O sub-
system assigns priorities to real-time I/O threads so that the
schedulability of application components and ORB endsystem
resources can be enforced. TAO also runs efficiently and rel-
atively predictably on conventional I/O subsystems that lack
advanced QoS features.

High-speed network interface: At the core of TAO’s I/O
subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)
chips [12]. APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps. In addition, TAO runs
on conventional real-time interconnects, such as VME back-
planes, multi-processor shared memory environments, as well
as Internet protocols like TCP/IP.

TAO is developed atop lower-level middleware called
ACE [26], which implements core concurrency and distribu-
tion patterns [27] for communication software. ACE pro-
vides reusable C++ wrapper facades and framework compo-
nents that support the QoS requirements of high-performance,
real-time applications. ACE runs on a wide range of OS plat-
forms, including Win32, most versions of UNIX, and real-time
operating systems like Sun/Chorus ClassiX, LynxOS, and Vx-
Works.

3 Real-time ORB Endsystem Perfor-
mance Experiments

A real-time OS provides applications with mechanisms for
priority-controlled access to hardware and software resources.
Mechanisms commonly supported by real-time operating sys-
tems include real-time scheduling classes and real-time I/O
subsystems. These mechanisms enable applications to spec-
ify their processing requirements and allow the OS to enforce
the requested quality of service (QoS) usage policies.

This section presents the results of experiments conducted
with a real-time ORB/OS benchmarking framework developed
at Washington University and distributed with the TAO re-
lease.1 This benchmarking framework contains a suite of test
metrics that evaluate the effectiveness and behavior of real-
time operating systems using various ORBs, including MT-
Orbix, COOL, VisiBroker, CORBAplus, and TAO.

Our previous experience [15, 20, 28, 29, 18] measuring the
performance of CORBA implementations showed that TAO
supports efficient and predictable QoS better than other ORBs.
Therefore, the experiments reported below focus solely on
TAO.

3.1 Performance Results on Intel

3.1.1 Benchmark Configuration

Hardware overview: All of the tests in this section were run
on a 450 MHz Intel Pentium II with 256 Mbytes of RAM. We
focused primarily on a single CPU hardware configuration to
factor out differences in network interface driver support and
to isolate the effects of OS design and implementation on the
end-to-end performance of ORB middleware and applications.

Operating system and compiler overview: We ran the
ORB/OS benchmarks described in this paper on two real-time
operating systems, VxWorks 5.3.1 and LynxOS 3.0.0, and
three general-purpose operating systems with real-time exten-
sions, Windows NT 4.0 Workstation with SP3, Solaris 2.6 for
Intel, and RedHat Linux 5.1 (kernel version 2.0.34). A brief
overview of each OS follows:

� VxWorks: VxWorks is a real-time OS that supports
multi-threading and interrupt handling. By default, the Vx-
Works thread scheduler uses a priority-based first-in first-out
(FIFO) preemptive scheduling algorithm, though it can be con-
figured to support round-robin scheduling. In addition, Vx-
Works provides semaphores that implement a priority inheri-
tance protocol [30].

1TAO and the ORB/OS benchmarks described in this paper are available
at www.cs.wustl.edu/ �schmidt/TAO.html .

3

� LynxOS: LynxOS is designed for complex hard real-
time applications that require fast, deterministic response.
LynxOS handles interrupts predictably by performing asyn-
chronous processing at the priority of the thread that made the
request. In addition, LynxOS supports priority inheritance, as
well as FIFO and round-robin scheduling policies [31].

� Windows NT: Microsoft Windows NT is a general-
purpose, preemptive, multi-threading OS designed to pro-
vide fast interactive response. Windows NT uses a round-
robin scheduling algorithm that attempts to share the CPU
fairly among all ready threads of the same priority. Win-
dows NT defines a high-priority thread class calledREAL-
TIME PRIORITY CLASS. Threads in this class are scheduled
before most other threads, which are usually in theNOR-
MAL PRIORITY CLASS.

Windows NT is not designed as a deterministic real-time
OS, however. In particular, its internal queueing is performed
in FIFO order and priority inheritance is not supported for mu-
texes or semaphores. Moreover, there is no way to prevent
hardware interrupts and OS interrupt handlers from preempt-
ing application threads [32].

�Solaris: Solaris is a general-purpose, preemptive, multi-
threaded implementation of SVR4 UNIX and POSIX. It is de-
signed to work on uniprocessors and shared memory symmet-
ric multiprocessors [33]. Solaris provides a real-time schedul-
ing class that attempts to provide worst-case guarantees on
the time required to dispatch application or kernel threads
executing in this scheduling class [34]. In addition, Solaris
implements a priority inheritance protocol for mutexes and
queues/dispatches threads in priority order.

� Linux: Linux is a general-purpose, preemptive, multi-
threaded implementation of SVR4 UNIX, BSD UNIX, and
POSIX. It supports POSIX real-time process and thread
scheduling. The thread implementation utilizes processes cre-
ated by a specialclone version offork . This design sim-
plifies the Linux kernel, though it limits scalability because
kernel process resources are used for each application thread.

We use the GNU g++ compiler with�O2 optimization on
all but Windows NT, where we use Microsoft Visual C++ 6.0
with full optimization enabled, and VxWorks, where we use
the GreenHills C++ version 1.8.8 compiler with�OL �OM
optimization. For optimal performance our executables use
static libraries.

Our tests on Solaris, LynxOS, Linux, and VxWorks were
run with real-time, preemptive, FIFO thread scheduling.
This provides strict priority-based scheduling to application
threads. On Windows NT, tests were run in the Real-time pri-
ority class, which provides preemption capability over non-

real-time threads. However, the scheduing is round-robin in-
stead of FIFO2

ORB overview: Our benchmarking testbed is designed to
isolate and quantify the impact of OS-specific variations on
ORB endsystem performance and predictability. The ORB
used for all the tests in this paper is version 1.0 of TAO [10],
which is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as “best-effort” requirements. TAO uses
components in the ACE framework [35] to provide a common
implementation framework on each OS platform in our bench-
marking suite. Thus, the differences in performance reported
in the following tests are due entirely to variations in OS inter-
nals, rather than ORB internals.

Benchmarking metric overview: The remainder of this
section describes the results of the following benchmarking
metrics we developed to evaluate the performance and pre-
dictability of VxWorks, LynxOS, Windows NT, Solaris, and
Linux running TAO:

� Latency and jitter: This test measures ORB la-
tency overhead and jitter for two-way operations. High la-
tency directly affects application performance by degrading
client/server communication. Large amounts of jitter compli-
cate the computation of accurate worst-case execution time,
which is necessary to schedule many real-time applications.
This test and its results are presented in Section 3.1.2.

� ORB/OS operation throughput: This test provides an
indication of the maximum operation throughput that appli-
cations can expect. It measures end-to-end two-way response
when the client sends a request immediately after receiving the
response to the previous request. This test and its results are
presented in Section 3.1.3.

� ORB/OS CPU processing overhead: This test mea-
sures client/server ORB CPU processing overhead, which in-
cludes system call processing, protocol processing, and ORB
request dispatch overhead. CPU processing overhead can sig-
nificantly increase end-to-end latency. Overall system utiliza-
tion can be reduced by excessive CPU processing per ORB op-
eration. This test and its results is presented in Section 3.1.4.

3.1.2 Measuring ORB/OS Latency and Jitter

Terminology synopsis: ORB end-to-endlatencyis defined
as the average amount of delay seen by a client thread from
the time it sends the request to the time it completely receives
the response from a server thread.Jitter is the variance of the

2Our high-priority client test results discussed below are not affected by
using round-robin, because we have only one high priority thread. The low-
priority results, however, do reflect round-robin scheduling on Windows NT.

4

latency for a series of requests. Increased latency directly im-
pairs the ability to meet deadlines, whereas jitter makes real-
time scheduling more difficult.

Overview of the latency and jitter metric: We computed
the latency and jitter incurred by various clients and servers
using the following configurations shown in Figure 2. The
clients and servers in these tests were run on the same ma-
chine.

