
RepoMan: A Component Repository Manager for
Enterprise Distributed Real-time and Embedded Systems

Stoyan Paunov
Vanderbilt University

Nashville, TN
spaunov@isis.vanderbilt.edu

Douglas C. Schmidt
Vanderbilt University

Nashville, TN
d.schmidt@vanderbilt.edu

Abstract
Repository managers keep track of software versions, imple-
mentations, and configuration metadata in distributed computing
environment to enable the (re)deployment and (re)configuration
of applications and facilitate online component upgrades. This
paper provides two contributions to the study of repository man-
agers for component-based enterprise distributed real-time and
embedded (DRE) systems. First it describes how we overcame
the design challenges associated with developing RepoMan,
which is a repository manager targeted for heterogeneous enter-
prise DRE systems. Second, it explains how we applied RepoMan
to an enterprise DRE shipboard computing system.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/Server, Distributed Applica-
tions.

General Terms
Management, Performance, Design, Standardization

Keywords
Distributed systems, Component architectures

1. Introduction
Meeting distribution challenges of component-based enter-

prise DRE systems. Enterprise systems in many domains are
being developed using applications composed of distributed com-
ponents running on feature–rich middleware. Examples of such
component middleware platforms include J2EE, .NET, and the
CORBA Component Model (CCM). In these platforms, software
components are assembled and composed to provide various types
of reusable services to a range of application domains.

Certain types of component middleware, such as Real-time
CCM [10], are being applied to the domain of enterprise distrib-
uted real-time and embedded (DRE) systems, such as total ship
computing environments or electrical power control systems.
These systems are designed to provide users with quality of ser-
vice (QoS) support to process the right data in the right place at
the right time over a grid of computers. QoS properties required
by enterprise DRE systems include the low latency and jitter ex-

pected in conventional real-time and embedded systems, as well
as high throughput, scalability, and reliability expected in conven-
tional enterprise distributed systems.

Although component-based enterprise DRE systems help ad-
dress the problems with prior generations of inflexible, mono-
lithic, functionally-designed, and “stove-piped” systems, they
introduce a number of new challenges, such as the need to shield
component behavior, deployment, and configuration logic from
the complexities of heterogeneous hardware/software environ-
ments and runtime failure recovery. Due to these heterogeneity
and reliability requirements, enterprise DRE systems often need to
defer the installation of software onto target nodes until late in the
life-cycle, e.g., at startup or run-time. Moreover, to cope with the
continually evolving environments in which they run, these sys-
tems need mechanisms, such as online software upgrades and
component reconfiguration/redeployment services, to provide the
right implementation under the right circumstances.

A promising way to address these new challenges is to create
repository managers that (1) keep track of software versions, im-
plementations for component implementations in heterogeneous
environments and (2) supply configuration metadata to facilitate
the online upgrades, reconfiguration, and redeployment of com-
ponents. Developing repository managers for enterprise DRE
systems is hard, however. Key challenges include the need to
support cross-platform portability, ensure responsiveness and
scalability, and enable dynamic updates within time constraints.

This paper discusses the design and implementation of Repo-
Man, which is an implementation of the OMG CCM Repository
Manager specification [6] tailored to enterprise DRE systems. In
particular, RepoMan optimizes its CPU and I/O usage to provide
fast/predictable access to component data for enterprise DRE sys-
tems with a range of QoS requirements. The RepoMan C++
framework contains ~5,300 lines of code in over 45 classes. It has
been bundled with the Component-Integrated ACE ORB (CIAO)
open-source implementation of Real-time CCM, and applied to
several enterprise DRE systems, including Naval shipboard com-
puting systems and NASA earth science missions.

