
The Design and Performance of a Pluggable Protocols
Framework for Object Request Broker Middleware

Fred Kuhns, Carlos O’Ryan, Douglas C. Schmidt, Ossama Othman, and Jeff Parsons
ffredk,coryan,schmidt,othman,parsonsg@cs.wustl.edu

Department of Computer Science, Washington University
St. Louis, MO 63130, USA�

This paper appeared in the proceedings of the IFIP6
th In-

ternational Workshop on Protocols For High-Speed Networks
(PfHSN ’99), August 25–27, 1999, Salem, MA.

Abstract

To be an effective platform for performance-sensitive real-time
and embedded applications, off-the-shelf CORBA middleware
must preserve communication-layer quality of service (QoS)
properties to applications end-to-end. However, the standard
CORBA’s GIOP/IIOP interoperability protocols are not well
suited for applications that cannot tolerate the message foot-
print size, latency, and jitter associated with general-purpose
messaging and transport protocols. It is essential, therefore,
to develop standard pluggable protocols frameworks that al-
low custom messaging and transport protocols to be config-
ured flexibly and used transparently by applications.

This paper provides three contributions to research on plug-
gable protocols frameworks for performance-sensitive com-
munication middleware. First, we outline the key design chal-
lenges faced by pluggable protocols developers. Second, we
describe how TAO, our high-performance, real-time CORBA-
compliant ORB, addresses these challenges in its pluggable
protocols framework. Third, we present the results of bench-
marks that pinpoint the impact of TAO’s OO design on its end-
to-end efficiency, predictability, and scalability.

Our results demonstrate how applying optimizations to
communication middleware can yield highly flexible/reusable
designs and highly efficient/predictable implementations. In
particular, the overall round-trip latency of a TAO two-way
method invocation using the standard inter-ORB protocol and
using a commercial, off-the-self Pentium II Xeon 400 MHz
workstation running in loopback mode is�125 �secs. The
ORB middleware accounts for approximately 48% or�60
�secs of the total round-trip latency. These results illustrate
that (1) communication middleware performance is largely

�This work was supported in part by Boeing, DARPA contract 9701516,
GDIS, NSF grant NCR-9628218, Nortel, Siemens, and Sprint.

an implementation detail and (2) the next-generation of op-
timized, standards-based CORBA middleware can replace ad
hoc and proprietary solutions.
Subject areas:Frameworks; Design Patterns; Distributed and
Real-Time Systems

1 Introduction

Current trends and limitations: During the past decade,
there has been substantial R&D emphasis onhigh-speed net-
workingandperformance optimizationsfor network elements
and protocols. As a result, networks are now available off-
the-shelf that can support Gbps on every port,e.g., Giga-
bit Ethernet and ATM switches. Moreover, 622 Mbps ATM
connectivity in WAN backbones is becoming commonplace.
In networks and GigaPoPs, such as the Advanced Technol-
ogy Demonstration Network (ATDnet) [1], 2.4 Gbps (OC-48)
link speeds are being deployed. However, the general lack of
robust and flexiblecommunication middlewarefor program-
ming, provisioning, and controlling these networks has limited
the rate at which applications have been developed to leverage
advances in high-speed networking.

Communication middleware resides between client and
server applications in distributed systems. It simplifies appli-
cation development by providing a uniform view of heteroge-
neous networks, protocols, and OS layers. At the heart of com-
munication middleware areObject Request Brokers(ORBs),
such as CORBA [2], DCOM [3], and Java RMI [4], which
eliminate many of tedious, error-prone, and non-portable as-
pects of developing and maintaining distributed applications
programmed using low-level mechanisms like sockets. In
particular, ORBs automate common network programming
tasks, such as object location, object activation, parameter
(de)marshaling, socket and request demultiplexing, fault re-
covery, and security.

During the past decade there has also been substantial R&D
emphasis on communication middleware. As a result, com-
munication middleware is now available off-the-shelf that al-

1

lows clients to invoke operations on distributed components
without concern for component location, programming lan-
guage, OS platform, communication protocols and intercon-
nects, or hardware [5]. However, the general lack of support in
this off-the-shelf communication middleware for QoS specifi-
cation and enforcement features, integration with high-speed
networking technology, and performance, predictability, and
scalability optimizations [6], has limited the rate at which ap-
plications have been developed to leverage advances in com-
munication middleware.

Overcoming communication middleware limitations with
pluggable protocols: To address the shortcomings of com-
munication middleware described above, we have developed
The ACE ORB(TAO) [6]. TAO is open-source,1 standards-
based, high-performance, real-time ORB endsystem commu-
nication middleware that supports applications with determin-
istic and statistical QoS requirements, as well as “best-effort”
requirements. TAO is the first ORB to support end-to-end QoS
guarantees over ATM/IP networks [7, 8].

We have used TAO to research many dimensions of
high-performance and real-time ORB endsystems, including
static [6] and dynamic [9] scheduling, request demultiplex-
ing [10], event processing [11], ORB Core connection and
concurrency architectures [12], IDL compiler stub/skeleton
optimizations [13], systematic benchmarking of multiple
ORBs [14], I/O subsystem integration [8], and patterns for
ORB extensibility [15]. This paper focuses on a previously
unexamined dimension in the high-performance and real-time
ORB endsystem design space:the design and performance
of a pluggable protocols frameworkthat supports high-speed
protocols and networks, real-time embedded system intercon-
nects, and standard TCP/IP protocols over the Internet.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 outlines the CORBA protocol in-
teroperability architecture; Section 3 motivates the need for
a CORBA pluggable protocols framework and describes how
TAO’s pluggable protocols framework is designed; Section 4
illustrates the performance characteristics of TAO’s pluggable
protocols framework; Section 5 compares TAO with related
work; and Section 6 presents concluding remarks.