[P]
0

[P]
1

SC
H

E
D

U
L

E
R

0

R
U

N
T

IM
E

[P]

I/O SUBSYSTEM

Server

0 nS1

nC

������������������
Pentium II

S S
0C 1C

...

...

Object Adapter
Servants

ORB Core

Client

...

[P]

Requests

Priority

...

[P][P]
1

[P]

n

n

Figure 2: ORB Endsystem Latency and Jitter Test Configura-
tion

� Server configuration: As shown in Figure 2, our
testbed server consists of one servantS0, with the highest real-
time priorityP0, and servantsS1 : : : Sn that have lower thread
priorities, each with a different real-time priorityP1 : : : Pn.
Each thread processes requests that are sent to its servant by
client threads in the other process. Each client thread com-
municates with a servant thread that has an identical priority,
i.e., a clientA with thread priorityPA communicates with a
servantA that has thread priorityPA.

� Client configuration: Figure 2 shows how the bench-
marking test uses clients fromC0 : : : Cn. The highest priority
client, i.e.,C0, runs at the default OS real-time priorityP0 and
invokes operations at 20 Hz,i.e., it invokes 20 CORBA two-
way calls per second. The remaining clients,C1 : : : Cn, have
different lower OS thread prioritiesP1 : : : Pn and invoke op-
erations at 10 Hz,i.e., they invoke 10 CORBA two-way calls
per second.

All client threads have matching priorities with their corre-
sponding servant thread. In each call, the client sends a value
of type CORBA::Octet to the servant. The servant cubes
the number and returns it to the client, which checks that the
returned value is correct.

When the test program creates the client threads, these
threads block on a barrier lock so that no client begins until
the others are created and ready to run. When all client threads
are ready to begin sending requests, the main thread unblocks
them. These threads execute in an order determined by the
real-time thread dispatcher.

Each low-priority client thread invokes 4,000 CORBA two-
way requests at its prescribed rate. The high-priority client
thread makes CORBA requests as long as there are low-
priority clients issuing requests. Thus, high-priority client op-
erations run for the duration of the test.

In an ideal ORB endsystem, the latency for the low-priority
clients should rise gradually as the number of low-priority
clients increased. This behavior is expected since the low-
priority clients compete for OS and network resources as the
load increases. However, the high-priority client should re-
main constant or show a minor increase in latency. In general,
a significant amount of jitter complicates the computation of
realistic worst-case execution times, which makes it hard to
create a feasible real-time schedule.

Results of latency metrics: The average two-way response
time incurred by the high-priority clients is shown in Figure 3.
The jitter results are shown in Figure 4.

0

500

1000

1500

2000

2500

0 1 2 5 10 15 20 25 30 35 40 45 50

Low Priority Clients

Tw
o-

wa
y R

eq
ue

st
 L

at
en

cy
, u

se
c

Linux

LynxOS

NT

Solaris

VxWorks

Figure 3: TAO’s Latency for High-Priority Clients

The average two-way response time incurred by the low-
priority clients is shown in Figure 5. The jitter results for the
low-priority clients are shown in Figure 6. Our analysis of the
results obtained for each OS platform are described below.

5

0 2

10 20 30 40 50

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Tw
o-

wa
y

Ji
tte

r,
us

ec

Low Priority Clients

LynxOS
Solaris
Linux
VxWorks
NT

Figure 4: TAO’s Jitter for High-Priority Clients

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 5 10 15 20 25 30 35 40 45 50

Low Priority Clients

Tw
o-

wa
y R

eq
ue

st
 L

at
en

cy
, u

se
c

Linux

LynxOS

NT

Solaris

VxWorks

Figure 5: TAO’s Latency for Low-Priority Clients

0 2

10 20 30 40 50

0

2000

4000

6000

8000

10000

12000

Tw
o-

wa
y

Ji
tte

r,
us

ec

Low Priority Clients

LynxOS
VxWorks
Linux
Solaris
NT

Figure 6: TAO’s Jitter for Low-Priority Clients

� Linux results: The results on Linux are comparable to
those on LynxOS, with a small number of low-priority clients.
As shown in Figure 3, the high-priority latency ranged from
236�sec with no low-priority clients to 722�sec with 40 low-
priority clients. Linux’s performance is better than LynxOS
with a very small number of low-priority clients. However, its
rate of growth is higher, showing that its performance does not
scale well as the number of low-priority clients increase. In
addition, we could not run the test with more than 40 low-
priority clients, because the default limit on open files was
reached. Though it should be possible to increase that limit,
the fact that Linux currently implements threads by using OS
processes further indicates that it is not designed to scale up
gracefully under heavy workloads.

� LynxOS results: LynxOS exhibited very low latency.
Moreover, its I/O subsystem is closely integrated with its OS
threads, which enables applications running over the ORB to
behave predictably [36]. In addition, the interrupt handling
mechanism used in LynxOS [36] is very responsive. Both
high- and low-priority clients exhibited stable response times,
yielding the low jitter shown in Figure 4. In addition, we ob-
served low latency for the high-priority client, ranging from
307�sec with no low-priority clients to 467�sec with 50 low-
priority clients, as shown in Figure 3.

� Windows NT results: The performance on Windows
NT is best characterized as unpredictable. When the number
of clients exceeds 10 the high-priority client latency varies dra-
matically and is higher than on other OS platforms. However,
Windows NT is better than Solaris and VxWorks with 5 and
10 clients. This indicates good code optimization, though the

6

scheduling behavior of Windows NT does not currently ap-
pear well suited to demanding real-time systems. The result
is confirmed by our ORB/OS overhead measurements in Sec-
tion 3.1.4.

The low-priority request latency on Windows NT is compa-
rable to that on Solaris and VxWorks, though it incurs more
variation. In general, The jitter on Windows NT is the highest
of the OS platforms tested when the number of low-priority
clients exceeds 10. As with Solaris, the variation in behavior
of Windows NT is problematic for systems that require pre-
dictable QoS.

� Solaris results: As shown in Figure 3, TAO’s high-
priority request latency on Solaris shows a trend of gradual
growth from�750�sec with no low-priority clients to over
900 �sec with 50 low-priority clients. In general, the low-
priority latency requests in Figure 5 grow with number of low-
priority clients, though with a very large number of requests
the latency drops dramatically.

Solaris’ high-priority request jitter is relatively constant, as
shown in Figure 4, at�250�sec. In contrast, the low-priority
request jitter grows with the number of low-priority clients.
Both the low- and high-priority request jitter are higher than
those of the real-time operating systems,i.e., LynxOS and Vx-
Works.

It appears that Solaris’ relatively high jitter is due to the lack
of integration between subsystems in the Solaris kernel. In
particular, Solaris does not integrate its I/O processing with its
CPU scheduling [17]. Therefore, it cannot ensure the avail-
ability of OS resources like I/O buffers and network band-
width.

� VxWorks results: As shown in Figure 3, the high- and
low-priority latencies for TAO on VxWorks are comparable to
those of LynxOS and Linux for less than 5 clients. However,
both latencies grow rapidly with the number of clients. With
15 clients, latencies are comparable or worse than those of
Solaris. High-priority request jitter is very low on VxWorks,
comparable to that on LynxOS. Low-priority jitter grows very
rapidly with number of clients. These results indicate that
VxWorks scales poorly on Intel platforms. Nevertheless, Vx-
Works does have stable behavior for a low range of clients,i.e.,
15 low-priority clients or less. We were not able to run with
more than 30 low-priority threads due to exhaustion of an OS
resource.

Result synopsis: In general, low latency and jitter are neces-
sary for real-time operating systems to bound application ex-
ecution times. However, general-purpose operating systems
like Windows NT show erratic latency behavior, particularly
under higher load. In contrast, LynxOS exhibited lower la-
tency and better predictability, even under load. This stability
makes it more suitable to provide QoS required by ORB mid-
dleware and applications. VxWorks offered low latency and

jitter with low load, but its performance did not scale with in-
creasing low-priority load.