The remainder of this paper is organized as follows: Section 2
presents a case study that motivates the need for a component
repository manager in enterprise DRE systems; Section 3 dis-
cusses the structure and functionality of our RepoMan CCM-
based repository manager; Section 4 explains the design chal-
lenges that we overcame while developing RepoMan and applying
it to shipboard computing; Section 5 compares our work with
related work; and Section 6 presents concluding remarks and out-
lines our lessons learned during this project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

2. Case Study: An Enterprise DRE System for
Shipboard Computing

We motivate our work on RepoMan using the DARPA ARMS
(dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6) Multi-ACM SE’06, March, 10-12, 2006, Melbourne, Florida, USA

Copyright 2006 1-59593-315-8/06/0004…$5.00.

http://dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6

Layer Resource Management (MLRM) middleware, which is
described as a running example throughout the paper. The ARMS
MLRM services are designed to support Total Ship Computing
Environments (TSCEs), which form the basis for next-generation
Naval programs [9]. A TSCE is a coordinated grid of computers
organized into multiple data centers that manage many aspects of
a ship's power, navigation, command and control, and tactical op-
erations. To make a TSCE an effective platform requires coor-
dinated MLRM services that can support multiple QoS require-
ments, such as survivability, predictability, security, and efficient
resource utilization.

The ARMS MLRM integrates multiple resource management
and control algorithms based on the CIAO [10] Real-time CCM
middleware. Real-time CCM combines Lightweight CCM [5]
mechanisms (such as standards for specifying, implementing,
packaging, assembling, and deploying components) and Real-time
CORBA [7] mechanisms (such as thread pools and priority pres-
ervation policies) to simplify and automate the (re)deployment
and (re)configuration of application components in DRE systems.

Figure 1. Component-based Architecture of ARMS MLRM

As shown in Figure 1, the ARMS MLRM top domain layer
contains infrastructure components that interact with the mission
manager of TSCE by receiving command and policy inputs and
passing them to the resource pool layer. The resource pool layer
is an abstraction for a set of computer nodes managed by a pool
manager. The pool manager is an infrastructure component that
interacts with the resource allocator in the resource pool layer to
run algorithms that deploy application components to various
nodes within a resource pool. The actual computing resources
reside in the third layer called the resource layer, which have
infrastructure components called node provisioners that receive
commands to spawn applications in every node from a pool man-
ager. The operational string manager is an infrastructure compo-
nent that controls the resource utilization for a group of applica-
tions through the node provisioners. The ARMS MLRM services
have hundreds of different types and instances of infrastructure
components written in ~300,000 lines of C++ code and residing in
~750 files developed by five teams at different locations.

The component-based MLRM infrastructure for a TSCE is de-
signed to support the highly heterogeneous environment in which
long-lived shipboard computing systems operate. For example,
the TSCE that provides the operational context for the ARMS
MLRM services is designed to support different versions of (1)
component middleware, such as CIAO in C++ and OpenCCM in
Java, (2) general-purpose operating systems, such as Linux and
Solaris, (3) real-time operating systems, such as VxWorks and
LynxOS, (4) hardware chipsets, such as x86, PowerPC, and
SPARC processors, (5) a wide range of high-speed wired inter-

connects, such as Gigabit Ethernet and VME backplanes, and (6)
different transport protocols, such as TCP/IP and SCTP.

The scale, complexity, and longevity of TSCEs necessitates
that their components be organized and accessed in a common and
standard manner. RepoMan provides this functionality for ARMS
and helps ensure the continuous availability of components and
their associated metadata throughout the system lifetime. For ex-
ample, RepoMan is used during initial system deployment when
MLRM resource allocators instruct node provisioners to spawn a
specific set of applications. The node provisioners contact Repo-
Man to download the component implementations they need to
deploy via CIAO’s implementation of the OMG D&C specifica-
tion [1], which standardizes many aspects of deployment and con-
figuration for component-based distributed systems, including
component configuration, component assembly, component pack-
aging, package configuration/deployment, and target domain re-
source management. RepoMan is also used at runtime to update
component implementations dynamically, e.g., in response to
battle damage or to handle changing workload levels.

A particularly important function of the resource allocation
and control algorithms in the ARMS MLRM is the
(re)deployment and (re)configuration of components based on
their operational context. For example, the TSCE can switch from
crew entertainment mode to ship defense mode, which necessi-
tates updating and/or migrating many computing services. Repo-
Man provides mechanisms to retrieve the configuration data asso-
ciated with specific component implementations and enables the
dynamic updating of various configuration parameters. Resource
allocators and node provisoners communicate with RepoMan to
choose the best available implementations and to ensure that these
implementations conform to the characteristics of each node’s
hardware, OS, middleware, and programming language(s), which
can be highly diverse.

