
The Design and Per formance of a Real-Time Notification Service 
 

Pradeep Gore and Irfan Pyarali Christopher D. Gill Douglas C. Schmidt 
OOMWorks, LLC 

Metuchen, NJ 
Washington University 

St. Louis, MO 
Vanderbilt University 

Nashville, TN 
{pradeep,irfan}@oomworks.com cdgill@cse.wustl.edu d.schmidt@vanderbilt.edu 

 
Abstract 

 
Many distributed real-time and embedded (DRE) 
applications require a scalable event-driven 
communication model that decouples suppliers from 
consumers and simultaneously supports advanced 
quality of service (QoS) properties and event filtering 
mechanisms. The CORBA Notification Service 
provides publisher/subscriber capabilities designed to 
support scalable event-driven communication by 
routing events efficiently between suppliers and 
consumers, enforcing QoS properties (such as 
reliability, priority, ordering, and timeliness), and 
filtering events at multiple points in a distributed 
system. The standard CORBA Notification Service is 
insufficient, however, to enforce predictable 
communication needed by DRE applications and does 
not leverage Real-time CORBA capabilities, such as 
end-to-end priority assignment or scheduling services. 
This paper makes three contributions to the study of 
scalable real-time notification services for DRE 
applications. First, we describe the requirements of the 
OMG Request for Proposals (RFP) on Real-time 
Notification, which seeks solutions to the problem of 
enforcing real-time properties by enhancing the 
standard CORBA Notification Service. Second, we 
explain how we have addressed key design challenges 
faced when implementing a Real-time Notification 
Service for TAO, which is our CORBA-compliant real-
time Object Request Broker (ORB). We discuss how we 
integrate Real-time CORBA features (such as thread 
pools, thread lanes, and priority models) to provide 
real-time event communication. Finally, we analyze the 
results of empirical benchmarks of the performance 
and predictability of TAO’s Real-time Notification 
Service. These results show that the static real-time 
assurances provided by Real-time CORBA are 
maintained within the more flexible context of TAO’s 
Real-time Notification Service.  

Keywords: Distributed real-time embedded (DRE) 
systems, Quality of Service (QoS), CORBA, Event / 
Notification Services. 

1. Introduction 
 
Many distributed real-time and embedded (DRE) 
applications (such as real-time avionics mission 
computing systems, distributed interactive simulations, 
and computer-assisted stock trading) require an event-
based communication model. Client/server 
communication via distribution middleware (such as 
CORBA, Java RMI and COM+) typically support a 
synchronous method invocation (SMI) model, where a 
client invokes a two-way operation on a target object 
implemented by a server and then blocks waiting for 
the response. This model has limitations, however, 
stemming from its tight coupling between client and 
server lifetimes, synchronous communication, and 
point-to-point communication.  
The deficiencies of the SMI model can be resolved by 
publisher/subscriber services that support the 
decoupling of event suppliers and consumers, 
asynchronous communication, and transparent group 
communication. For example, the CORBA Event 
Service [5] introduces a standard object model 
consisting of an event channel that acts as a broker 
between anonymous event suppliers and consumers 
connected to the event channel via proxy objects. 
Likewise, the CORBA Notification Service 0 is an 
extension to the CORBA Event Service that provides 
(1) greater scalability via event filters, (2) simplified 
administration via standard event channel factory 
support, shared subscription information, and the 
ability to navigate the event channel object hierarchy, 
(3) resource management via QoS properties for 
reliability, event priority, and internal 
ordering/discarding of events, and (4) improved 
usability via support for three different types of events 
(CORBA Anys, structured events, and batch events) 
and a constraint language (ETCL) for specifying filters. 
Although the event-based publisher/subscriber CORBA 
middleware has been implemented and studied widely 
[6][7][8], the original CORBA Event and Notification 
Services have drawbacks that limit their applicability to 
applications with stringent QoS requirements, such as 
real-time deadline assurance [9][10].  For example, the 



existing CORBA publisher/subscriber services do not 
address the requirements of real-time event 
communications that requires timeliness and 
predictability when delivering events from suppliers to 
event consumers via event channels. Likewise, they do 
not use the priority and scheduling capabilities defined 
in the Real-time CORBA 1.0 [2] and 2.0 [3], 
respectively. Though Real-time CORBA provides end-
to-end QoS support for point-to-point communication 
via prioritized operation calls, it does not address end-
to-end QoS guarantees for anonymous event-based 
communication. To overcome these limitations, 
therefore, the OMG has issued a Request for Proposals 
(RFP) [4] to provide enhancements that will support a 
Real-time Notification Service, which must satisfy the 
following requirements:  