3.1.3 Measuring ORB/OS Operation Throughput

Terminology synopsis: Operation throughputis the maxi-
mum rate at which operations can be performed. We mea-
sure the throughput of both two-way (request/response) and
one-way (request without response) operations from client to
server. This test indicates the overhead imposed by the ORB
and OS on each operation.

Overview of the operation throughput metric: Our
throughput test, calledIDL Cubit , uses a single-threaded
client that issues an IDL operation at the fastest possible rate.
The server performs the operation, which is to cube each pa-
rameter in the request. For two-way operations, the client
thread waits for the response and checks that it is correct. In-
terprocess communication is performed via the network loop-
back interface since the client and server process run on the
same machine.

The time required for cubing the argument on the server is
small but non-zero. The client performs the same operation
and compares it with the two-way operation result. The cub-
ing operation itself is not intended to be a representative work-
load. However, many applications do rely on a large volume
of small messages that each require a small amount of process-
ing. Therefore, theIDL Cubit benchmark is useful for eval-
uating ORB/OS overhead by measuring operation throughput.

We measure throughput for one-way and two-way oper-
ations using a variety of IDL data types, includingvoid ,
sequence , andstruct types. The one-way operation mea-
surement eliminates the server reply overhead. Thevoid
data type instructs the server to not perform any processing
other than that necessary to prepare and send the response,
i.e., it does not cube its input parameters. Thesequence and
struct data types exercise TAO’s marshaling/demarshaling
engine. TheMany struct contains anoctet , a long , and
a short , along with padding necessary to align those fields.

Results of the operation throughput measurements: The
throughput measurements are shown in Figure 7 and described
below.3

� Linux results: Linux (along with VxWorks) exhibits
the best operation throughput for simple data types, at 236
�sec for bothvoid and long . This demonstrates that the

3To compare these results with other results in this paper, operation
throughput is expressed in terms ofrequest latency, in units of�sec per op-
eration. Throughput is often expressed in terms of operations per second,
however. Our results can be converted to those terms by simply dividing into
1,000,000.

7

0

1000

2000

3000

4000

5000

6000

vo
id

lon
g

lar
ge

_
se

qu
en

ce
<l

on
g>

lar
ge

_
se

qu
en

ce
<M

an
y>

on
ew

ay

Data Type

Re
qu

es
t L

at
en

cy
, u

se
c

Linux LynxOS Solaris86 VxWorks NT

Figure 7: TAO’s Operation Throughput for OS Platforms

cost of the cubing operation is negligible compared with the
remainder of the operation processing. The one-way perfor-
mance on Linux, however, was significantly higher than on
most of the other platforms.

� LynxOS results: LynxOS offers consistently good per-
formance: 259�sec and 262�sec for void and long ,
respectively. Similarly, it was close to Linux for large
sequence performance. Its one-way performance was the
best:�72�sec.

� Solaris results: The throughput on Solaris is roughly in
the middle of the platforms tested. For the simple data types,
it requires about 400�sec per request/response and 175�sec
for a one-way request.

� VxWorks results: VxWorks (along with Linux) offers
the best operation throughput forvoid andlong data types,
of 234 and 239�sec, respectively. It performs moderately well
on largesequence of longs , relative to the other platforms.
It performs the best, by far, on largesequence of Many.
This may be due to the use of the different compiler than on
most of the other platforms. The GreenHills compiler may
optimize the data marshaling code differently than GNU g++
and Visual C++. VxWorks performs the worst ononeway
operations, though it is not clear why.

�Windows NT results: Windows NT performed well for
simple data types, at�310�sec forvoid and 320�sec for
long . Its one-way performance was also good. However, it
was at the slow end on largesequence processing.

Result synopsis: Operation throughput provides a measure
of the overhead imposed by the ORB/OS. TheIDL Cubit
test directly measures throughput for a variety of operation
types and data types. Our measurements show that end-to-
end performance depends dramatically on data type. In addi-
tion, the performance variation across platforms emphasizes
the need for running benchmarks with different compilers, as
well as other OS platform components such as network inter-
face drivers.

3.1.4 Measuring ORB/OS CPU Processing Overhead

Terminology synopsis: ORB/OS processing overhead rep-
resents the amount of time the CPU spends (1) processing
ORB requests,e.g., marshaling/demarshaling in the IIOP com-
munication protocol, request demultiplexing and dispatching,
and data copying in the Object Adapter and (2) I/O request
handling in the I/O subsystem of the OS kernel,e.g., perform-
ing socket calls and processing network protocols.

Overview of CPU processing overhead metrics: CPU pro-
cessing overhead is computed using a variant of the bench-
mark described in Section 3.1.2. The test in Section 3.1.2 mea-
sures the response time of clients’ two-way CORBA requests.
That response time includes servant processing time and over-
head in the ORB and OS communication path. To determine
the overhead, we developed a version of the latency test that
contains the client and server in the same address space in sep-
arate threads.

There are two parts to this test: (1) invoking calls through
ORB requests,i.e., client/server and (2) invoking collocated
calls directly on the object. Figure 8 and Figure 9 illustrate
these two parts, respectively. The overhed of a collocated call
is simply one virtual function call [19]. The difference in the
latency of the two part reveals the amount of overhead. We ex-
press the overhead difference as a percentage of the collocated-
call latency.

The test in Figure 9 has three threads: 1) the client thread,
which issues operation requests, 2) the server thread, which
processes CORBA requests, and 3) a “scavenger” thread,
which picks up CPU cyclesnot used by the higher priority
client and server threads running CORBA requests. Thisscav-
enger threadhas system scheduling scope and runs at a lower
OS thread priority than the CORBA thread. The scavenger
thread should never run in these tests, because the client issues
requests as rapidly as possible. The only activity in the system
should be the client issuing requests, and the server handling
those requests. If the “scavenger” thread does run, then the OS
does not strictly obey real-time priorities.

We used a two-step process to compute the amount of
ORB/OS overhead when making two-way requests. This pro-
cess was applied to the following configurations of the utiliza-
tion test, as shown in Figure 8 and Figure 9:

8

Pentium II

Servant

Object Adapter

ORB Core

I/O Subsystem

S0

R
U

N
T

IM
E

SC
H

E
D

U
L

E
R

Scavenger

Client

Requests

C0

Figure 8: ORB Client/Server (C/S) Request Utilization Bench-
mark Configuration

Scavenger C0

Client

Requests

Servant

Pentium II

Figure 9: Collocated (CO) Utilization Benchmark Configura-
tion

� Client/Server (C/S) configuration: Figure 8 illustrates
invocations made to a servant located in the same address
space at the client, but running in a separate thread. Running
the servant in a different process, on platforms that support it,
would needlessly incur additional process context switch over-
head.

� Collocated (CO) configuration: Figure 9 illustrates
collocated (CO) calls from client to servant object. The CO
configuration incurs the overhead of only a single virtual func-
tion call4. This test provides a lower bound to compare with
the C/S results.

We ran each test for a fixed number of calls,i.e., 10,000,000.
The total time for the C/S test isTC=S . The total time spent
in the collocated test isTCO. The difference between the du-
ration of these two tests,TC=S � TCO, yields the time spent
performing ORB/OS processing. In an ideal ORB endsystem,
the ORB and OS would incur minimal overhead, providing
more stable response time and enabling the endsystem to meet
QoS requirements.

Results of CPU processing overhead metrics:The utiliza-
tion results for each OS platform are shown in Figure 10 and
described below. The figure shows the mean, over 10 runs of
10,000,000 calls each, and plus/minus one standard deviation.

0

2

4

6

8

10

12

14

16

18

20

Linux

Lyn
xO

S

Windows N
T

Solaris

VxW
orks

OS

OR
B

ov
er

he
ad

, p
er

ce
nt

Mean plus standard deviation
Mean
Mean less standard deviation

Figure 10: TAO CPU Utilization on Various OS Platforms

4We measured the time for a virtual function call at�20 nanoseconds on
our test platform, with each of the tested OS’s.

9

� LynxOS results: TAO on LynxOS exhibits CPU over-
head of 5.73%. As shown in Figure 10, this value is relatively
low for the platforms tested. The interaction of I/O events and
other processing is optimized [36], minimizing overhead.