3. The Design of RepoMan
RepoMan is designed to enable software developers and en-

terprise DRE systems to (1) organize various offline and online
configurations of component packages (which include component
implementations and their associated metadata, known as Pack-
ageConfiguration, that describe the contents of a component
package by encapsulating the interface definitions of the compo-
nents, their requirements and capabilities, their implementation
descriptions, and their dependencies on other implementation arti-
facts), (2) resolve references to component implementations at
deployment time, (3) retrieve metadata information to configure
the components properly, (4) reconfigure the component imple-
mentations within a package by updating their associated meta-
data, and (5) dynamically update components at run-time. This
section describes how the structure and functionality of RepoMan
supports these capabilities.

3.1 Structure of RepoMan
Figure 2 illustrates the RepoMan architecture, which consists of a
CORBA object encapsulating ~15 classes implementing different
aspects of its functionality and a collocated HTTP server encap-
sulating over 30 classes. The CORBA object supports a standard
set of operations (shown as abbreviations in Figure 2) that enable
applications and other CCM services to manipulate data in the
repository, retrieve configuration metadata in the form of Pack-
ageConfigurations, and update component configurations. The

collocated HTTP server enables the retrieval of implementation
artifacts, which typically reside in dynamic link libraries (DLLs).

One way to design a component repository would just use an
HTTP server to provide access to component packages. Although
this approach is simple to implement, it does not scale well be-
cause (1) it requires clients to download entire packages to obtain
their contents, which is inefficient, and (2) each client would need
explicit knowledge of how to parse the metadata in a component
package, which would needlessly complicate client code. Repo-
Man alleviates these drawbacks by serving as an mediator [3] that
handles package content organization and metadata manipulation
to provide a standard way of storing, locating, and querying the
available component packages and the relationships among them.
By centralizing PackageConfiguration parsing, RepoMan also
simplifies client code. Section 4.2 describes an optimization tech-
nique that shows how metadata parsing centralization allows Re-
poMan to parse metadata only once per component package. In
contrast, using a simple HTTP server would require parsing the
metadata many times, i.e., once for every client instance, so Repo-
Man’s design is much more efficient and scalable.

Figure 2: The RepoMan Architecture

RepoMan helps minimize unnecessary CPU and network proc-
essing by using PackageConfigurations as an intermediary step
between clients and the HTTP server. This design helps develop-
ers and administrators determine if an implementation meets their
requirements before downloading the actual binaries. For exam-
ple, if a client is unsure which implementation is best suited to its
needs, it can (1) retrieve the PackageConfiguration metadata that
describes a specific component’s properties, (2) analyze this
metadata to determine which implementation is appropriate, and
(3) then download just the desired component implementation(s).
This capability is particularly useful in enterprise DRE systems,
such as TSCEs, where online upgrades change the set of available
components during the lifetime of the system.

3.2 Functionality of RepoMan
The CCM Repository Manager maintains a collection of Pack-

ageConfiguration elements, each named with a universally unique
identifier (UUID). The descriptive power of PackageCon-
figutations enhances RepoMan’s flexibility, e.g., by encapsulating
the location of artifacts that implement a component. This encap-
sulation allows RepoMan to act as a component discovery service,

thereby alleviating the need for client applications to hard-code
information about component implementation locations. It also
provides a standard way to access components. RepoMan pro-
vides the following operations that can be invoked by clients:

Installation. Developers or administrative applications can in-
stall a component package under a particular name, e.g., “Node-
Provisioner.” The installPackage() operation can install a
package either from a specified location on a local disk or from a
remote location accessible via HTTP. The metadata in the pack-
age is parsed and the encapsulated PackageConfiguration is asso-
ciated with the installation name. Rather than installing a package
directly, a PackageConfiguration can also be installed via the
createPackage() operation, where the installed Package-
Configuration refers to an external package whose location is
interpreted via a base location. RepoMan is responsible for re-
solving all references to external packages. Both operations ensure
the uniqueness of installation names, raising exceptions if this
precondition is violated.