Limit the complexity of filters. Events that do not 
match the constraints specified in the filter are 
discarded. A filtering expression can be arbitrarily 
complex. Submissions are required to provide 
mechanisms and describe the interfaces by which the 
filtering expressions could be minimized by limiting 
the number of different constraints in a filter, 
specifying the length of a message that might be 
successfully evaluated by a filter, and/or limiting how 
many different event types a supplier can produce.  
Subset functionality for  real-time behavior . 
Submissions must document which portions of the 
Real-time Notification Service address predictable 
resource management and timeliness predictability.  
Descr ibe the schedulable entities. Submissions must 
describe the schedulable entities (e.g., event messages) 
that would participate in the operation of the Real-time 
Notification Service. Also, both the Real-time CORBA 
1.0 CLIENT_PROPAGATED and SERVER_DECLARED 
priority models must be supported. 
Pr ior ity aware end-to-end event propagation. Real-
time CORBA 1.0 describes the priority levels at which 
participant objects are executed. Submissions are 
required to support these priority levels so that when 
the events are propagated across hosts, the event 
priority is considered in the processing. 
Provide means to set real-time QoS parameters. 
DRE application QoS parameters (e.g., priorities) may 
need to be communicated end-to-end. Submissions are 
required to provide mechanisms for this, along with a 
means to set real-time QoS parameters at the channel, 
connection, proxy, and message levels.    
Inter face for  resource management. Real-time 
CORBA 1.0 provides interfaces to manage resources, 
such as the number of threads in a thread-pool. 
Similarly, submissions are therefore required to 

provide an interface that can help manage real-time 
notification resources, such as event channels.  
Inter face to suppor t interactions with a Scheduling 
Service. Some real-time QoS requirements on a 
Notification Service might need to be checked via a 
global Scheduling Service. Submissions are required to 
define an appropriate interface to support interactions 
with the Real-time CORBA 1.0 Scheduling Service.  
Since the Real-time Notification Service is still 
undergoing adoption via the OMG standardization 
process, no commercial products or research 
prototypes are available for it yet.  To facilitate the 
study of real-time publisher/subscriber services, 
therefore, we have implemented a prototype of the 
latest revised submission [2] that enhances on our prior 
work with The ACE ORB (TAO) [12] and its Real-
time Event Service [9][13] and Notification Service 
[8].  Our new prototype implements the real-time 
extensions to the existing CORBA Notification Service 
designated in the revised submission to support 
predictable end-to-end event communications. This 
prototype has been integrated with the TAO open-
source software release and is available from 
deuce.doc.wustl.edu/Download.html. 
The remainder of this paper is organized as follows: 
Section 2 summarizes the key components in the OMG 
CORBA Notification Service, which provides the 
baseline for our work; Section 3 describes the design of 
TAO’s Real-time Notification Service, focusing on 
how we resolved the key challenges faced in meeting 
the Real-time Notification RFP requirements outlined 
above;  Section 4 analyzes the results of empirical 
benchmarks that illustrate the end-to-end predictability 
and scalability of our solution;  and Section 5 presents 
concluding remarks and describes future work.  
 

2. CORBA Notification Service Overview 
 
This section describes the architecture of the core 
components in the standard CORBA Notification 
Service, which forms the basis for the Real-time 
Notification Service described in this paper. As Figure 
1 shows, this architecture is similar to the that of the 
CORBA Event Service, though some components have 
a broader range of capabilities in the Notification 
Service.  These components are as follows. 
Structured events, which define a standard data 
structure into which event message can be stored. As 
shown in Figure 2, the header of a structured event 
consists of type information and a variable header, 
which can carry the QoS properties of an event.  The 
event body consists of filterable body fields, followed 
by the payload data. 