� Linux results: TAO on Linux exhibits moderate CPU
utilization, 7.17%, but with relatively high standard deviation,
as shown in Figure 10. The scavenger thread was able to run a
small number of iterations, between 2.1 and 2.4 per 100 oper-
ations/function calls. This has a small effect on the measured
overhead. But more importantly, it shows that thread priorities
are not strictly obeyed on Linux. Linux was the only platform
that displayed this anomaly.

� Windows NT results: The ORB/OS overhead on Win-
dows NT is the lowest on the operating systems tested, at
2.61%, as shown in Figure 10. This indicates protocol pro-
cessing overhead in Windows NT is low and that the compiler
produces efficient code.

� Solaris results: The CPU overhead on Solaris of 8.75%
is moderately high for the platforms tested, as shown in Fig-
ure 10. This overhead is sufficiently large to account for some
of the latency discussed in Section 3.1.2.

� VxWorks results: TAO on VxWorks has 17.6% CPU
utilization, the highest on the tested platforms as shown in Fig-
ure 10. We use a different compiler for VxWorks, though our
experience has been that the GreenHills compiler usually pro-
duces very efficient code. Furthermore, the standard deviation
of 6.75% of the mean is high, suggesting an OS rather than
compiler inefficiency. The high overhead may contribute to
the poor scalability on VxWorks shown in Section 3.1.2.

Result synopsis: We measured the overhead of the ORB and
OS loopback communication path by comparing direct func-
tion calls to operations through the ORB and loopback inter-
face. We observe that TAO on Windows NT displays very low
overhead of 2.61%, TAO on LynxOS, Linux and Solaris show
moderate overhead of 5.73 to 8.75%, and TAO on VxWorks
has overhead of over 17 percent. Factors besides overhead
affect real-time performance, in particular, it is important to
eliminate priority inversion and non-determinism. The over-
head test revealed that Linux does not strictly obey thread pri-
ority, even with preemptive scheduling.

3.2 Evaluation and Recommendations

The ORB/OS benchmarks presented in this paper illustrate
the performance, priority inversion, and non-determinism in-
curred by five widely used operating systems running the same
real-time ORB middleware. Since we use the same ORB,
TAO, for our tests, the variation in results stems from differ-
ences in OS designs and implementations.

Based on our results, and our prior experience [15, 20, 28,
29, 18] measuring the performance of CORBA ORB endsys-
tems, we propose the following recommendations to decrease
non-determinism and limit priority inversion in operating sys-
tems that support real-time ORB middleware:

1. Real-time operating systems should provide low, de-
terministic context switching and mode switching latency:
High context switch latency and jitter can significantly de-
grade the ORB efficiency and predictability of ORB endsys-
tems [21]. High context switching overhead indicates that the
OS spends too much time in the mechanics of switching from
one thread to another. Thus, operating systems should tune
their context switch mechanisms to provide a deterministic
and minimal response context switch time.

In addition, system calls can incur a significant amount of
overhead, particularly when switching modes between the ker-
nel/application threads and vice versa. Since mode switching
also yields significant overhead, operating systems should op-
timize system call overhead and minimize mode switches into
the kernel. For instance, to reduce latency, operating systems
should execute system calls in the calling thread’s context,
rather than in a dedicated I/O worker thread in the kernel [18].

2. Real-time operating systems should integrate the I/O
subsystem with ORB middleware: Meeting the demands
of real-time ORB endsystems requires a vertically integrated
architecture that can deliver end-to-end QoS guarantees at
multiple levels of a distributed system. For instance, to avoid
packet-based priority inversion, the I/O subsystem level of the
OS must process network packets in priority order,e.g., as op-
posed to strict FIFO order [25].

To minimize packet-based priority inversion, an ORB end-
system must distinguish packets on the basis of their priorities
and classify them into appropriate queues and threads. For in-
stance, TAO’s I/O subsystem exploits theearly demultiplexing
feature of ATM [12, 17]. Early demultiplexing detects the final
destination of the packets based on the VCI field in the ATM
cell header. The use of early demultiplexing alleviates packet-
based priority inversion because packets need not be queued
in FIFO order.

In addition, TAO’s I/O subsystem supportspriority-based
queuing, where packets destined for higher-priority applica-
tions are delivered ahead of lower-priority packets that remain
unprocessed in their queues. Support forpriority-based queu-
ing is also needed in the I/O subsystem. For instance, conven-
tional implementations of network protocols in the I/O sub-
systems of Solaris and Windows NT process all packets at the
same priority, regardless of the application thread destined to
receive them.

For instance, Solaris 2.6 provides real-time scheduling but

10

not real-time I/O [34]. Therefore, Solaris is unable to guaran-
tee the availability of resources like I/O buffers and network
bandwidth. Moreover, the scheduling performed by the I/O
subsystem is not integrated with other OS resource manage-
ment strategies.

3. Real-time operating systems should support QoS specifi-
cation and enforcement: Real-time applications often spec-
ify QoS requirements, such as CPU processing requirements,
in terms of computation time and period. TAO supports QoS
specification and enforcement via a real-time I/O scheduling
class [17] and real-time scheduling service [10] that supports
periodic real-time applications [16].

The scheduling abstractions defined by real-time operating
systems like VxWorks and LynxOS are relatively low-level.
In particular, they do not support application-level QoS spec-
ifications. In addition, operating systems must enforce those
QoS specifications. To accomplish this, an OS should allow
applications to specify their QoS requirements using higher-
level APIs. TAO’s real-time I/O scheduling class and real-time
scheduler service permits applications to do this. In general,
the OS should allow priorities to be assigned to real-time I/O
threads so that application QoS requests can be enforced.

In addition, operating systems should provide admission
control, which allows the OS to either guarantee the specified
computation time or refuse to accept the resource demands of
the thread. Because admission control is exercised at run-time,
this is usually necessary with dynamically scheduled systems.

In addition to supporting the specification of processing re-
quirements, an OS must enforce end-to-end QoS requirements
of ORB endsystems. Real-time ORBs cannot deliver end-to-
end guarantees to applications without integrated I/O subsys-
tem and networking support for QoS enforcement. In particu-
lar, transport mechanisms in the OS,e.g., TCP and IP, provide
features like adaptive retransmissions and delayed acknowl-
edgements, that can cause excessive overhead and latency.
Such overhead can lead to missed deadlines in real-time ORB
endsystems.

Therefore, operating systems should provide optimized
real-time I/O subsystems that can provide end-to-end band-
width, latency, and reliability guarantees to middleware and
distributed applications [12].

4. Real-time operating systems should provide better
tools to determine sources of overhead: Solaris provides
a number of general-purpose performance analysis tools like
Quantify , UNIX truss , andtime . Quantify precisely
indicates the function and system call overhead of an applica-
tion. truss shows number of calls and overhead of an appli-
cation’s system calls. Thetime program shows the CPU uti-
lization of the application and the time spent in user-mode and

kernel-mode. These tools are valuable to pinpoint the sources
of overhead incurred by an ORB endsystem and its applica-
tions.

However, there is also a need for tools that can pinpoint
sources of overhead, priority inversion, and non-determinism.
Such tools should provide (1) mechanisms to determine con-
text switch overhead,i.e., precisely determine the number and
duration of context switches incurred by a task, (2) code pro-
filers,e.g., to determine number of system calls, and duration,
and (3) high-resolution timers, to allow fine-grained latency
measurements.

Certain real-time operating systems, such as LynxOS, pro-
vide insufficient tools to pinpoint sources of OS overhead. It is
understandable, to a certain degree, that OS implementors op-
timize the OS by excluding support of performance measure-
ment mechanisms. For instance, OS implementors may do this
to eliminate overhead caused by adding performance counters.
Nevertheless, a profiling/debugging mode should be available
for the OS to enable performance measurements. This mode
should be disabled at compilation time or run-time for normal
operation and enabled when profiling applications.