Deletion. The inverse of the install operations is the de-
letePackage() operation, which is used to remove component
packages from the repository. If the specified name does not exist
in the repository an exception is raised.

Retrieving configuration data. Available PackageConfigu-
rations can be retrieved by name or by UUID at any time. If the
PackageConfiguration corresponding to the supplied name is not
currently in the repository, RepoMan raises an exception.

Querying the contents. If a client has no prior knowledge of
the existence of any specific installation, it can retrieve them all
by names or types. Every component conforms to a specific inter-
face described by Component Interface Descriptors, which are
identified by their UUIDs and specify the operations that can be
performed on the component, along with their input/output pa-
rameters and return type. RepoMan can return all installation
names that implement a specific type of interface. Clients can also
request a list of all component types an instance of RepoMan is
managing.

Retrieving implementations. The CCM Repository Manager
standard specifies that component implementations are retrieved
via HTTP. Upon installation, RepoMan updates the PackageCon-
figuration describing the package to reflect the correct locations of
implementation artifacts that are now accessible via the collocated
HTTP server.

4. Resolving RepoMan Design Challenges
Although the CCM specification defines the interface and the

functionality of the Repository Manager service, it does not pre-
scribe any design details. We were therefore faced with a number
of design challenges when implementing RepoMan. This section
describes the key design challenges we encountered, presents our
solutions, and outlines how we applied these solutions to the
TSCE applications supported by the ARMS MLRM.

Challenge 1: Effectively Integrating CORBA with an
HTTP Server

Context. As described in Section 3.1 and shown in Figure 3,
RepoMan’s architecture has (1) a CORBA object that in-
stalls/removes packages in the repository and provides component
configuration data and (2) an HTTP server that provides access to
the implementation artifacts.

Problem Effectively integrating CORBA with an HTTP
server. One approach to integrate CORBA and an HTTP server
would enable them to communicate via a shared memory segment,
but this would tightly couple the HTTP server with the CORBA
implementation and preclude the use of other web servers. An-
other approach would be to extend the interface of the RepoMan
to support HTTP, but this would require implementing HTTP as a
pluggable protocol under CORBA, which is complicated, non-
portable, and also precludes the use of other ORBs and web serv-
ers.

Figure 3: RepoMan in Action

Solution Loose coupling between the CORBA object and
the HTTP server. RepoMan’s CORBA object and HTTP server
are collocated on the same host, but have no explicit knowledge of
each other and share no internal state information. Instead, they
use a loosely coupled relationship that shares a common filesys-
tem. The document root of the HTTP server points to the directory
where the RepoMan caches copies of component packages. Pack-
ages are also uncompressed in that directory at installation to
avoid complicating the logic of the HTTP server with request
filters (httpd.apache.org) and to minimize data movement, as dis-
cussed in Challenge 2. Challenge 3 explains how we preserve the
consistency within the package hierarchy. RepoMan updates the
component metadata at runtime, so the locations of implementa-
tion artifacts point to the HTTP server. Clients can therefore first
retrieve and process the metadata from RepoMan and then retrieve
implementation artifacts from the HTTP server, as shown in the
center of Figure 3.

RepoMan’s approach is flexible and enables the use of multi-
ple web server implementations. By default, RepoMan uses the
JAWS web server [4] since it is bundled with the CIAO release.
We can easily replace JAWS with the ubiquitous Apache web
server, however, without affecting the CORBA portion of Re-
poMan.

Applying the solution to the ARMS case study. When the
MLRM’s node provisioners receive a command to spawn a spe-
cific component they match the requester’s operational needs
(e.g., operating system and hardware platform) with the available
component implementations available from RepoMan. Once a
node provisioner finds a match, it uses the link in the location
field from the corresponding PackageConfiguration to request the
implementation from RepoMan’s HTTP server, which downloads

the corresponding artifact to the node provisioner that then per-
forms the deployment.