Proxy Pull Supplier

Event ChannelConsumer Admin Supplier Admin

Admin Filter Admin Filter

Proxy Push Supplier

Proxy Pull Consumer Proxy Push Consumer
Consumer Filter

Supplier Filter Supplier Filter

Consumer Filter

Pull Consumer Push Consumer

Pull Supplier Push Supplier

EventFlow

 
Figure 1: CORBA Notification Service Components 

Domain, Type and Event
Name

QoS for this event

Event Header

Filterable body fields

Data

Event Body

 
Figure 2: Header  of the Structured Event 

Proxy objects, which are delegates that provide 
complementary interfaces to clients, i.e., a consumer 
obtains and connects to a ProxySupplier  and a 
supplier obtains and connects to a ProxyConsumer . 
Hence, a supplier sends events to its ProxyConsumer , 
whereas a consumer receives events from its 
ProxySupplier  objects allow anonymous connectivity 
and communication between consumers and suppliers. 
Admin objects, which are factories that create the 
proxy interfaces to which clients will connect. 
ConsumerAdmins create ProxySuppliers to which 
consumers connect, while SupplierAdmins create 
ProxyConsumers to which the suppliers connect. 
The CORBA Notification Service treats each Admin 
object as the manager of the group of proxies it has 
created.  Admin objects can themselves have QoS 
properties and Filter  objects associated with them. The 
QoS properties associated with an Admin object are 
assigned to the Proxy objects that the Admin creates, 
but can be tailored subsequently on a per-proxy basis.  
The set of Filter  objects associated with a given 
Admin is treated as a unit, which applies at all times to 
all Proxy objects that the Admin creates. 
Filter  objects, which can be associated with all Admin 
and Proxy objects and used to encapsulate a set of 
constraints that affect the event forwarding decisions 
made by Proxy objects.  Each constraint consists of (1) 
a sequence of event types and (2) a string containing a 
Boolean expression whose syntax conforms to a 
constraint grammar.  

EventChannels, which are factories that create 
ConsumerAdmin and SupplierAdmin objects.  The 
EventChannels defined by the CORBA Notification 

Service differ slightly from the CORBA Event Service 
EventChannels, which only have one instance of each 
Admin object.  QoS and administrative properties can 
be set on an EventChannel during its creation.  These 
parameters are passed as default values to any Admin 
object created by the EventChannel.  Consumers and 
suppliers can change these parameters later to tailor the 
properties for their specific requirements. 
EventChannelFactory, which creates 
EventChannels. 

 

3. Real-Time Notification Service Design 
 
This section describes the design of TAO’s Real-time 
Notification Service, whose key components are shown 
in Figure 3.  These components and their capabilities 
are as follows: 
• EventChannel component, which is the CORBA 

interface presented to supplier and consumer 
participants. The EventChannelFactory, 
EventChannel, ConsumerAdmin, 
SupplierAdmin, ProxyConsumer  and 
ProxySupplier  (for CORBA any, structured, and 
sequence events) interfaces in the Notification 
Service give access to this component.  

• Subscr iption lookup component, which consists 
of the subscription map of consumers to event 
types and the publication map of suppliers to event 
types. The subscription map is consulted to obtain 
the list of consumers subscribed to an event. This 
component also provides subscription/publication 
update messages to participants when the 
respective map is modified. 

• Filter ing component, which provides the filtering 
support to check if an event matches the filtering 
constraints in its path of event propagation within 
an event channel. It provides interface support for 
the Filter  and FilterAdmin interfaces of the 
Notification Service. The OMG standard ETCL 
filtering language is supported via a parser 
component. 

• Dispatching component, which consists of a 
buffer queue that provides support for the Order 
and Discarding Policy QoS properties. Event 
buffering is not used by the real-time configuration 
of TAO’s Notification Service, however, because 
the Real-time CORBA 1.0 specification lacks the 
necessary means to control the buffer. The 
Dispatching component offers the Pacing and 
BatchSize properties to support event batching in 
sequence consumers. 



 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: TAO’s Real-time Notification Service 
 

In general, the enhancements provided in TAO’s Real-
time Notification Service support: 
• Prior ity-aware, end-to-end event propagation. By 

leveraging RT-CORBA 1.0 features, event priorities are 
maintained and respected along the entire path of event 
propagation from event supplier to event consumers, 
which provides DRE applications with an end-to-end, 
priority aware publisher/subscriber service. 

• Administration of Concurrency options. Extensions to 
the Proxy interfaces provide support for the 
configuration of concurrency within the Real-time 
Notification Service. ThreadPool/Lanes parameters can 
be applied at the event channel, admin, and proxy levels 
of the Real-time Notification Service object hierarchy. 

The remainder of this section describes how we 
resolved the following challenges faced when meeting 
the Real-time Notification Service requirements 
described in Section 1: 
• Limiting filter complexity 
• Ensuring end-to-end priority preservation 
• Supporting real-time thread pools   
• Optimizing Event Processing 
• Minimizing context switching between supplier 

and consumer proxies, and 
For each challenge, we describe the context in which 
the challenge arises, identify the specific problem that 
must be addressed, describe our solution for resolving 
the challenge, and explain how this solution was 
applied to TAO’s Real-time Notification Service. 
Section 4 then presents the analysis of empirical 
benchmarks that illustrate the end-to-end predictability 
and scalability of our solutions.  