2 Overview of the CORBA Protocol In-
teroperability Architecture

The CORBA specification [2] defines an architecture for ORB
interoperability. Although a complete description of the model
is beyond the scope of this paper, this section outlines the

1TAO is available atwww.cs.wustl.edu/ �schmidt/TAO.html .

portions of the CORBA specification that are relevant to our
present topic,i.e., object addressing and inter-ORB protocols.

Object addressing synopsis: To identify objects, CORBA
defines a generic format called the Interoperable Object Ref-
erence (IOR). An object reference identifies one instance of
an object and associates one or more paths or routes by which
that object can be accessed. The same object may be located
by different object references,e.g., if a server is re-started on
a new port or migrated to another host. Likewise, multiple
server locations can be referenced by one IOR,e.g., if a server
has multiple network interfaces connecting it to distinct net-
works, there may be multiple network addresses.

References to server locations are calledprofiles. A pro-
file provides an opaque, protocol-specific representation of an
object location. Profiles can be used to annotate the server lo-
cation with QoS information, such as the priority of the thread
serving each endpoint or redundant addresses to enhance fault-
tolerance.

Protocol model synopsis: CORBA Inter-ORB Protocols
(IOP)s define interoperability between ORB endsystems.
IOPs provide data representation formats and ORB messag-
ing protocol specifications that can be mapped onto stan-
dard and/or customized transport protocols. Regardless of the
choice of ORB messaging or transport protocol, however, the
standard CORBA programming model is exposed to the appli-
cation developers. Figure 1 shows the relationships between
these various components and layers.

ORB MESSAGING

COMPONENT

ORB TRANSPORT

ADAPTER COMPONENT

TRANSPORT LAYER

NETWORK LAYER

GIOP

IIOP

TCP

IP

VME

DRIVER

AAL 5

ATM

GIOPLITE

VME-IOP

ESIOP

ATM -IOP
RELIABLE

SEQUENCED

PROTOCOL CONFIGURATIONS

STANDARD CORBA PROGRAMMING API

Figure 1: Relationship Between Inter-ORB Protocols and
Transport-specific Mappings

In the CORBA protocol interoperability architecture, the
standardGeneral Inter-ORB Protocol(GIOP) is defined by
the CORBA specification [2]. In addition, CORBA defines
a TCP/IP mapping of GIOP, which is called theInternet Inter-
ORB Protocol(IIOP). ORBs must support IIOP to be “interop-
erability compliant.” Other mappings of GIOP onto different

2

transport protocols are allowed by the specification, as are dif-
ferent inter-ORB protocols, which are known asEnvironment
Specific Inter-ORB Protocols(ESIOP)s.

Regardless of whether GIOP or an ESIOP is used, a
CORBA IOP must define a data representation, an ORB mes-
sage format, an ORB transport protocol or transport protocol
adapter, and an object addressing format. Below, we outline
how GIOP defines each of these IOP elements.

GIOP synopsis: The GIOP specification consists of the fol-
lowing elements:

� A Common Data Representation (CDR) definition:
CDR is a transfer syntax that maps IDL types from their
native host format into a low-levelbi-canonicalrepresenta-
tion, which supports both little-endian and big-endian formats.
CDR-encoded messages are used to transmit CORBA requests
and server responses across a network. All IDL data types are
marshaled using the CDR syntax into anencapsulation, which
is an octet stream that holds marshaled data.

� GIOP message formats: The GIOP specification de-
fines seven types of messages that send requests, receive
replies, locate objects, and manage communication channels.
The following table lists the seven types of messages in GIOP
1.02 and the permissible originators of each type:

Message Type Originator Value
Request Client 0
Reply Server 1
CancelRequest Client 2
LocateRequest Client 3
LocateReply Server 4
CloseConnection Server 5
MessageError Both 6

� GIOP transport adapter: The GIOP specification de-
scribes the features of an ORB transport protocol that can
carry GIOP messages. Such protocols must be reliable and
connection-oriented. In addition, GIOP defines a connection
management protocol and a set of constraints for GIOP mes-
sage ordering.

� Object addressing: An Interoperable Object Reference
(IOR) is a sequence of opaqueprofiles, each representing a
protocol-specific representation of an object’s location. For
example, an IIOP profile includes the IP address and port num-
ber where the server accepts connections, as well as the object
key that identifies an object within a particular server. There
may be multiple paths or routes to an object. Therefore, the
same IOR can contain multiple IIOP profiles, along with pro-
files for other protocols, such as GIOP over ATM or non-GIOP
protocols.

2Version 1.1 of GIOP added aFragment message and version 1.2 relaxes
the restrictions with respect to message originators.

ESIOP synopsis: In addition to the standard GIOP and IIOP
protocols, the CORBA specification allows ORB implemen-
tors to define Environment Specific Inter-ORB Protocols (ES-
IOP)s. ESIOPs can define unique data representation for-
mats, ORB messaging protocols, ORB transport protocols or
transport protocol adapters, and object addressing formats.
These protocols can exploit the QoS features and guaran-
tees provided in certain domains, such as telecommunications
or avionics, to satisfy performance-sensitive applications that
have stringent bandwidth, latency, and jitter requirements.

Only one ESIOP protocol is defined in the CORBA 2.x
family of specifications: the DCE Common Inter-ORB Pro-
tocol (DCE-CIOP) [2]. Figure 1 illustrates two ESIOPs we
are developing, GIOPlite and an ATM ESIOP. In addition, the
OMG is considering other protocols for domains such as wire-
less and mobile systems [16], which have unique performance
characteristics and optimization points.

3 A Pluggable Protocols Framework
for CORBA

The CORBA specification provides a standard for general-
purpose communication middleware. Within the scope of this
specification, however, ORB implementors are free to opti-
mize internal data structures and algorithms [10]. Moreover,
ORBs may use specialized inter-ORB protocols and ORB ser-
vices and still comply with the CORBA specification.3 This
section identifies the limitations of current ORBs with respect
to their protocol support, describes how TAO’s pluggable pro-
tocols framework is designed to overcome these limitations,
and then describes how TAO can be applied to develop mid-
dleware for high-performance multimedia applications.