5. Real-time operating systems should support priority in-
heritance protocols: Minimizing thread-based priority in-
version is commonly handled with apriority inheritancepro-
tocol [34]. In this protocol, when a high-priority thread wants
a resource, such as a mutex or semaphore, held by a low-
priority thread, the low-priority thread’s priority is boosted to
that of the high-priority thread until the resource is released.

Several operating systems,i.e., VxWorks, LynxOS, and So-
laris, tested by our ORB/OS benchmarks implement priority
inheritance protocols. In contrast, Linux and Windows NT do
not support priority inheritance. Windows NT has a feature
that temporarily boosts the priority of threads in processes in
the NORMAL PRIORITY CLASS class. Thread priority boost-
ing makes a foreground process react faster to user input.
Threads inREALTIME PRIORITY CLASS processes that have
a priority level in the class are never boosted by the OS.

Thread boosting can be beneficial for applications that re-
quire high responsiveness, such as applications that obtain user
mouse and keyboard input. However, for applications that
need high predictability and have stringent QoS requirements,
thread boosting can be non-deterministic, which is detrimental
to such applications. Therefore, operating systems that sup-
port real-time applications with stringent QoS requirements
should alleviate priority inversion by providing mechanisms
like priority inheritance protocols.

6. Real-time OS implementors should develop or
adopt standard measurement-driven methodologies to
identify sources of overhead, priority inversion, and

11

non-determinism: We believe that developing real-time
ORB middleware requires a systematic, measurement-driven
methodology to identify and alleviate sources of ORB
endsystem and OS overhead, priority inversion, and non-
determinism. The results presented in this paper are based on
our experience developing, profiling, and optimizing avion-
ics [16] and telecommunications [37] systems using OO mid-
dleware such as ACE [35] and TAO [10] developed at Wash-
ington University.

4 Related Work

An increasing number of research efforts are focusing on de-
veloping and optimizing real-time CORBA. The work pre-
sented in this paper is based on the TAO project [10]. For a
comparison of TAO with related QoS projects see [38]. In this
section, we briefly review related work on OS and middleware
performance measurement.

lmbench benchmarks: The lmbench micro-benchmark
suite evaluates important aspects of system performance [39].
It includes a context switching benchmark that measures the
latency of switching between processes, rather than threads.
The processes pass a token through a UNIX pipe. The time
measured to pass the token includes the context switch time
and thepipe overhead, i.e., time measured to read from and
write to the pipe. The pipe overhead is measured separately
and subtracted from the total time to yield the context switch
time. It adds the time the OS takes to fault the working set of
the new process into the CPU cache. This models more closely
what a user might see with large data-intensive processes. This
approach provides a more realistic test environment than the
suspend/resume and thread yield tests described in [21]. The
reportedlmbench context switch times for Linux is 6�sec
(lowest reported) and 101�sec (highest reported), and for So-
laris is 36�sec (lowest reported) and 118�sec (highest re-
ported) on an Intel Pentium Pro 167 MHz. In contrast, we
measure context switch time using different methods, on dif-
ferent OSs, and on different hardware. Our measurements
in [21] yield context switch times for Linux of 2.60�sec (low-
est reported) and 9.72�sec (highest reported), and for Solaris
of 11.2�sec (lowest reported) and 131.2 (highest reported), on
an Intel Pentium II 450 MHz.

Rhealstone benchmarks: Different context switching met-
rics are used by the Rhealstone real-time benchmarking pro-
posal [40]. It calls synchronous, non-preemptive context
switchingtask switching. An example of task switching is the
expiration of the current thread’s time quantum. In contrast,
preemptionoccurs when a context switch suspends a lower
priority task in order to resume a higher priority task.

hbench benchmarks: The hbench benchmark suite [41],
based on thelmbench package [39], measures the interac-
tions between OS and hardware architecture,i.e., Intel. It
measures the scalability of operating system primitives,e.g.,
process creation and cached file read, and hardware capa-
bilities, e.g., memory bandwidth and latency. In addition,
hbench measures context switch latency, based on the orig-
inal lmbench context switch test. The key difference is that
hbench does not measure the overhead for cache conflicts or
faulting in the processes data region. Their results yield 3 per-
cent standard deviation for context switch time. Our measure-
ments show standard deviations ranging from less than 0.15
percent to 8.0 percent.

Lai and Baker context switch time benchmarks: Lai and
Baker utilize a similar approach to measure context switch
time [42]. Again, they only measure the context switch time
between processes, rather than threads. With one active pro-
cess in the system, they measure context switch times of
a small number to to under 100�sec on a 100 MHz Pen-
tium. These measurements are consistent with ours, between
threads, of 3 to 128�sec on a 200 MHz Pentium Pro.

In contrast to our evaluation, Lai and Baker focus on general
purpose operating systems and a wide range of users, rather
than real-time operating systems running applications that re-
quire responsiveness. They measured parameters including
system call overhead, memory bandwidth, file system perfor-
mance and raw network performance. In addition, Lai and
Baker evaluate qualitative factors such as license agreements,
ease of installation, and available support.

Distributed Hartstone benchmarks: The Distributed Hart-
stone (DHS) benchmark suite [43] is an extension of the Hart-
stone benchmark [44] to distributed systems. DHS quantita-
tively analyzes operating systems issues like the preemptabil-
ity of the protocol stack and the effects of various queueing
mechanisms. Moreover, DHS gauges the performance of real-
time operating systems that must schedule harmonic and non-
harmonic periodic activities. In addition, DHS measures the
ability of the system to handle priority inversion.

The DHS benchmarks have two implementations of a proto-
col processing engine, a software interrupt based mechanism,
that runs at a higher priority than any other user task. The sec-
ond uses several prioritized worker threads to handle messages
with different priorities. Their results show that the worker
thread mechanism is 10 percent slower than the software in-
terrupt version, but it increased preemptability.

The results of our tests show how the protocol processing
engine of a determined OS does not account for messages
with different priorities. They measure context switch times
for threads that are in the same address space and in different
address spaces on a SUN3/140. Their results show no differ-
ence in context switch time between these two measurements.

12

In contrast, we measure only for threads that are in the same
address space (VxWorks only has one address space).

Our results show differences in context switch times be-
tween several OSs running on the same hardware. The DHS
benchmark also measures response time of the communica-
tion subsystem, using two different sets of messages. One set
uses different message priorities, and the other uses the same
priority for all messages. Their results show better results for
messages that use priority information from network packets,
than a system which does FIFO processing of network packets.

Windows NT Real-time Applications Experiments: Gon-
zalez [32],et al., ran a set of experiments on Windows NT to
evaluate the ability of the OS to run applications with com-
ponents that have real-time constraints. They simulate peri-
odicity functionality in their prototype application by setting
events on which different threads wait. They measure latency
of various process/thread related Win32 API calls.

They report the90th percentile of measurements, instead
of average, since they are more interested in soft real-time,
rather than hard real-time performance. In addition, they mea-
sure CPU overhead for system related tasks when the OS is
idle. They reported 153 msec out of a second are used by
system activities,i.e., 15.3 percent. In contrast, we measure
system activities under heavy workload. Our results are simi-
lar, yielding 12.8 percent. Furthermore, their experiments in-
cluded measuring roundtrip latency for remote command from
a Realvideo player at different frequencies (10, 20, and 33 Hz).

We also measured roundtrip latency and observed a sim-
ilar unpredictable pattern in the behavior. We used 10 and
20 Hz frequencies. Their observations were that the vari-
ance was higher in lower priority processes. In the Windows
NT REAL TIME priority class, they observed significantly less
variance, even though the latency was similar.

5 Concluding Remarks

There is a significant interest in developing high performance,
real-time systems using ORB middleware like CORBA to
lower development costs and decrease time-to-market. The
flexibility, reusability, and platform-independence offered by
CORBA makes it attractive for use in real-time systems. How-
ever, meeting the stringent QoS requirements of real-time sys-
tems requires more than just specifying QoS via IDL inter-
faces [10]. Therefore, it is essential to develop integrated ORB
endsystems that can enforce application QoS guarantees end-
to-end.