Challenge 2: Lowering the Cost of Data Movement and
XML Parsing

Context. Component packages in CCM are files archived with
the ZIP algorithm [2], conform to a specific structure, and have a
*.cpk extension. The most common RepoMan operation requested
by clients – getPackageByName(), as shown in the bottom left
corner of Figure 3 – is used to return a PackageConfiguration.
The information conveyed by the PackageConfiguration is ini-
tially only present in the XML metadata descriptors enclosed in
the package. It is therefore necessary for RepoMan to parse these
descriptor files to populate the PackageConfiguration before its
contents can be marshaled and downloaded to clients. RepoMan
uses the XERCES XML parsing library since it is robust and per-
forms comprehensive schema validations.

Problem Lowering the cost of data movement and XML
parsing. Manipulating component packages requires a consider-
able amount of processing to move data to/from disk and perform
XML parsing. For example, manipulating CCM metadata in a
component package involves loading the zip’d package contents
into memory, uncompressing them, and then writing them back to
disk again because XERCES cannot parse XML from memory di-
rectly. XERCES will then parse the uncompressed files to extract
the relevant information (e.g., the interface type supported by the
component or the names of the implementation artifacts), and load
it into an equivalent C++ data structure that RepoMan uses to
manipulate the data in memory and to transport it to clients across
the network.

Solution Minimizing data movement and XML parsing to
improve CPU and I/O usage. Uncompressing packages (Section
4.1) avoids on-access decompression and unnecessary data move-
ment. To further decrease data movement and to minimize XML
metadata parsing, the RepoMan employs the Memento pattern
[GoF:04], which externalizes and records the internal state of an
object at an important stage of its lifecycle to enable its later res-
toration. We used the standard OMG Common Data Representa-
tion (CDR) format (which is a portable data (de)marshaling for-
mat defined by the CORBA specification [5]) to externalize the
contents of the in-memory PackageConfiguration element at in-
stallation time after XERCES had validated the correctness of the
parsed data and the PackageConfiguration had been populated.
The result is illustrated in Figure 2. This optimization eliminates
any subsequent XML parsing and enables RepoMan to load Pack-
ageConfigurations on-demand and down them to clients, thereby
minimizing CPU and I/O processing considerably and signifi-
cantly decreasing the response time of package lookup operations.

Applying the solution to the ARMS case study. The opera-
tional context of a TSCE evolves continuously, e.g., it needs to
satisfy changing mission requirements and adapt to transient over-
load and permanent battle damage. Such changes provoke a reac-
tion in the control algorithms that drive the dynamic update or the
partial or complete redeployment of the system. Minimizing data
movement and XML parsing overhead (1) improves the re-
sponsiveness of the RepoMan and allows it to collaborate faster
with clients (such as the ARMS MLRM and TSCE applications)
and (2) helps reduce the costs associated with redeploying and
updating the system, thereby enabling more CPU and I/O proc-

essing to be spent performing mission tasks and meeting system
deadlines.

Challenge 3: Organizing and Managing Data

Context. The package location specified at installation time is
either a path in the local filesystem or an HTTP URL pointing to a
remote file. As discussed in Challenge 2, when RepoMan installs
component packages in a repository it caches them locally to
minimize subsequent access time and to ensure their availability.

Problem Organizing and managing package data. Repo-
Man expects that the files that it manipulates (i.e., the component
packages, the implementation artifacts, and the externalized Pack-
ageConfigurations) remain consistent across accesses. It was
therefore necessary to provide the right degree of separation
among files associated with different installations. It was also -
necessary to enable access, traversal, and clean-up of installed
files. The lack of standard file system access APIs among differ-
ent operating systems makes this hard, however, because we need
to ensure that RepoMan’s code remains portable across OS plat-
forms.