3.1 Protocol Limitations of Conventional ORBs

CORBA’s standard GIOP/IIOP protocols are well suited for
conventional request/response applications with best-effort
QoS requirements [13]. They are not well suited, however,
for high-performance, real-time, and/or embedded applica-
tions that cannot tolerate the message footprint size of GIOP
or the latency, overhead, and jitter of the TCP/IP-based IIOP
transport protocol. For instance, TCP functionality, such as
adaptive retransmissions, deferred transmissions, and delayed
acknowledgments, can cause excessive overhead and latency
for real-time applications [17]. Likewise, networking proto-
cols, such as IPv4, lack the functionality of packet admission
policies and rate control, which can lead to excessive conges-
tion and missed deadlines in networks and endsystems.

3An ORB must implement GIOP/IIOP, however, to be interoperability-
compliant.

3

Therefore, applications with more stringent QoS require-
ments need optimized protocol implementations, QoS-aware
interfaces, custom presentations layers, specialized memory
management (e.g., shared memory between ORB and I/O sub-
system), and alternative transport programming APIs (e.g.,
sockets vs. TLI). Domains where highly optimized ORB mes-
saging and transport protocols are particularly important in-
clude (1) multimedia applications running over high-speed
networks, such as Gigabit Ethernet or ATM, and (2) real-
time applications running over embedded system intercon-
nects, such as VME or CompactPCI.

Conventional CORBA implementations have the following
limitations that make it hard for them to support performance-
sensitive applications effectively:

1. Static protocol configurations: Many ORBs support a
limited number of statically configured protocols, typically
only GIOP/IIOP over TCP/IP.

2. Lack of protocol control interfaces: Many ORBs do not
allow applications to configure key protocol policies and prop-
erties, such as peak virtual circuit bandwidth or cell pacing
rate.

3. Single protocol support: Many ORBs do not support si-
multaneous use of multiple inter-ORB messaging or transport
protocols.

4. Lack of real-time protocol support: Many ORBs have
limited or no support for specifying and enforcing real-time
protocol requirements across a backplane, network, or Internet
end-to-end.

3.2 Pluggable Protocols Framework Require-
ments

The limitations of conventional ORBs described in Section 3.1
make it hard for developers to leverage existing implementa-
tions, expertise, and ORB optimizations across projects or ap-
plication domains. Defining a standardpluggable protocols
frameworkfor CORBA ORBs is an effective way to address
this problem. The requirements of such a pluggable protocols
framework for CORBA include the following:

1. Define standard, unobtrusive protocol configuration in-
terfaces: To address limitations with conventional ORBs, a
pluggable protocols framework should define a standard set of
components and APIs to install ESIOPs and their transport-
dependent instances. Most applications need not use this in-
terface directly. Therefore, the pluggable protocol interface
should be exposed only to application developers interested
in defining new protocols or in configuring existing protocol
implementations in new ways.

2. Use standard CORBA programming and control inter-
faces: To ensure application portability, clients should pro-
gram to standard application interfaces defined in CORBA
IDL, even if pluggable ORB messaging or transport protocols
are used. Likewise, object implementors need not be aware
of the underlying framework. However, developers should be
able to set policies that control the ORB’s choice of protocols
and protocol properties. Moreover, these interfaces should
transparently support certain real-time ORB features, such as
scatter/gather I/O, optimized memory management, and strate-
gized concurrency models [10].

3. Simultaneous use of multiple ORB messaging and trans-
port protocols: To address the lack of support for multi-
ple inter-ORB protocols in conventional ORBs, a pluggable
protocols framework should support different messaging and
transport protocolssimultaneouslywithin an ORB endsystem.
The framework should transparently configure inter-ORB pro-
tocols either statically,i.e., during ORB initialization [18], or
dynamically,i.e., during run-time ORB initialization.

4. Support for multiple address representations: This re-
quirement addresses the lack of support for multiple Inter-
ORB protocols and dynamic protocol configurations in con-
ventional ORBs. For example, each pluggable protocol imple-
mentation can potentially have a different profile and object
addressing scheme. Therefore, a pluggable protocols frame-
work should provide a general mechanism to represent these
disparate address formats transparently, while also supporting
standard IOR address representations efficiently.

5. Support CORBA 2.2 features and future enhancements:
A pluggable protocol framework should support CORBA 2.2
features, such as object reference forwarding, connection
transparency, preservation of foreign IORs and profiles, and
the complete GIOP 1.1 protocol, in a manner that does not de-
grade end-to-end performance and predictability. Moreover,
a pluggable protocols framework should accommodate future
changes and enhancements to the CORBA specification, such
as (1) the GIOP 1.2 protocol, which allows bi-directional re-
quests over the same connection, (2) real-time CORBA [18],
which includes features to reserve connection and threading
resources on a per-object basis, and (3) asynchronous messag-
ing [19], which exports QoS policies to application developers.

6. Optimized inter-ORB bridging: A pluggable protocols
framework should ensure that protocol implementors can cre-
ate efficient, high-performance inter-ORBin-line bridges. An
in-line bridge converts inter-ORB messages or requests from
one type of IOP to another. This makes it possible to bridge
disparate ORB domains efficiently without incurring unneces-
sary context switching, synchronization, or data movement.

7. Provide common protocol optimizations and real-time
features: A pluggable protocols framework should support

4

features required by real-time CORBA applications [18], such
as resource pre-allocation and reservation, end-to-end prior-
ity propagation, and mechanisms to control properties specific
to real-time protocols. These features should be implemented
without modifying the standard CORBA programming APIs
used by conventional applications that do not possess real-time
QoS requirements.