This paper illustrates the characteristics that the OS com-
ponent in an ORB endsystem should provide to support real-
time applications. By holding the hardware and ORB imple-
mentation constant and systematically varying the underlying

OS, we demonstrated empirically the extent to which oper-
ating systems are (and are not) capable of meeting real-time
application QoS requirements.

Our benchmarks revealed that certain operating systems do
not behave optimally under high load conditions. For instance,
general-purpose operating systems, such as Windows NT and
Solaris, exhibit priority inversion and non-determinism. Thus,
these operating systems may be unsuitable for some dis-
tributed, real-time applications and ORB middleware with de-
terministic QoS requirements. Meeting these demands re-
quires operating systems to increase predictability and respon-
siveness, as well as reduce priority inversion.

LynxOS consistently performed better than other operating
systems in our ORB/OS benchmarking testsuite. LynxOS pro-
vides low latency and stable predictability by reducing inter-
rupt overhead and performing most asynchronous processing
at the priority of the process that made the request.

In general, real-time operating systems need not necessarily
exhibit lower latency than general-purpose operating systems.
It is important, however, that real-time operating systems pro-
vide deterministic behavior. For instance, VxWorks showed
low variability in the latency measurements when there was lit-
tle contention for system resources. However, it did not scale
up gracefully. In particular, high-priority client jitter rose pro-
gressively with an increasing number of low-priority clients.

To support the development of real-time ORB applica-
tions with stringent QoS requirements, operating systems must
eliminate sources of non-determinism and priority inversion
and fully integrate the various subsystems to provide end-to-
end QoS guarantees. In particular, the I/O subsystem is an
important factor for determining a bound on responsiveness,
which is crucial for certain types of real-time applications [17].

Many real-time applications can benefit from flexible and
open distributed architectures, such as those defined by
CORBA [5]. Our previous work [18] has shown that conven-
tional CORBA ORBs have limitations that make them inad-
equate for real-time middleware with stringent QoS require-
ments. TAO has overcome these limitations, however, through
careful design and implementation. Therefore, our research
demonstrates that real-time support is possible in CORBA
ORBs when they are run over well-designed real-time oper-
ating systems.

Acknowledgments

We gratefully acknowledge the support and direction of the
Boeing Principal Investigator, Bryan Doerr. In addition, we
would like to thank Steve Kay for comments on this paper.

13

References
[1] R. Gopalakrishnan and G. Parulkar, “Bringing Real-time

Scheduling Theory and Practice Closer for Multimedia Com-
puting,” in SIGMETRICS Conference, (Philadelphia, PA),
ACM, May 1996.

[2] S. Landis and S. Maffeis, “Building Reliable Distributed Sys-
tems with CORBA,”Theory and Practice of Object Systems,
Apr. 1997.

[3] R. Johnson, “Frameworks = Patterns + Components,”Commu-
nications of the ACM, vol. 40, Oct. 1997.

[4] Z. Deng and J. W.-S. Liu, “Scheduling Real-Time Applications
in an Open Environment,” inProceedings of the 18th IEEE
Real-Time Systems Symposium, IEEE Computer Society Press,
Dec. 1997.

[5] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 2.2 ed., Feb. 1998.

[6] S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environments,”IEEE Communica-
tions Magazine, vol. 14, February 1997.

[7] Object Management Group,Realtime CORBA 1.0 Joint Submis-
sion, OMG Document orbos/98-12-05 ed., December 1998.

[8] Object Management Group,Minimum CORBA - Request for
Proposal, OMG Document orbos/97-06-14 ed., June 1997.

[9] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar,
“A High-Performance Endsystem Architecture for Real-time
CORBA,” IEEE Communications Magazine, vol. 14, February
1997.

[10] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[11] A. Campbell and K. Nahrstedt,Building QoS into Distributed
Systems. London: Chapman & Hall, 1997. Proceedings of the
IFIP TC6 WG6.1 Fifth International Workshop on Quality of
Service (IWQOS ’97), 21-23 May 1997, New York.

[12] Z. D. Dittia, G. M. Parulkar, and J. Jerome R. Cox, “The APIC
Approach to High Performance Network Interface Design: Pro-
tected DMA and Other Techniques,” inProceedings of INFO-
COM ’97, (Kobe, Japan), IEEE, April 1997.

[13] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-Time Synchro-
nization Protocols for Multiprocessors,” inProceedings of the
Real-Time Systems Symposium, (Huntsville, Alabama), Decem-
ber 1988.

[14] C. D. Gill, D. L. Levine, and D. C. Schmidt, “Evaluating Strate-
gies for Real-Time CORBA Dynamic Scheduling,”submitted to
the International Journal of Time-Critical Computing Systems,
special issue on Real-Time Middleware, 1998.

[15] A. Gokhale and D. C. Schmidt, “Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA,” inPro-
ceedings of GLOBECOM ’97, (Phoenix, AZ), IEEE, November
1997.

[16] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The De-
sign and Performance of a Real-time CORBA Event Service,”
in Proceedings of OOPSLA ’97, (Atlanta, GA), ACM, October
1997.

[17] D. C. Schmidt, F. Kuhns, R. Bector, and D. L. Levine, “The
Design and Performance of RIO – A Real-time I/O Subsystem
for ORB Endsystems,” inSubmitted to the5th Conference on
Object-Oriented Technologies and Systems, (San Diego, CA),
USENIX, May 1999.

[18] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Alleviating Priority Inversion and Non-determinism in Real-
time CORBA ORB Core Architectures,” inProceedings of the
4
th IEEE Real-Time Technology and Applications Symposium,

(Denver, CO), IEEE, June 1998.

[19] A. Gokhale, I. Pyarali, C. O’Ryan, D. C. Schmidt, V. Kachroo,
A. Arulanthu, and N. Wang, “Design Considerations and Per-
formance Optimizations for Real-time ORBs,” inSubmitted to
the5

th Conference on Object-Oriented Technologies and Sys-
tems, (San Diego, CA), USENIX, May 1999.

[20] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, (Stanford, CA), pp. 306–317,
ACM, August 1996.

[21] D. Levine, S. Flores-Gaitan, and D. C. Schmidt, “Measuring OS
Support for Real-time CORBA ORBs,” inProceedings of the
4
th Workshop on Object-oriented Real-time Dependable Sys-

tems, (Santa Barbara, CA), IEEE, January 1999.

[22] A. Gokhale and D. C. Schmidt, “Techniques for Optimizing
CORBA Middleware for Distributed Embedded Systems,” in
Proceedings of INFOCOM ’99, Mar. 1999.

[23] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever,
I. Zykh, and R. Johnston, “Real-Time CORBA,” inProceedings
of the Third IEEE Real-Time Technology and Applications Sym-
posium, (Montréal, Canada), June 1997.

[24] D. C. Schmidt, “GPERF: A Perfect Hash Function Generator,”
in Proceedings of the2nd C++ Conference, (San Francisco,
California), pp. 87–102, USENIX, April 1990.

[25] D. C. Schmidt, R. Bector, D. Levine, S. Mungee, and
G. Parulkar, “An ORB Endsystem Architecture for Stati-
cally Scheduled Real-time Applications,” inProceedings of the
Workshop on Middleware for Real-Time Systems and Services,
(San Francisco, CA), IEEE, December 1997.

[26] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,”IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[28] A. Gokhale and D. C. Schmidt, “The Performance of the
CORBA Dynamic Invocation Interface and Dynamic Skele-
ton Interface over High-Speed ATM Networks,” inProceed-
ings of GLOBECOM ’96, (London, England), pp. 50–56, IEEE,
November 1996.

[29] A. Gokhale and D. C. Schmidt, “Measuring and Optimizing
CORBA Latency and Scalability Over High-speed Networks,”
Transactions on Computing, vol. 47, no. 4, 1998.

[30] Wind River Systems, “VxWorks 5.2 Web Page.”http://-
www.wrs.com/products/html/vxwks52.html , May
1998.

14

[31] Lynx Real-Time Systems, “LynxOS - Hard Real-Time
OS Features and Capabilities.”http://www.lynx.com/-
products/ds lynxos.html , Dec. 1997.