3.1. L imiting Complexity of Filters 
Context: Filter objects can be applied at the proxy and 
admin levels of the Notification Service hierarchy. The 
length of the constraints specified in a filter is 
unbounded. Moreover, filters can be changed 
dynamically and a filter can be a remote object. The 
RFP seeks to limit the complexity of such filters so that 

DRE applications do not incur unbounded filter 
evaluation overhead. The goal is to allow an 
application developer to set a useful bound on the time 
needed to evaluate a filter for an event. 
Problem: Without bounds on the number of filters or 
the complexity of evaluating each filter, filter 
processing itself could consume an excessive and 
unpredictable amount of time, leading to deadline 
failures for delivery and processing of notifications.  
Solution: Timeouts. Timeouts can be used to ensure 
that filters don’ t take too long to run, thereby ensuring 
that other deadlines aren’ t violated. The CORBA 
messaging extensions provide a 
RelativeRoundtripTimeoutPolicy that can 
be applied to a two-way invocation to specify how 
much time is allowed to deliver a request and its reply. 
Applying the solution to TAO’s Real-time 
Notification Service. TAO Real-time Notification 
Service provides two different mechanisms for 
applying timeouts to ensure filter processing times are 
bounded.  First, a supplier can map an event deadline 
to a timeout QoS parameter of a structured event.  
TAO’s Real-time Notification Service can then use the 
RelativeRoundtripTimeoutPolicy from the 
CORBA Messaging interface when making an 
invocation to a filter object where the timeout value 
equals the time left for the event to reach its 
destination.  Second, the Filter  interface can be 
extended such that the Filter::match() operation 
accepts timeouts, i.e.: 

interface TimeoutFilter : Filter { 

 boolean match_with_timeout (in any    
filterable_data, TimeBase::UtcT timeout)  

    raises  (UnsupportedFilterableData); 

 boolean match_structured_with_timeout ( 

in CosNotification::StructuredEvent 
data, TimeBase::UtcT timeout)   

    raises (UnsupportedFilterableData); 

}; 

This alternative pushes responsibility for implementing 
timeouts to the filter object developer.  

3.2. Ensur ing End-to-end Pr ior ity 
Preservation 
Context: When an event enters a Real-time 
Notification Service event channel, it carries a priority. 
Event propagation mechanisms must ensure that the 
priority at which the event is processed is maintained 
consistently and correctly as the event traverses the 
path from supplier to consumer(s).   
Problem: Maintaining a per-priority path from supplier 
to consumer(s) through the standard Notification 
Service preserves end-to-end priority. This priority 

  



preservation is only assured, however, across each 
instance of the Notification Service implementation, 
and is not enforced across the remote invocations 
between these instances.  We therefore need to 
maintain per-priority paths end-to-end.  
Solution: Real-time CORBA 
CLIENT_PROPAGATED pr ior ity model. Real-time 
CORBA 1.0 gives the CLIENT_PROPAGATED priority 
model that an application can use to convey the priority 
of a supplier thread to the thread processing the event 
in the Real-time Notification Service. Likewise, Real-
time CORBA 1.0 thread lanes can be used to configure 
event paths based on priority. 
Applying the solution to TAO’s Real-time 
Notification Service: As shown in Figure 4, consumer 
and supplier proxies are activated in real-time POAs 
associated with Real-time CORBA thread pools. The 
priority of the supplier thread pushing events to the 
Real-time Notification Service will match the priority 
of the event sent by the supplier. The proxy consumer 
in a thread of matching priority will service this event. 
After being filtered by the Real-time Notification 
Service, the event will be delivered to the consumer by 
the proxy supplier in a thread of matching priority.  
Finally, the consumer in a thread of matching priority 
will process the event. The proxy consumer executes 
the consumer admin and proxy level filters and queries 
a lookup table to retrieve a list of consumers subscribed 
to receive the event. The proxy supplier executes the 
supplier admin and proxy level filters and delivers the 
event to the consumer. A proxy supplier can be 
configured with its own thread pool. 