8. Dynamic protocol bindings: To address the limitation
of static protocol bindings in conventional ORBs, a pluggable
protocols frameworks should support dynamic association of
specific ORB messaging protocols with specific instances of
ORB transport protocols. This design permits efficient and
predictable configurations for both standard and customized
IOPs.

3.3 Architectural Overview of TAO’s Plug-
gable Protocols Framework

To overcome the limitations described in Section 3.1, we iden-
tified logical communication component layers within TAO,
factored out common features, defined general framework in-
terfaces, and implemented components to support different
concrete inter-ORB protocols. Higher-level services in the
ORB, such as stubs, skeletons, and standard CORBA pseudo-
objects, are decoupled from the implementation details of par-
ticular protocols, as shown in Figure 2. This decoupling is

CLIENT

STUBS SKELETONS

TCP

MULTICAST

IOP

VMEUDP

ORB MESSAGING COMPONENT

ORB TRANSPORT ADAPTER COMPONENT

ESIOP

REAL -TIME

IOP
EMBEDDED

IOP

RELIABLE,
BYTE-STREAM

ATM
TCP

MEMORY

MANAGEMENT

CONCURRENCY

MODEL

OTHER

ORB
CORE

SERVICES

COMMUNICATION INFRASTRUCTURE
HIGH SPEED NETWORK INTERFACE

REAL -TIME I /O SUBSYSTEM

ORB MESSAGE

FACTORY

ORB TRANSPORT

ADAPTER FACTORY

OBJECT ADAPTER

GIOP GIOPLITE

ADAPTIVE Communication Environment (ACE)

OBJECT (SERVANT)operation (args)
IN ARGS

OUT ARGS & RETURN VALUE

POLICY

CONTROL

Figure 2: TAO’s Pluggable Protocols Framework Architecture

essential to resolve several limitations of conventional ORBs
outlined in Section 3.1.

In general, the higher-level components and services of
TAO use a facade [20] interface to access the mechanisms
provided by its pluggable protocols framework. Thus, ap-
plications can (re)configure custom protocols without requir-
ing global changes to the ORB. Moreover, because applica-
tions typically access only the standard CORBA APIs, TAO’s

pluggable protocols framework can be entirely transparent to
CORBA application developers.

Figure 2 also illustrates the key components in TAO’s plug-
gable protocols framework: (1) the ORB messaging compo-
nent, (2) the ORB transport adapter component, and (3) the
ORB policy control component, which are outlined below.

3.3.1 ORB Messaging Component

This component is responsible for implementing ORB mes-
saging protocols, such as the standard CORBA GIOP ORB
messaging protocol, as well as custom ESIOPs. As described
in Section 2, ORB messaging protocols should define a data
representation, an ORB message format, an ORB transport
protocol or transport adapter, and an object addressing for-
mat. Within this framework, ORB protocol developers are
free to implement optimized Inter-ORB protocols and en-
hanced transport adaptors, as long as the ORB interfaces are
respected.

Each ORB messaging protocol implementation inherits
from a common base class that defines a uniform interface.
This interface can be extended to include new capabilities
needed by special protocol-aware policies. For example, ORB
end-to-end resource reservation or priority negotiation can
be implemented in an ORB messaging component. TAO’s
pluggable protocols framework ensures consistent operational
characteristics and enforces general IOP syntax and semantic
constraints, such as error handling.

3.3.2 ORB Transport Adapter Component

This component maps a specific ORB messaging protocol,
such as GIOP or DCE-CIOP, onto a specific instance of an
underlying transport protocol, such as TCP or ATM. Figure 2
shows an example in which TAO’s transport adapter maps the
GIOP messaging protocol onto TCP (this standard mapping is
called IIOP). In this case, the ORB transport adapter combined
with TCP corresponds to the transport layer in the Internet ref-
erence model. However, if ORBs are communicating over an
embedded interconnect, such as a VME bus, the bus driver and
DMA controller provide the “transport layer” in the commu-
nication infrastructure.

TAO’s ORB transport component accepts a byte stream
from the ORB messaging component, provides any additional
processing required, and passes the resulting data unit to the
underlying communication infrastructure. Additional process-
ing that can be implemented by protocol developers includes
(1) concurrency strategies, (2) endsystem/network resource
reservation protocols, (3) high-performance techniques, such
as zero-copy I/O, shared memory pools, periodic I/O, and in-
terface pooling, (4) enhancement of underlying communica-
tions protocols,e.g., provision of a reliable byte stream proto-

5

col over ATM, and (5) tight coupling between the ORB and ef-
ficient user-space protocol implementations, such as Fast Mes-
sages [21].

3.3.3 ORB Policy Control Component

This component allows applications to control the QoS at-
tributes of configured ORB transport protocols explicitly. It
is not possible to determinea priori all attributes defined by
all protocols. Therefore, TAO’s pluggable protocols frame-
work provides an extensiblepolicy controlcomponent, which
implements the QoS framework defined in the CORBA Mes-
saging [19] and Real-time CORBA [18] specifications.

The CORBA QoS framework allows applications to specify
variouspoliciesto control the QoS attributes in the ORB. The
CORBA specification uses policies to define semantic proper-
ties of ORB features precisely without (1) over-constraining
ORB implementations or (2) increasing interface complexity
for common use cases. Example policies relevant for plug-
gable protocols include buffer pre-allocations, fragmentation,
bandwidth reservation, and maximum transport queue sizes.

Policies in CORBA can be set at the ORB, thread, or ob-
ject level. Thus, application developers can set global poli-
cies that take effect for any request issued in a particular ORB.
Moreover, these global settings can be overridden on a per-
thread basis, a per-object basis, or even before a particular re-
quest. In general, CORBA’s Policy framework provides very
fine-grained control over the ORB behavior, while providing
simplicity for the common case.