[32] K. Ramamritham, C. Shen, O. Gonz´ales, S. Sen, and S. Shir-
gurkar, “Using Windows NT for Real-time Applications: Ex-
perimental Observations and Recommendations,” inProceed-
ings of the Fourth IEEE Real-Time Technology and Applications
Symposium, (Denver, CO), IEEE, June 1998.

[33] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Be-
yond Multiprocessing... Multithreading the SunOS Kernel,” in
Proceedings of the Summer USENIX Conference, (San Antonio,
Texas), June 1992.

[34] S. Khanna and et. al., “Realtime Scheduling in SunOS 5.0,” in
Proceedings of the USENIX Winter Conference, pp. 375–390,
USENIX Association, 1992.

[35] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[36] W. Weinberg, “Lynx Patented Technology Speeds Handling of
Hardware Events.”http://www.lynx.com/news and -
events/Patent Exp.html , Sept. 1997.

[37] D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,”The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2, no. 1,
1996.

[38] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”Sub-
mitted to the Journal of Real-time Systems, 1998.

[39] L. McVoy, “lmbench: Portable tools for performance analy-
sis,” inProceedings of the 1996 USENIX Technical Conference,
USENIX, January 1996.

[40] R. P. Kar and K. Porter, “Rhealstone: A Real-Time Benchmark-
ing Proposal,”Dr. Dobbs Journal, vol. 14, pp. 14–24, Feb. 1989.

[41] A. B. Brown and M. I. Seltzer, “Operating System Benchmark-
ing in the Wake of Lmbench: Case Study of the Performance of
NetBSD on the Intel Architecture,” inProceedings of the 1997
Sigmetrics Conference, June 1997.

[42] K. Lai and M. Baker, “A Performance Comparison of UNIX
Operating Systems on the Pentium,” inProceedings of the 1996
USENIX Technical Conference, USENIX, January 1996.

[43] Clifford W. Mercer and Yutaka Ishikawa and Hideyuki Tokuda,
“Distributed Hartstone Real-Time Benchmark Suite,” inPro-
ceedings of the 10th International Conference on Distributed
Computing Systems, (Paris, France), May 1990.

[44] N. Weiderman, “Hartstone: Synthetic Benchmark Require-
ments for Hard Real-Time Applications,” tech. rep., Software
Engineering Institute, Carnegie Mellon University, June 1989.

[45] Z. D. Dittia, J. Jerome R. Cox, and G. M. Parulkar, “Design of
the APIC: A High Performance ATM Host-Network Interface
Chip,” in IEEE INFOCOM ’95, (Boston, USA), pp. 179–187,
IEEE Computer Society Press, April 1995.

[46] N. C. Hutchinson and L. L. Peterson, “Thex-kernel: An Ar-
chitecture for Implementing Network Protocols,”IEEE Trans-
actions on Software Engineering, vol. 17, pp. 64–76, January
1991.

[47] Object Management Group,Control and Management of A/V
Streams Request For Proposals, OMG Document telecom/96-
08-01 ed., August 1996.

[48] A. Gokhale and D. C. Schmidt, “Principles for Optimizing
CORBA Internet Inter-ORB Protocol Performance,” inHawai-
ian International Conference on System Sciences, January
1998.

[49] J. C. Mogul and A. Borg, “The Effects of Context Switches on
Cache Performance,” inProceedings of the4th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), (Santa Clara, CA),
ACM, Apr. 1991.

[50] D. C. Schmidt, “Evaluating Architectures for Multi-threaded
CORBA Object Request Brokers,”Communications of the ACM
special issue on CORBA, vol. 41, Oct. 1998.

[51] D. L. Tennenhouse, “Layered Multiplexing Considered Harm-
ful,” in Proceedings of the1st International Workshop on High-
Speed Networks, May 1989.

A Factors Impacting Real-time ORB
Endsystem Performance

Meeting the QoS needs of next-generation distributed appli-
cations requires much more than defining IDL interfaces or
adding preemptive real-time scheduling into an OS. It requires
a vertically and horizontally integratedORB endsystemarchi-
tecture that can deliver end-to-end QoS guarantees at multiple
levels throughout a distributed system [10]. The key levels
in an ORB endsystem include the network adapters, OS I/O
subsystems, communication protocols, ORB middleware, and
higher-level services shown in Figure 1.

For completeness, Section A.1 briefly outlines the general
sources of performance overhead in ORB endsystems. Sec-
tion A.2 describes the key sources of priority inversion and
non-determinism that affect the predictability and utilization
of real-time ORB endsystems. Section 3 illustrates quantita-
tively how OS characteristics like context switching, synchro-
nization, and system call overhead impact ORB performance
and predictability.

A.1 General Sources of ORB Endsystem Per-
formance Overhead

Our experience [15, 20, 28, 29] measuring the throughput
and latency of CORBA implementations indicates that perfor-
mance overheads in real-time ORB endsystems arise from in-
efficiencies in the following components:

15

1. Network connections and network adapters: These
endsystem components handle heterogeneous network con-
nections and bandwidths, which can significantly increase la-
tency and cause variability in performance. Inefficient design
of network adapters can cause queueing delays and lost pack-
ets [45], which are unacceptable for certain types of real-time
systems.

2. Communication protocol implementations and integra-
tion with the I/O subsystem and network adapters: In-
efficient protocol implementations and improper integration
with I/O subsystems can adversely affect endsystem perfor-
mance. Specific factors that cause inefficiencies include the
protocol overhead caused by flow control, congestion control,
retransmission strategies, and connection management. Like-
wise, lack of proper I/O subsystem integration yields excessive
data copying, fragmentation, reassembly, context switching,
synchronization, checksumming, demultiplexing, marshaling,
and demarshaling overhead [46].

3. ORB transport protocol implementations: Inefficient
implementations of ORB transport protocols such as the
CORBA Internet inter-ORB protocol (IIOP) [5] and Simple
Flow Protocol (SFP) [47] can cause significant performance
overhead and priority inversion. Specific factors responsible
for these inversions include improper connection management
strategies, inefficient sharing of endsystem resources, and ex-
cessive synchronization overhead in ORB protocol implemen-
tations.

4. ORB core implementations and integration with OS
services: An improperly designed ORB Core can yield
excessive memory accesses, cache misses, heap alloca-
tions/deallocations, and context switches [48]. In turn, these
factors can increase latency and jitter, which is unacceptable
for distributed applications with deterministic real-time re-
quirements. Specific ORB Core factors that cause inefficien-
cies include data copying, fragmentation/reassembly, context
switching, synchronization, checksumming, socket demul-
tiplexing, timer handling, request demultiplexing, marshal-
ing/demarshaling, framing, error checking, connection and
concurrency architectures. Many of these inefficiencies are
similar to those listed in bullet 2 above. Since they occur at
the user-level rather than at the kernel-level, however, ORB
implementers can often address them more readily.

Figure 11 pinpoints where the various factors outlined
above impact ORB performance and where optimizations can
be applied to reduce key sources of ORB endsystem overhead,
priority inversion, and non-determinism. Below, we describe
the components in an ORB endsystem that are chiefly respon-
sible for priority inversion and non-determinism.

NETWORK

OS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

OS KERNELOS KERNEL

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

ORBORB
INTERFACEINTERFACE

ORBORB
CORECORE

operation()operation()

IDLIDL
STUBSSTUBS

OBJECTOBJECT

ADAPTERADAPTER

IDLIDL
SKELETONSKELETON

in args

out args + return value

CLIENT

GIOP

SERVANT

CONNECTIONCONNECTION

MANAGEMENTMANAGEMENT

CONCURRENCYCONCURRENCY

MODELSMODELS

TRANSPORTTRANSPORT

PROTOCOLSPROTOCOLS

I/OI/O
SUBSYSTEMSUBSYSTEM

NETWORKNETWORK

ADAPTERADAPTER

PRESENTATIONPRESENTATION

LAYERLAYER

SCHEDULINGSCHEDULING,,
DEMUXINGDEMUXING,, &&
DISPATCHINGDISPATCHING

DATADATA

 COPYING COPYING

Figure 11: Optimizing Real-time ORB Endsystem Perfor-
mance

A.2 Sources of Priority Inversion and Non-
determinism in ORB Endsystems

Minimizing priority inversion and non-determinism is impor-
tant for real-time operating systems and ORB middleware in
order to bound application execution times. In ORB endsys-
tems, priority inversion and non-determinism generally stem
from resources that are shared between multiple threads or
processes. Common examples of shared ORB endsystem re-
sources include (1) TCP connections used by a CORBA IIOP
protocol engine, (2) threads used to transfer requests through
client and server transport endpoints, (3) process-wide dy-
namic memory managers, and (4) internal ORB data struc-
tures like connection tables for transport endpoints and de-
multiplexing maps for client requests. Below, we describe key
sources of priority inversion and non-determinism in conven-
tional ORB endsystems.