Solution Ensure consistency by basing file system organi-
zation on the operational semantics. RepoMan structures the
package organization hierarchy by leveraging the fact that instal-
lation names are unique within the repository. When a package is
installed, RepoMan caches its contents in accordance with the
configured “install path” and names the cached version based on
the installation string and not the original filename. As discussed
in Challenge 1 and Challenge 2, RepoMan decompresses compo-
nent packages and caches them locally at installation time in a
directory whose name also corresponds to the installation name.
This design separates different packages and avoids clashes
among files enclosed in the packages that have equivalent names.
Due to the uniqueness of installation names, RepoMan can ensure
that none of the local data will be overwritten accidentally by
future installations.

We avoid the problem of non-standard file system access APIs
by replicating the layout of the component package on disk (Fig-
ure 2). This design allows RepoMan to use the package layout to
guide it through subsequent clean-up of packages upon deletion. It
also ensures the portability of RepoMan’s file system access and
traversal code.

Applying the solution to the ARMS case study. As discussed
in Section 2, the ARMS MLRM is designed to support different
general-purpose and real-time operation systems running atop
diverse hardware. By using the internal package layout to guide
RepoMan through its access, traversal, and clean-up operations,
we avoid using any non-portable file system APIs and ensure that
RepoMan can be compiled and deployed in any ARMS MLRM
target environment.

Challenge 4: Managing the Complexity of PackageCon-
figuration Elements

Context. A key task of RepoMan is to update the location field
of the implementation artifacts so that they can be retrieved via its
collocated HTTP server, as depicted in Figure 3. This task re-
quires RepoMan to navigate through the PackageConfiguration
element all the way down to the implementation artifacts, which
are leaves in an “implementation tree” encapsulated by the Pack-
ageConfiguration. The structure of the implementation tree is very
flexible and allows the recursive specification of component as-

semblies by composing them from interconnected smaller mono-
lithic and/or assembly-based components.

Problem Managing the complexity of PackageConfigura-
tion elements. The PackageConfiguration element encapsulates a
description of the deployment requirements for the component,
the properties used to configure the component, as well as a re-
cursive description of the component implementation tree that
may consist of multiple monolithic and assembly-based compo-
nents and a description of their interconnection. PackageConfigu-
rations are therefore one of the most complex elements in the
OMG CCM specification. For example, in the case of assembly-
based components the field disclosing the location of any one of
the artifacts implementing it is at least 11 levels deep! Updating
the locations of the implementation artifacts can therefore be tedi-
ous and error-prone to program using a naïve design.

Solution Use the Visitor pattern to manage the complexity
of the PackageConfiguration. To manage the complexity of trav-
ersing and updating PackageConfigurations, we used the Visitor
pattern [3], which separates the structure of a collection of objects
from the algorithms applied to the objects. The Visitor pattern
helps manipulate complicated PackageConfiguration hierarchies
because it separates the parsing and control logic for every node in
the hierarchy into separate methods, which allows RepoMan to
perform its task one step at a time. The Visitor pattern is well
suited for the recursive nature of the component implementation
hierarchies targeted by the location updating procedure.

Applying the solution to the ARMS case study. The Visitor-
based approach we used helps ensure that RepoMan correctly
updates the location of all underlying implementation artifacts.
This design is important for the MLRM because components in
the same package usually belong to the same application and not
updating the location field of a particular component can cause a
deployment failure for the TSCE.

Challenge 5: Providing a Scalable Implementation and
Lightweight Synchronization

Context. As Figure 3 illustrates, the RepoMan can be accessed
by many clients in and enterprise DRE system, often under
strenuous conditions, such as during the TSCE recovery process
after nodes in a data center have failed.

Problem Providing a scalable implementation and en-
suring correct synchronization and low response time. Mini-
mizing the response time of RepoMan is hard because it can re-
ceive different requests from multiple clients simultaneously.
Although multi-threading is a commonly used to improve appli-
cation response time, it also yields several design problems, such
as selecting the appropriate concurrency model, e.g., thread-per-
request vs. thread pool. Although a thread-per-request model can
potentially adapt better to increasing demand, it can also exhaust
the system resources in response to bursty client requests. While a
thread pool model can be used instead to prevent the latter sce-
nario, this model is not as adaptive. Another design problem in-
volves selecting the synchronization mechanisms to prevent race
conditions when multiple threads accessing shared resources. -
Since synchronization mechanisms incur mutual exclusion over-
head, their use should be limited only where they are actually
needed.