Certain policies, such as timeouts, can be shared between
multiple protocols. Other policies, such as ATM virtual circuit
bandwidth allocation, may apply to a single protocol. Each
configured protocol can query TAO’s policy control compo-
nent to determine its policies and use them to configure itself
for user needs. Moreover, protocol implementations can sim-
ply ignore policies that do not apply to it.

TAO’s policy control component enables applications to
select their protocol(s). This choice can be controlled by
the ClientProtocolPolicy defined in the Real-time
CORBA specification [18]. Using this policy, an application
can indicate its preferred protocol(s) and TAO’s policy control
component attempts to match that preference with the set of
available protocols. TAO provides other policies that controls
the behavior of the ORB if an application’s preferences cannot
be satisfied. For example, either an exception can be raised or
another available protocol can be selected transparently.

3.4 A Pluggable Protocol Scenario

To illustrate how TAO’s pluggable protocols framework can
be applied in practice, we now describe a scenario where plug-
gable protocols can be used to support performance-sensitive

and real-time CORBA applications. This scenario is based on
our experience developing high-bandwidth, low-latency au-
dio/video streaming applications [22] and avionics mission
computing [11] systems. In previous work [8], we addressed
the network interface and I/O system and how to achieve pre-
dictable, real-time performance. In the discussion below, we
focus on ORB support for alternate protocols.

Low-latency, high-bandwidth multimedia streaming:
Multimedia applications running over high-speed networks
require optimizations to utilize available link bandwidth,
while still meeting application deadlines. For example,
consider Figure 3, where network interfaces supporting 1.2

WUGS HIGH- SPEED
NETWORK

TAO QOS-ENABLED ORB

RIO SUBSYSTEM

SUPPLIER
CONSUMER

TAO QOS-ENABLED ORB

RIO SUBSYSTEM

Figure 3: Example CORBA-based Audio/Video (A/V) Appli-
cation

Mbps or 2.4 Mbps link speeds are used for a CORBA-based
studio quality audio/video (A/V) application.

In this example, we can use TAO’s pluggable protocols
framework to replace GIOP/IIOP with a custom ORB mes-
saging and transport protocol that transmits A/V frames us-
ing TAO’s real-time I/O (RIO) subsystem [8, 23]. At the core
of RIO is the high-speed ATM port interconnect controller
(APIC) [24]. APIC is a high-performance ATM interface card
that supports standard ATM host interface features, such as
AAL5 (SAR). In addition, the APIC supports (1) shared mem-
ory pools between user and kernel space, (2) per-VC pacing,
(3) two levels of priority queues, and (4) interrupt disabling on
a per-VC bases.

We are leveraging the APIC features and the underlying
ATM network to support end-to-end QoS guarantees for TAO
middleware. In particular, pluggable ORB message and trans-
port protocols can be created to provide QoS services to ap-
plications, while the ORB middleware encapsulates the actual
resource allocation and QoS enforcement mechanisms. Lever-
aging the underlying APIC hardware requires the resolution of
the following two design challenges:

1. Custom protocols: The first challenge is to create cus-
tom ORB messaging and transport protocols that can exploit
high-speed ATM network interface hardware. A careful ex-
amination of the system requirements along with the hardware
and communication infrastructure is required in order to deter-
mine both the set of optimizations required and the best par-

6

titioning of the solution into ORB messaging, transport and
policy components.

The A/V streaming application is primarily concerned with
pushing data to clients (i.e., one-way method invocations) and
with meeting a specific set of latency and jitter requirements.
Considering this, a simple frame sequencing protocol can be
used as the ORB’s ESIOP. Moreover, because multimedia data
has diminishing value over time, a reliable protocol, such as
TCP, is not required. Thus, the overhead of full GIOP is not re-
quired, nor are the underlying assumptions that require a trans-
port protocol with the semantics of TCP.

A key goal of this scenario is to simplify the ORB messag-
ing and transport protocol, while adding QoS-related informa-
tion to support timely delivery of the video frames and audio.
For example, a CORBA request could correspond to one video
frame or audio packet. To facilitate synchronization between
endpoints, a timestamp and sequence number can be sent with
each request. The Inter-ORB messaging protocol can perform
a similar function as the real-time protocol (RTP) and real-time
control protocol (RTCP) [25].

The ORB messaging protocol can be mapped onto an ORB
transport protocol using AAL5. The transport adapter is then
responsible for exploiting any local optimizations to hardware
or the endsystem. For example, conventional ORBs copy user
parameters into internal buffers used for marshaling. These
buffers may be allocated from global memory or possibly from
a memory pool maintained by the ORB. In either case, at least
one system call is required to obtain mutexes, allocate buffers,
and copy the data. Thus, not only is an additional data copy
incurred, but this scenario is rife with opportunities for prior-
ity inversion and jitter while waiting for ORB endsystem re-
sources.

2. Optimized protocol implementations: The second
challenge is to implement an optimized pluggable protocol
that implements the design described above. For example,
memory can be shared throughout the ORB endsystem,i.e.,
between the application, ORB middleware, OS kernel, and
network interface, by allocating memory from a common
buffer pool [24, 10]. This optimization eliminates memory
copies between user- and kernel-space when data is sent or re-
ceived. Moreover, the ORB endsystem can manage this mem-
ory, thereby relieving application developers from this respon-
sibility. In addition, the ORB endsystem can manage the APIC
interface driver, interrupt rates, and pacing parameters, as out-
lined in [8].