A.2.1 The OS I/O Subsystem

An I/O subsystem is the component in an OS responsible
for mediating ORB and application access to low-level net-
work and OS resources, such as device drivers, protocol
stacks, and the CPU(s). Key challenges in building a high-
performance, real-time I/O subsystem are (1) to minimize con-
text switching and synchronization overhead and (2) to enforce
QoS guarantees while minimizing priority inversion and non-
determinism [17].

A context switch is triggered when an executing thread re-
linquishes the CPU it is running on voluntarily or involuntar-
ily. Depending on the underlying OS and hardware platform,
a context switch may require hundreds of instructions to flush
register windows, memory caches, instruction pipelines, and
translation look-aside buffers [49]. Synchronization overhead
arises from locking mechanisms that serialize access to shared
resources like I/O buffers, message queues, protocol connec-

16

tion records, and demultiplexing maps used during protocol
processing in the OS and ORB.

The I/O subsystems of general-purpose operating systems,
such as Solaris and Windows NT, do not perform preemptive,
prioritized protocol processing [25]. Therefore, the protocol
processing of lower priority packets isnotdeferred due to the
arrival of higher priority packets. Instead, incoming packets
are processed by their arrival order, rather than by their prior-
ity.

For instance, in Solaris if a low-priority request arrives im-
mediately before a high priority request, the I/O subsystem
will process the lower priority packet and pass it to an applica-
tion servant before the higher priority packet. The time spent
in the low-priority servant represents the degree of priority in-
version incurred by the ORB endsystem and application.

[25] examines key issues that cause priority inversion in I/O
subsystems and describes how TAO’s real-time I/O subsys-
tem avoids many forms of priority inversion by co-scheduling
pools of user-level and kernel-level real-time threads. The re-
sults in Section 3 illustrate the extent to which the priority
inversion and non-determinism in an OS affect ORB perfor-
mance and predictability.

A.2.2 The ORB Core

An ORB Core is the component in CORBA that implements
the General Inter-ORB Protocol (GIOP) [5], which defines a
standard format for interoperating between (potentially hetero-
geneous) ORBs. The ORB Core establishes connections and
implements concurrency architectures that process GIOP re-
quests. The following discussion outlines common sources of
priority inversion and non-determinism in conventional ORB
Core implementations.

Connection architecture: The ORB Core’sconnection ar-
chitecture, i.e., how requests are mapped onto network con-
nections, has a major impact on real-time ORB behavior.
Therefore, a key challenge for developers of real-time ORBs is
to select a connection architecture that can utilize the transport
mechanisms of an ORB endsystem efficiently and predictably.

Conventional ORB Cores typically share a single multi-
plexed TCP connection for all object references to servants in a
server process that are accessed by threads in a client process.
The goal of connection multiplexing is to minimize the num-
ber of connections open to each server,e.g., to improve server
scalability over TCP. However, connection multiplexing can
yield substantial packet-level priority inversions and synchro-
nization overhead [18]. Therefore, it should be avoided for
most real-time systems.

Concurrency architecture: The ORB Core’sconcurrency
architecture, i.e., how requests are mapped onto threads, also
has a substantial impact on its real-time behavior. Therefore,

another key challenge for developers of real-time ORBs is to
select a concurrency architecture that can effectively share the
aggregate processing capacity of an ORB endsystem and its
application operations in one or more threads.

ORB Core concurrency architectures often usethread pools
[50] to select a thread to process an incoming request. How-
ever, conventional ORBs do not provide programming inter-
faces that allow real-time applications to assign the priority
of threads in this pool. Therefore, the priority of a thread in
the pool is often inappropriate for the priority of the servant
that ultimately executes the request. An improperly designed
ORB Core increases the potential for, and duration of, priority
inversion and non-determinism [18].

A.2.3 The Object Adapter

An Object Adapter is the component in CORBA that is re-
sponsible for demultiplexing incoming requests to servant op-
erations that handle the request. A standard GIOP-compliant
client request contains the identity of its object and operation.
An object is identified by an object key which is anoctet
sequence . An operation is represented as astring . As
shown in Figure 12, the ORB endsystem must perform the fol-

O
P

E
R

A
T

I
O

N
O

P
E

R
A

T
I
O

N
11

O
P

E
R

A
T

I
O

N
O

P
E

R
A

T
I
O

N
22

O
P

E
R

A
T

I
O

N
O

P
E

R
A

T
I
O

N
KK

2:2: DEMUX TO DEMUX TO

 I/OI/O HANDLE HANDLE

.........

.........

.........POAPOA11

OS IOS I//O SUBSYSTEMO SUBSYSTEM

NETWORK ADAPTERSNETWORK ADAPTERS

SERVANT SERVANT 11

5:5: DEMUX TO DEMUX TO

 SKELETON SKELETON

6:6: DISPATCH DISPATCH

 OPERATION OPERATION

1:1: DEMUX THRU DEMUX THRU

 PROTOCOL STACK PROTOCOL STACK

4:4: DEMUX TO DEMUX TO

 SERVANT SERVANT

ORB COREORB CORE

ROOT POA
3:3: DEMUX TO DEMUX TO

 OBJECT OBJECT

 ADAPTER ADAPTER

POAPOA22 POAPOA
NN

SERVANT SERVANT
NN

.........SKEL SKEL 11 SKEL SKEL 22 SKEL SKEL
NN

SERVANT SERVANT 22

OSOS

KERNELKERNEL

LAYERLAYER

ORBORB

LAYERLAYER

USERUSER

LAYERLAYER

Figure 12: CORBA 2.2 Logical Server Architecture

lowing demultiplexing tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times,e.g., from the network

17

interface card, through the data link, network, and transport
layers up to the user/kernel boundary (e.g., the socket) and
then dispatches the data to the ORB Core.

Steps 3, and 4: The ORB Core uses the addressing informa-
tion in the client’s object key to locate the appropriate POA
and servant. POAs can be organized hierarchically. Therefore,
locating the POA that contains the servant can involve multiple
demultiplexing steps through the hierarchy.

Step 5 and 6: The POA uses the operation name to find the
appropriate IDL skeleton, which demarshals the request buffer
into operation parameters and performs the upcall to code sup-
plied by servant developers.

The conventional layered ORB endsystem demultiplexing
implementation shown in Figure 12 is generally inappropriate
for high-performance and real-time applications for the fol-
lowing reasons [51]:

Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that
must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers is expensive, particu-
larly when a large number of operations appear in an IDL in-
terface and/or a large number of servants are managed by an
Object Adapter.

Increased priority inversion and non-determinism: Lay-
ered demultiplexing can cause priority inversions because
servant-level quality of service (QoS) information is inacces-
sible to the lowest-level device drivers and protocol stacks in
the I/O subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
order of arrival. FIFO demultiplexing can cause higher prior-
ity packets to wait for an indeterminate period of time while
lower priority packets are demultiplexed and dispatched [25].

Conventional implementations of CORBA incur significant
demultiplexing overhead. For instance, [20, 29] show that con-
ventional ORBs spend�17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform, scalable QoS guarantees to real-time appli-
cations.

Our prior work has focused on the impact the ORB
Core [18] and Object Adapter [15] has on ORB priority in-
version and non-determinism. Section 3 focuses on the impact
of the OS and its I/O subsystem on the predictability and per-
formance of ORB endsystems.

18