Solution Use a, variable-size thread pool with lightweight
synchronization. RepoMan uses a thread pool to prevent bursty
clients from depleting system resources. The size of RepoMan’s
thread pool is configurable at startup since the number of spawned

threads depends on the characteristics of the target host on which
it is deployed. RepoMan uses three hash tables to store its internal
state information, such as associations of installation names with
package contents on disk. We avoid synchronizing each operation
in its entirety by only synchronizing access to the hash tables,
which provides a lightweight synchronization design that is more
efficient than the alternatives (such as the Monitor Object or Ac-
tive Object patterns [8]) by limiting the concurrent access to a
fraction of the code and allowing multiple threads to handle the
same type of requests from different clients concurrently.

Applying the solution to the ARMS case study. RepoMan is a
key part of the (re)deployment and (re)configuration activities
performed by the ARMS MLRM. Using multi-threading and a
lightweight synchronization design, as well as the optimizations
discussed in Challenge 2, helped minimize the response time of
the RepoMan, thereby contributing to minimizing the overall cost
of redeployment, reconfiguration, and component update activi-
ties.

5. Related Work
The SOFtware Appliances (SOFA) architecture [11] provides

a framework for building applications composed of a set of dy-
namically downloadable and updatable components. SOFA pro-
vides a Type Information Repository (TIR) that manages the evo-
lution of component interfaces and implements version control. It
is complemented by another repository that stores component
implementations. Rather than separating these functions, Repo-
Man combines them into the same service, which allows it to tie
component implementations with the interfaces that they imple-
ment. Another difference is that SOFA targets Java component
implementations, whereas the CCM Repository Manager and thus
RepoMan can support many programming languages.

The OpenCCM Distributed Computing Infrastructure (DCI)
(www.objectweb.org) federates a set of distributed services to
form a unified distributed deployment domain for CCM applica-
tions. DCI implements the Packaging and Deployment (P&D)
model defined in the original CCM specification, however, which
omits key aspects in the component configuration and deployment
cycle, including the package repository management supported by
RepoMan. We are working with the OpenCCM team to enhance
their DCI so that it is compliant with the OMG D&C specification
and it is interoperable with RepoMan and DAnCE [1].

6. Concluding Remarks
This paper motivated and described RepoMan, which is an im-

plementation of the CCM Repository Manager specification that
keeps track of component implementations and their respective
configurations for enterprise DRE systems. We discussed the
design challenges faced when developing and applying RepoMan
to a shipboard computing enterprise DRE system and showed how
our solutions help resolve these challenges. The following are
lessons learned during our work on RepoMan and its application
to the ARMS Multi-Layer Resource Manager (MLRM):
• Building enterprise DRE systems whose operational semantics

change frequently necessitates the dynamic update of compo-
nents and requires a component repository to enable the auto-
mated (re)deployment and (re)configuration of heterogeneous
components throughout the system.

• The CCM Repository Manager specification strikes an effec-
tive balance between flexibility and efficiency by keeping cli-

ent code considerably simpler and supporting dynamic updates
and system (re)deployment and (re)configuration.

• Applying patterns to RepoMan helped ensure that its design
used best practices associated with solving recurring problems
and leveraging the experience of experienced developers. Pat-
terns applied to RepoMan included Iterator, Memento, Null
object, and Visitor in the COBRA object and Bridge, Compo-
nent Configurator, Singleton, Strategy, Wrapper Facade in the
HTTP server.

• Amortizing certain costs over the RepoMan lifetime helped to
improve its performance. Although externalizing the Pack-
ageConfiguration slows down the installation, it enabled us to
optimize performance over the lifetime of the system since re-
trieval operations are much more frequent than install opera-
tions.

The implementation of RepoMan is open-source and can be
downloaded along with the CIAO Real-time CCM middleware
from www.dre.vanderbilt.edu/CIAO.