Proxy Consumer

Admin Filter
+ Proxy Filter

Evaluation

Proxy Supplier Proxy Supplier

Admin Filter
+ Proxy Filter

Evaluation

Admin Filter
+ Proxy Filter

Evaluation

Consumer ConsumerSupplier

High Priority Path

Low  Priority Path
Consumer List
Lookup Table

(Potential)
Context Switch

 

Figure 4: Pr ior itized Event Propagation Path 

3.3. Suppor t for  Real-time Thread Pools 
Context: The Real-time Notification Service RFP [4] 
requires submissions to define schedulable entities and 
to support the CLIENT_PROPAGATED and 
SERVER_DECLARED priority models defined by Real-
time CORBA 1.0 [2].  
Problem: The OMG Notification Service does not 
specify a mechanism for specifying policies to the POA 

in which the proxy objects are activated. Since the 
Real-time CORBA 1.0 thread pool, thread pool with 
lanes, and priority model policies are specified on POA 
objects, a mechanism is needed to express these 
policies in the POAs for the proxy objects.  
Solution: Use QoS proper ties to specify POA 
policies.  Specifying new QoS properties for the Real-
time Notification Service enables support for Real-time 
CORBA 1.0 features. These properties can be applied 
to POAs at multiple levels, i.e., event channel, admin, 
and proxy. 
Figure 5 shows the thread pool policy applied to 
POA’s that exist at these three levels. All admin and 
proxy objects share the event channel-level thread 
pool. The admin-level thread pool is only available to 
proxies that are created by that admin. The proxy-level 
thread pool is only available exclusively to the proxy 
with which the thread pool is associated.  

Event Channel Channel Level
Thread Pool

Admin Level
Thread Pool

Proxy Level
Thread Pool

Supplier
Admin

Consumer
Admin

Proxy
Consumer

Proxy
Supplier  

Figure 5: RT Notification Service Thread Pools 
 

Applying the solution to TAO’s Real-time 
Notification Service: When a QoS property specifying 
the POA policy is set on the on a TAO Real-time 
Notification Service event channel, admin or proxy a 
POA is created and the POA policies are applied to this 
new POA. This POA is used exclusively to activate the 
proxy objects.    
Figure 6 shows several possible thread pool 
configurations in the Real-time Notification Service. 
The consumer-side of the Real-time Notification 
Service is configured as follows: ProxyConsumer  1 is 
associated with ThreadPool C. ThreadPool C is used 
only by ProxyConsumer  1. ProxyConsumer  2 is 
associated with ThreadPool B. ProxyConsumer  2 
does not have its own exclusive ThreadPool: it 
therefore uses the ThreadPool from SupplierAdmin 
1. ProxyConsumer  3 is associated with ThreadPool 
A. ProxyConsumer  3 does not have its own exclusive 
ThreadPool and neither does SupplierAdmin 2.  It 
therefore uses the ThreadPool from the 
EventChannel. 
The supplier-side is configured similarly: 
ProxySupplier  1 is associated with ThreadPool E. 
ThreadPool E is exclusively used by ProxySupplier  
1. ProxySupplier  2 is associated with ThreadPool D. 
ProxySupplier  2 does not have its own exclusive 



ThreadPool.  It therefore uses the ThreadPool from 
ConsumerAdmin 1. ProxySupplier  3 is associated 
with ThreadPool A. ProxySupplier  3 does not have 
its own exclusive ThreadPool and either does 
ConsumerAdmin 2.  It therefore uses the ThreadPool 
from the EventChannel. 

A

B

C B A A D E

Event Channel

Supplier
Admin

1

Supplier
Admin

2

Consumer
Admin

2

Proxy
Consumer

1

C

DConsumer
Admin

1

Proxy
Consumer

2

Proxy
Consumer

3

Proxy
Supplier

3

Proxy
Supplier

2

Proxy
Supplier

1

E

 

Figure 6: RT Notification Service Thread Pool 
Configurations 

Typically, an administrative application with 
knowledge of the overall deployment scenario of the 
Real-time Notification Service would specify QoS 
properties to control its thread resource usage at 
initialization. Similarly, the CLIENT_PROPAGATED 
and SERVER_DECLARED priority models can be 
specified by another QoS property.  The Real-time 
CORBA 1.0 thread pool with lanes feature is also 
specified in the same manner. 

3.4. Optimizing Event Processing 
Context: During the processing of events within an 
event channel, the event type of the incoming event is 
matched in a Subscription Lookup Table to determine 
the set of consumers that are subscribed to receive that 
event. The lookup operation simply reads the table. 
Conversely, administrative methods write to this table 
to update subscription information.   
Problem. Since multiple threads can access the 
Subscription Lookup Table, it is necessary to serialize 
access to it. A mutex lock causes a read operation to 
wait while other read/write operations are in progress. 
In a typical Real-time Notification Service deployment, 
however, the number of push operations is far greater 
than the number of subscription change operations. 
Using a simple mutex can therefore unnecessarily 
reduce concurrent access to data structures in the 
critical path of event propagation.  
Solution: Readers/wr iter  Lock. A readers/writer 
locks allow any number of threads to hold a lock for 
reading as long as no thread holds the lock for writing. 
A thread can hold the lock for writing only if no thread 
holds the lock for reading or writing. 
Applying the solution to TAO’s Real-time 
Notification Service. The Event Map data structure 
used to maintain subscription information in the 

Subscription Lookup Table has a strategized locking 
policy that uses a readers/writer lock to give preferred 
access to the event propagation threads.  