Figure 4 illustrates a buffering strategy where the ORB man-
ages multiple pools of buffers to be used by applications send-
ing multimedia data to remote nodes. These ORB buffers are
shared between the ORB and APIC driver in the kernel. The
transport adapter implements this shared buffer pool on a per-
connection and possibly per-thread basis to minimize or re-

MARSHAL
FRAMES

CONSUMER

OBJECT ADAPTER

ACTIVE

OBJECT

 MAP

IDL
SKELETON

OS KERNEL

APIC
DRIVER

OS KERNEL

APIC
DRIVER

IDL
STUBS

ORB MESSAGING

ORB TRANSPORT

SUPPLIER

ORB MANAGED

DATA BUFFERS

ATM LINK

ORB MESSAGING

ORB TRANSPORT

DEMARSHAL
FRAMES

ORB
CORE

movie->ship (frame)

DEMUX

SENDFREE

APPENDGET FREE

RECV FREE

GET RECV

CDR

ADD FREE

Figure 4: Shared Buffer Strategy

duce the use of resource locks. For example, in the scheme
depicted in Figure 4, each active connection is assigned its
own send and receive queues. Likewise, there are two free
buffer pools per connection, one for receive and one for send.

An ORB can guarantee that only one application thread will
be active within the send or receive operation of the transport
adapter. Therefore, buffer allocation and de-allocation can
be performed without locking. A similar buffer management
scheme is described in [24]

The following two approaches are ways that the buffering
scheme described above can interact with user applications:

1. Zero-copy– The application requests a set of send buffers
from the ORB that it uses for video and audio data. In
this case, application developers must not reuse a buffer
after it has been given to the ORB. When the original
set of buffers are exhausted, the application must request
additional buffers.

2. Single-copy– The ORB copies application data into the
ORB managed buffers. While this scheme incurs one
data copy, the application developer need not be con-
cerned with how or when buffers are used in the ORB.

Well-designed ORBs can be strategized to allow applications
to decide whether data are copied into ORB buffers or not. For
instance, it may be more efficient to copy relatively small re-
quest data into ORB buffers, rather than using shared buffers
within the ORB endsystem. By using TAO’s protocol poli-
cies, this decision can be configured on a per-connection, per-
thread, per-object or per-operation basis.

7

4 The Performance of TAO’s Plug-
gable Protocols Framework

Despite the growing demand for off-the-shelf middleware
in many application domains, a widespread belief persists in
the embedded systems community that OO techniques are not
suitable for real-time systems due to performance penalties
attributed to the OO paradigm [11]. In particular, the dy-
namic binding properties of OO programming languages and
the indirection implied in OO designs seem antithetical to real-
time systems, which require low latency and jitter. The re-
sults presented in this section are significant, therefore, be-
cause they illustrate empirically how the it is possible to im-
plement very predictable, efficient, and scalable middleware
without compromising non-functional requirements, such as
portability, flexibility, reusability, and maintainability, offered
by CORBA.

To quantify the benefits and costs of TAO’s pluggable pro-
tocols framework, we conducted several benchmarks using
two different ORB messaging protocols, GIOP and GIOPlite,
and two different transport protocols, POSIX local IPC (also
known as UNIX-domain sockets) and TCP/IP. These bench-
marks are based on our experience developing communication
middleware for avionics mission computing applications [11]
and multimedia applications [22].

Note that POSIX local IPC is not a traditional high-
performance networking environment. However, it does pro-
vide the opportunity to obtain an accurate measure of ORB
and pluggable protocols framework overhead. Based on these
measurements, we have isolated the overhead associated with
each component, which provides a baseline for future work in
high-performance protocol development and experimentation.

4.1 Hardware/Software Benchmarking Plat-
form

All benchmarks in this section were run on a Quad-CPU In-
tel Pentium II Xeon 400 MHz workstation, with one gigabyte
of RAM. The operating system used for the benchmarking
was Debian GNU/Linux “potato” (glibc 2.1) with Linux ker-
nel version 2.2.10. GNU/Linux is an open-source operating
system that supports true multi-tasking, multi-threading, and
symmetric multiprocessing.

Our benchmarks were run using the standard GIOP ORB
messaging protocol, as well as TAO’s GIOPlite messaging
protocol, described in Section 3.4. For the TCP/IP tests, the
GIOP and GIOPLite ORB messaging protocols were run us-
ing the standard CORBA IIOP transport adapter along with
the Linux TCP/IP socket library and the loopback interface.
For the local IPC tests, GIOP and GIOPLite were used along
with the optimized local IPC transport adapter. This resulted

in four different Inter-ORB Protocols: GIOP over TCP (IIOP),
GIOPLite over TCP, GIOP over local IPC (UIOP4) and GIO-
PLite over local IPC. No changes were required to our stan-
dard CORBA benchmarking tool, calledIDL Cubit [12],
for either of the ORB messaging and transport protocol im-
plementations.

4.2 Blackbox Benchmarks

Blackbox benchmarks measure the end-to-end performance
of a system from an external application perspective. In our
experiments, we used blackbox benchmarks to compute the
average two-way response time incurred by clients sending
various types of data using the four different Inter-ORB trans-
port protocols.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

vo
id

sh
or

t
oc

te
t

lon
g

str
uc

t

sm
all

 se
q<

oc
te

t>

lar
ge

 se
q<

oc
te

t>

sm
all

 se
q<

lon
g>

lar
ge

 se
q<

lon
g>

sm
all

 se
q<

str
uc

t>

lar
ge

 se
q<

str
uc

t>

Data Type

C
al

ls
 p

er
 S

ec
o

n
d

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
(%

)

IIOP IIOP/GIOPlite
UIOP UIOP/GIOPlite
Performance Increase

Figure 5: TAO’s Pluggable Protocols Framework Performance
Over Local IPC and TCP/IP

Measurement technique: A single-threaded client is used
in the IDL Cubit benchmark to issue two-way IDL opera-
tions at the fastest possible rate. The server performs the oper-
ation, which cubes each parameter in the request. For two-way
calls, the client thread waits for the response and checks that
it is correct. Interprocess communication is performed over
selected IOPs, as described above.

We measure throughput for operations using a variety of
IDL data types, includingvoid , sequence , andstruct
types. Thevoid data type instructs the server not to per-
form any processing other than that necessary to prepare and
send the response,i.e., it does not cube any input parame-
ters. Thesequence andstruct data types exercise TAO’s
(de)marshaling engine. Thestruct contains anoctet , a
long , and ashort , along with padding necessary to align

4For historical reasons, TAO retains the expression “UNIX-domain” in
its local IPC pluggable protocol implementation, which is where the name
“UIOP” derives from.