References

 [1] Deng, G., Balasubramanian, J., Otte, W., Schmidt, D. and
Gokhale, A. (2005, Nov), “DAnCE: A QoS-enabled Compo-
nent Deployment and Conguration Engine,” Proceedings of
the 3rd Working Conference on Component Deployment.
Grenoble, France.

[2] Deutsch, P, “DEFLATE Compressed Data Format Specifica-
tion version 1.3”, Network Working Group, RFC 1951.

[3] Gamma, E., Helm, R., Johnson, R., and Vlissides J., “Design
Patterns Elements of Reusable Object-Oriented Software,”
Addison-Wesley, 1994.

[4] Hu, J., Pyarali, I., and Schmidt, D., ``The Object-Oriented
Design and Performance of JAWS: A High-performance
Web Server Optimized for High-speed Networks,'' The Par-
allel and Distributed Computing Practices journal, special is-
sue on Distributed Object-Oriented Systems, Vol. 3, No. 1,
March 2000.

 [5] Object Group Management (2003, May), Light Weight
CORBA Component Model Revised Submission, Ed. OMG
Document realtime/03-05-05.

[6] Object Management Group: Deployment and Configuration
Adopted Submission, OMG Document ptc/03-07-08 edn.
(2003).

 [7] Object Management Group (2002, Aug). Real-time CORBA
Specification. Ed. OMG Document formal/02-08-02.

[8] Schmidt, D., Stal, M., Rohert, H., and Buschmann, F., Pattern-
Oriented Software Architecture: Patterns for Networked and
Concurrent Objects, Wiley and Sons, 2000.

 [9] Schmidt, D., Schantz, R., Masters, M., Cross, J., Sharp, D.,
andDiPalma L., “Towards Adaptive and Reflective Middle-
ware for Network-Centric Combat Systems,” CrossTalk, No-
vember, 2001.

[10] Wang, N. and Gill, C. (2003, Jan), “Improving Real-time
System Configuration via a QoS-aware CORBA Component
Model,” Hawaii International Conference on System Sci-
ences, Software Technology Track, Distributed Object and
Component-based Software Systems. Minitrack, HICSS
2003.

[11] Plasil, F., Balek, D., Janecek, R.. SOFA/DCUP: Architecture for
Component Trading and Dynamic Updating, Proceedings of
ICCDS'98, Annapolis, Maryland, USA, IEEE CS Press,
May 1998.

http://st-www.cs.uiuc.edu/users/johnson/

	1. Introduction
	2. Case Study: An Enterprise DRE System for Ship board Computing
	3. The Design of RepoMan
	3.1 Structure of RepoMan
	3.2 Functionality of RepoMan

	4. Resolving RepoMan Design Chal lenges
	Challenge 1: Effectively Integrating CORBA with an HTTP Server
	Challenge 2: Lowering the Cost of Data Movement and XML Parsing
	Challenge 3: Organizing and Managing Data
	Challenge 4: Managing the Complexity of PackageCon figu ration Elements
	Challenge 5: Providing a Scalable Implementation and Lightweight Synchronization

	5. Related Work
	6. Concluding Remarks
	 Building enterprise DRE systems whose operational semantics change frequently necessitates the dynamic update of compo nents and requires a component reposi tory to enable the auto mated (re)deployment and (re)configuration of heterogeneous com po nents throughout the system.
	 The CCM Repository Manager specification strikes an effec tive balance between flexi bility and efficiency by keeping cli ent code considerably simpler and supporting dynamic up dates and system (re)deployment and (re)configuration.
	 Applying patterns to RepoMan helped ensure that its design used best practices associated with solving recurring problems and lever aging the ex perience of experienced developers. Patterns ap plied to RepoMan included Iterator, Me mento, Null object, and Visitor in the COBRA object and Bridge, Compo nent Configura tor, Single ton, Strategy, Wrapper Fa cade in the HTTP server.
	 Amortizing certain costs over the RepoMan lifetime helped to im prove its performance. Although exter nalizing the Pack ageCon figuration slows down the instal lation, it enabled us to optimize performance over the lifetime of the system since re trieval opera tions are much more fre quent than install op era tions.
	References