3.5. Minimizing Context Switching Between 
Consumer and Supplier  Proxies 
Context: Event propagation may need to switch from a 
proxy consumer thread pool to a proxy supplier thread 
pool if the two proxies are in different thread pools. 
Such a configuration may be required to assign a 
dedicated thread pool to dispatch events to a consumer. 
Problem: If the proxy consumer and proxy supplier are 
activated in separate POA’s, there are no interfaces that 
can be used to transfer the thread of execution from a 
thread in the proxy consumer to the proxy supplier. 
Solution: Use an internal inter face to exploit the 
ORB’s collocation mechanism. We exploit the fact 
that when a CORBA interface operation is invoked, the 
thread pool configured at the POA in which the 
interface is activated processes the request. As the 
ProxySupplier  interface does not support any 
operation to accept an event, it must be extended so 
that the ProxyConsumer  can forward the event to the 
extended interface. 
Applying the solution to TAO’s Real-time 
Notification Service: We define an internal interface, 
Event_Forwarder  that extends the Structured 
ProxyPushSupplier  interface. The 
Event_Forwarder  interface supports the operation 
signature void forward (in 
CosNotification::StructuredEvent event). The 
ProxySupplier  interface implements the 
Event_Forwarder interface. When a proxy consumer 
needs to switch execution context to the proxy supplier, 
it simply calls the Event_Forwarder ::forward() 
operation, passing it the event. The ORB collocation 
mechanism ensures that execution switches to the 
thread configured in the proxy supplier. If the proxy 
supplier is configured in the same thread pool as the 
proxy consumer, however, no context switch occurs. 
 

4. Analysis of End-to-end Predictability 
 
This section describes experiments we conducted to 
validate TAO’s Real-time Notification Service 
prototype described in Section 3.  We first describe the 
testbed environment and experimental benchmarks 
used for our experiments. We then present and analyze 
the results of experiments conducted to compare the 
throughput of TAO’s Real-time Notification Service 
implementation with TAO’s standard Notification 
Service implementation as the load is increased and the 
number of supplier-to-consumer paths is increased.  



We also assess the overhead of TAO’s Real-time 
Notification Service implementation by comparing its 
jitter to that of (1) the standard Notification Service, 
(2) a direct Real-time CORBA 1.0 priority connection, 
and (3) a standard CORBA connection that does not 
use Real-time CORBA priority features.  

4.1. Testbed Environment and Benchmarks 
All the experiments were conducted in the Emulab [14] 
testbed at the University of Utah 
(http://www.emulab.net). The results 
presented in the following subsections were obtained 
on 1 PC with all suppliers, all consumers, and the 
Notification Service each in separate processes. Similar 
results were observed by running each supplier and 
consumer on a separate PC. Each PC was a 800 MHz 
Pentium3 processor, with 256KB on-chip cache and 
239MB of free RAM memory, running RedHat Linux 
7.1 in the real-time scheduling class. The 
benchmarking programs were compiled using the GCC 
compiler version 2.96, with all optimizations enabled.  
TAO version 1.3.4 was used for all tests.  

4.2. Load vs. Throughput 
Overview. In this experiment, an exclusive high 
priority path is set up between a supplier/consumer 
pair, as shown in the Figure 7.  

E ve nt
C ha nn e l

H ig h
P rio r ity

S u pp lie r
S u p p lie r

H ig h
P rio r ity

P a th

S u pp lie rS u pp lie rS up p lie r

L ow
P rio rity
P a th s

H ig h
P rio rity

C on su m e r

S up p lie r

H igh
P rio rity

P a th

S u pp lie rS up p lie r
C o ns u m e r

L o w
P rio rity
P a th s

 
Figure 7: Exclusive High-pr ior ity Path Setup 

 
To achieve this, the consumer subscribes to a type that 
is supplied only by the high-priority supplier. The 
proxy consumer for the high-priority supplier is 
activated in a real-time POA with 1 high-priority thread 
lane. The supplier uses the CLIENT_PROPAGATED 
priority model to send events to the consumer. 
Likewise, medium-priority and low-priority paths are 
also established. Each supplier sends events every 10 
ms, i.e., at 100 Hz.  The experiment was performed 
using both the RT-Notification and CosNotification 
services by increasing the amount of CPU intensive 
work performed by each consumer and measuring the 
throughput obtained. The “ load”  is a positive count that 

is supplied with the event payload. A prime number 
calculation is performed proportional to the supplied 
load value.  
Results. Figure 8 shows that with CosNotification, the 
throughput of the high-, medium-, and low-priority 
paths decreased proportionally with increasing load. 