8

those fields. We also measure throughput using long and short
sequences of thelong and octet types. Thelong se-
quences contain 4,096 bytes (1,024 four bytelong s or 4,096
octet s) and the short sequences are 4 bytes (one four byte
long or fouroctet s).

Blackbox results: The blackbox benchmark results are
shown in Figure 5. All blackbox benchmarks were averaged
over 100,000 two-way operation calls for each data type, as
depicted by the bars in Figure 5.

UIOP performance surpassed IIOP performance for all data
types. The benchmarks show UIOP improves performance
from 20% to 50% depending on the data type and size. For
smaller data sizes and basic types, such asoctet andlong ,
the performance improvement is approximately 50%. How-
ever, for larger data payload sizes and more complex data
types, the performance improvements are reduced. This is
a direct result of the increasing cost of both the data copies
associated with performing I/O and increasing complexity of
marshaling structures other than the basic data types.

For certain data types, additional improvements are ob-
tained by reducing the number of data copies required. Such
a situation exists when marshaling and demarshaling data of
type octet and long . For complicated data types, such
as a largesequence of struct s, ORB overhead is par-
ticularly prevalent. Large ORB overhead implies lower effi-
ciency, which accounts for the smaller performance improve-
ment gained by UIOP over IIOP for complex data types.

GIOPlite outperformed GIOP by a small margin. For
IIOP, GIOPlite performance increases over GIOP ranged from
0.36% to 4.74%, with an average performance increase of
2.74%. GIOPlite performance improvements were slightly
better over UIOP due to the fact that UIOP is more efficient
than IIOP. GIOPlite over UIOP provided improvements rang-
ing from 0.37% to 5.29%, with an average of 3.26%.

Our blackbox results suggest that more substantial changes
to the GIOP message protocol are required to achieve sig-
nificant performance improvements. However, these results
also illustrate that the GIOP message footprint has a rela-
tively minor performance impact over high-speed networks
and embedded interconnects. Naturally, the impact of the
GIOP message footprint for lower-speed links, such as second-
generation wireless systems or low-speed modems, is more
significant.

4.3 Whitebox Benchmarks

Whitebox benchmarks measure the performance of specific
components or layers in a system from an internal perspective.
In our experiments, we used whitebox benchmarks to pinpoint
the time spent in key components in TAO’s client and server
ORBs. The ORB logical layers, or components, are shown

in Figure 6 along with the timeprobe locations used for these
benchmarks.

4.3.1 Measurement Techniques

One way to measure performance overhead of operations in
complex communication middleware is to use a profiling tool
like Quantify [26]. Quantify instruments an application’s bi-
nary instructions and then analyzes performance bottlenecks
by identifying sections of code that dominate execution time.
Quantify is useful because it can measure the overhead of
system calls and third-party libraries without requiring source
code access.

Unfortunately, Quantify is not available for Linux kernel-
based operating systems for which whitebox measurement of
TAO’s performance is needed. Moreover, Quantify modifies
the binary code to collect timing information. Therefore, it is
most useful for measuringrelative overhead of different op-
erations in a system, rather than measuringabsoluterun-time
performance.

To avoid the limitations of Quantify, we therefore used a
lightweight timeprobe mechanism provided by TAO to pre-
cisely pinpoint the amount of time spent in various ORB com-
ponents and layers. The TAO timeprobe mechanism provides
highly accurate, low-cost timestamps that record the time
spent between regions of code in a software system. These
timeprobes have minimal performance impact,e.g., 1-2�sec
overhead per timeprobe, and no binary code instrumentation
is required.

Depending on the underlying platform, TAO’s timeprobes
are implemented either by high-resolution OS timers or by
high-precision timing hardware. An example of the latter is the
VMEtro board, which is a VME bus monitor. VMEtro writes
unique TAO timeprobe values to an otherwise unused VME
address. These values record the duration between timeprobe
markers across multiple processors using a single clock. This
enables TAO to collect synchronized timestamps and accu-
rately measure communication delays end-to-end across dis-
tributed CPUs.

Below, we examine the client and server whitebox perfor-
mance in detail.

4.3.2 Whitebox Results

Figure 6 shows the points in a two-way operation request
path where timeprobes were inserted. Each labeled number
in the figure corresponds to an entry in Table 1 and Table 2
below. The results presented in the tables and figures which
follow where averaged over 1,000 samples.

Client performance: Table 1 depicts the time in microsec-
onds (�s) spent in each sequential activity that a TAO client

9

ORB TRANSPORTORB TRANSPORT

RECVRECV

OBJECT (SERVANT)