Cos Notification: Load vs Throughput

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

Load

T
h

ro
u

g
h

p
u

t 
(e

ve
n

ts
/s

ec
)

Cos-High

Cos-Medium

Cos_Low

 
Figure 8: CosNotification: Load vs Throughput 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: RT-Notification: Load vs Throughput 

 
Figure 9 shows that with RT-Notification, under 
increasing load the throughputs of the high-, medium-, 
and low-priority paths are maintained preferentially 
according to their specified priorities, i.e., low falls off 
first, followed by medium, and then high. These results 
indicate how RT-Notification is more effective at 
enforcing end-to-end priorities than CosNotification. 
Jitter  analysis. Figure 10 shows the standard deviation 
of the latency measured for the high-priority path as 
load is increased. Note that the jitter obtained with 
CosNotification increases linearly with the load. In 
contrast, the jitter for RT-Notification remains low and 
fairly constant.  These results show that the throughput 
of the high-priority path is maintained while there is 
available capacity in the system. The latency of high-
priority invocations is thus the lowest among the 
competing paths. 

4.3. Number  of Paths vs. Throughput 
Overview. This benchmark measures the effects of 
increasing the number of low-priority paths, similar to 

Load vs Throughput: RT-Notification

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50

Load

T
h

ro
u

g
h

p
u

t 
(e

ve
n

ts
/s

ec
)

Low

Med

High



the one described in Section 4.2. In this case, however, 
the load is held constant at 30 units and the number of 
low-priority paths is increased. All low-priority tasks 
are at the same priority. We ran the experiment with 1, 
5, 10, and 20 low-priority paths. 

Load vs Jitte r

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45 50

Load

S
td

. D
ev

.

Jitter RT High

Jitter Cos High

 
Figure 10: Load vs Jitter  

Paths vs Throughput

0

20

40

60

80

100

120

1 5 10 20

Number of Low Priority Tasks

T
h

ro
u

g
h

p
u

t 
(e

ve
n

ts
/s

ec
)

High Path Other_Paths
 

Figure 11: Increasing the Number  of Paths 
 
Results. Figure 11 shows that the throughput of the 
high priority path was maintained consistently at 100 
events/sec, despite the increase in the number of low-
priority paths.  This result shows that TAO’s Real-time 
Notification Service protects the performance of higher 
priority paths, even as resource demands of lower-
priority paths are increased.  

4.4. Overhead of RT- Notification 
Overview. This experiment measured the maximum 
throughput obtained between a single supplier and 
consumer path for the following cases where the 
payload is a structured event that contains 64 bytes of 
payload representing the time at which the event was 
sent. 
 
 
 

 
• 2-Hops: In this configuration a supplier sends an 

event directly to a consumer without an event 
channel.  

 
• 2-Hops-RT: This configuration modifies the 2-

Hops test to use Real-time CORBA - the consumer 
is activated in a real-time POA with a single lane. 

 
• 3-Hops: In this configuration, the supplier sends 

events to a relay consumer, which forwards the 
event to the final consumer. Hence, the relay 
consumer behaves as a minimal event channel. 

 
• 3-Hops-RT: The 3-Hops configuration is modified 

to use Real-time CORBA. The relay consumer and 
final consumer are activated in a real-time POA 
with a single lane. 

 
 
• CosNotify: This configuration is the standard 

CosNotification with 1 supplier and 1 consumer. 

 
• RT-Notify: This configuration uses the RT-

Notification Service. 
 

Results. Figure 12 shows that the RT-Notification does 
not add significant overhead to the CosNotification 
Service. This overhead that is observed is due to the 
additional processing performed, per request, by the 
ORB due to the extra Real-time CORBA information 
in the IIOP messages.  
 
 
 
 

 
 
 

 
 
 

 

 

Figure 12: Maximum Throughput 

 

Supplier Consumer 
Direct CORBA connection 

Supplier Consumer 
Direct RT-CORBA 

connection 

Supplier Consumer 

CORBA connection 

Relay 

CORBA connection 

Supplier Consumer 

RT-CORBA 
connection Relay 

RT-CORBA 
connection 

Supplier Consumer 
RT CORBA connection 

 RT-Notification 
RT-CORBA connection 

Supplier Consumer Notification 

CORBA connection 

Max Throughput

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2-Hops 2-Hops-RT 3-Hops 3-Hops-RT Notify Notify-RT

Test Type

T
h

ro
u

g
h

p
u

t 
(e

ve
n

ts
/s

ec
)

CORBA connection 



5. Concluding Remarks 
 
TAO’s Real-time Notification Service provides end-to-
end QoS support for anonymous event communication, 
improved timeliness and predictability in the 
transmission and delivery of events to event consumers 
via event channels, and integration with Real-time 
CORBA features (particularly in the areas of 
configuration of priorities and scheduling). The 
empirical results of Section 4 show that our prototype 
exhibits priority preservation, low jitter, and low 
overhead. 
TAO’s Real-time Notification Service currently 
provides real-time distributed event communication for 
statically scheduled applications and does not address 
dynamic scheduling issues. Our future work will 
therefore integrate the dynamic scheduling features of 
the Kokyu scheduling framework [15] that have 
already been integrated with TAO’s Real-time Event 
Service [11] with TAO’s Real-time Notification 
Service. In addition, we will enhance TAO’s Real-time 
CORBA Notification Service so that it conforms to the 
OMG Real-time Notification Service specification 
when it is finalized. 
 

References 
 

[1] Object Mgmt. Group, Notification Service Specification, 
OMG Doc. telecom/99-07-01 ed., July 1999. 

[2] Object Mgmt. Group, Real-time CORBA Joint Revised 
Submission, OMG Doc. orbos/99-02-12 ed., Mar 1999. 

[3] Object Mgmt. Group, Real-time CORBA 2.0: Dynamic 
Scheduling Joint Final Submission, OMG Doc. 
orbos/2001-06-09, June 2001. 

[4] Object Mgmt. Group, Real-time Notification: Request 
For Proposals, OMG Doc. orbos/00-06-10, June, 2000. 

[5] Object Mgmt. Group, Event Service Specification 
Version 1.1, OMG Doc. formal/01-03-01 edition, 2001. 

[6] Y. Aahlad, B. Martin, M. Marathe, and C. Lee, 
Asynchronous Notification Among Distributed Objects, 
Proc. 2nd conference on Object-Oriented Technologies 
and Systems, USENIX, Toronto, Canada, 1996. 

[7] C. Ma and J. Bacon, COBEA: A CORBA-Based Event 
Architecture, Proc. 4th Conference on Object-Oriented 
Technologies and Systems, USENIX, Apr. 1998. 

[8] P. Gore, D. Schmidt, C. O'Ryan, and R. Cytron, 
Designing and Optimizing a Scalable CORBA 
Notification Service, Proc. ACM SIGPLAN Workshop 
on Optimization of Middleware and Distributed 
Systems (OM 2001), Snowbird, Utah, June 18, 2001. 

[9] T. Harrison, D. Levine, and D. Schmidt, The Design 
and Performance of a Real-time CORBA Event Service, 
Proc. OOPSLA '97, ACM, Atlanta, GA, 1997. 

[10] C. O'Ryan, D. Schmidt, and J.R. Noseworthy, Patterns 
and Performance of a CORBA Event Service for Large-
scale Distributed Interactive Simulations, Intl. Journal 
of Computer Systems Science and Engineering, vol. 17, 
num. 2, CRL Publishing, 2002.  

[11] C. Gill, D. Schmidt, and R. Cytron, Multi-Paradigm 
Scheduling for Distributed Real-time Embedded 
Computing, IEEE Proceedings 91(1), Jan 2003. 

[12] D. Schmidt, D. Levine, and S. Mungee, The Design and 
Performance of Real-time Object Request Brokers, 
Computer Communications, vol. 21, num. 4, pp. 294--
324, Elsevier, 1998. 

[13] D. Schmidt and C. O'Ryan, Patterns and Performance 
of Real-time Publisher/Subscriber Architectures, 
Journal of Systems and Software, Special Issue on 
Software Architecture - Engineering Quality Attributes, 
Lars Lundberg and Jan Bosch (Ed), Elsevier, 2002. 

[14] White, Lepreau, Stoller, Ricci, Guruprasad, Newbold, 
Hibler, Barb, and Joglekar, An Integrated Experimental 
Environment for Distributed Systems and Networks, 
OSDI, December 2002. 

[15] C. Gill, D. Levine, and D. Schmidt, “The Design and 
Performance of a Real-time CORBA Scheduling 
Service,”  The International Journal of Time-Critical 
Computing Systems 20(2), Kluwer, March 2001. 

 