ORBORB
CORECORE

OBJECT ADAPTEROBJECT ADAPTER

IDLIDL
SKELETONSKELETON

VME BUSVME BUS

OS KERNELOS KERNEL

VME DRIVERVME DRIVER

OS KERNELOS KERNEL

VME DRIVERVME DRIVER

ORB MESSAGINGORB MESSAGING

ORB TRANSPORTORB TRANSPORT

ACTIVEACTIVE

OBJECTOBJECT

 MAPMAP

GET OBJECTGET OBJECT

REFREF

IDLIDL
STUBSSTUBS

MARSHALMARSHAL

PARMATERSPARMATERS

ORB MESSAGINGORB MESSAGING

SENDSEND

ORB MESSAGINGORB MESSAGING

ORB TRANSPORTORB TRANSPORT

ORB TRANSPORTORB TRANSPORT

SENDSEND

II//O SENDO SEND

II//O RECVO RECV77

88

ORB MESSAGINGORB MESSAGING

RECVRECV99

CLIENTCLIENT

DEMARSHALDEMARSHAL

PARAMETERSPARAMETERS

7799

II//O RECVO RECV

ORB TRANSPORTORB TRANSPORT

RECVRECV

ORB MESSAGINGORB MESSAGING

RECVRECV

PARSE OBJECTPARSE OBJECT

 KEY KEY

OBJECTOBJECT

DEMUXDEMUX

DEMARSHALDEMARSHAL

PARAMETERSPARAMETERS

USER UPCALLUSER UPCALL

ORB MESSAGINGORB MESSAGING

SENDSEND

ORB TRANSPORTORB TRANSPORT

SENDSEND

II//O SENDO SEND

MARSHALMARSHAL

PARAMETERSPARAMETERS

OPERATIONOPERATION

DEMUXDEMUX

1313
11

22

44

66
1111

1010

1212

33

88
INITIALIZATIONINITIALIZATION

33

55

44

11

22

66

1010

OUTGOINGOUTGOING INCOMINGINCOMING

IN
C

O
M

IN
G

IN
C

O
M

IN
G

O
U

T
G

O
IN

G
O

U
T

G
O

IN
G

POAPOA

DEMUXDEMUX55

Figure 6: Timeprobe Locations for Whitebox Experiment

performs to process an outgoing operation request and its re-
ply.

Table 1:�seconds Spent in Each Client Processing Step
Direction Client Activities Absolute Time (�s)

Outgoing 1. Initialization 6.30
2. Get object reference 15.6
3. Parameter marshal 0.74 (param. dependent)
4. ORB messaging send 7.78
5. ORB transport send 1.02
6. I/O 8.70 (op. dependent)
7. ORB transport recv 50.7
8. ORB messaging recv 9.25
9. Parameter demarshal op. dependent

Each client outgoing step is outlined below:

1. In theinitializationstep, the client invocation is created,
and constructors are called for the input and output Common
Data Representation (CDR) stream objects that handle mar-
shaling and demarshaling of operation parameters.

2. TAO’s connector caches connections, so even though
its connect method is called for every operation, existing
connections are reused for repeated calls. For statically config-
ured systems, such as avionics mission computing, TAO pre-
establishes connections, so the initial connection setup over-
head can be avoided entirely.

3. In the parameter marshalstep, the outgoingin and
inout parameters are marshaled. The overhead of this pro-
cessing depends on the operation signature,i.e., the number of
data parameters and their type complexity.

4. In thesend operation in theORB messaginglayer, the
client creates a request header and frames the message. The
messaging layer then passes the message to the ORB trans-
port component for transmission to the server. If the request is

two-way, the transport component waits for and processes the
response.

5. Thesend operation in theORB transportcomponent
implements the connection concurrency strategy and invokes
the appropriate ACE I/O operation. TAO maintains a linked
list of CDR buffers [10], which allows it to use “gather-write”
OS calls, such aswritev . Thus, multiple buffers can be writ-
ten atomically without requiring multiple system calls or un-
necessary memory allocation and data copying.

6. TheI/O operation represents the time the client spends
in the receive system call. This time is generally dominated
by the cost of copying data from the kernel to user supplied
buffers.

Each client incoming step is outlined below:

7. TheI/O receiveoperation copies the data from a kernel
buffer to a receive CDR stream and returns control to the ORB
transport component.

8. The recv operation in theORB transportlayer dele-
gates the reading of the received messages header and body
to the ORB messaging component. If the message header is
valid, then the remainder of the message is read. This also in-
cludes time when the client is blocked waiting for the server
to read the supplied data.

9. The recv operation in theORB messaginglayer
checks the message type of the reply, and either raises an ap-
propriate exception, initiates a location forward, or returns the
reply to the calling application.

10. In theparameter demarshalstep, the incoming reply
out and inout parameters are demarshaled. The overhead
of this step depends, as it does with the server, on the operation
signature.

10

Server performance: Table 2 depicts the time in microsec-
onds (�s) spent in each activity as a TAO server processes a
request.

Table 2:�seconds Spent in Each Server Processing Step

Direction Server Activities Absolute Time (�s)

Incoming 1. I/O 7.0 (op. dependent)
2. ORB transport recv 24.8
3. ORB messaging recv 4.5
4. Parsing object key 4.6
5. POA demux 1.39
6. Servant demux 4.6
7. Operation demux 4.52
8. User upcall 3.84 (op. dependent)

Outgoing 9. ORB messaging send 4.56
10. ORB transport send 93.6

Each incoming server step is outlined below:

1. TheI/O operation represents the time the server spends
in the read system call.

2. The recv operation in theORB transportlayer dele-
gates the reading of the received message header to the ORB
messaging component. If it is a valid message, then the re-
maining data is read and passed to the ORB messaging com-
ponent.

3. The recv operation in theORB messaginglayer
checks the type of the message and forwards it to the POA.
Otherwise it handles the message or reports an error back to
the client.

4. The Parsing object keystep comes before any other
POA activity. The time in the table includes the acquisition
of a lock that is held through all POA activities (POA demux,
Servant demux, andOperation demux).

5. ThePOA demuxstep locates the POA where the servant
resides. The time in this table is for a POA that is one level
deep, although in general, POAs can be many levels deep.

6. The servant demuxstep looks up a servant in the tar-
get POA. The time shown in the table for this step is based
on TAO’s active demultiplexing strategy [10], which locates a
servant in constant time regardless of the number of objects in
a POA.

7. The skeleton associated with the operation resides in
the operation demuxstep. TAO uses perfect hashing [10] to
locate the appropriate operation.

8. In theparameter demarshalstep, the incoming request
in andinout parameters are demarshaled. The overhead of
this step depends, as it does with the client, on the operation
signature.

9. The time for theuser upcallstep depends upon the ac-
tual implementation of the operation in the servant.

Each outgoing server step is outlined below:

10. In thereturn value marshalstep, thereturn , inout
andout parameters are marshaled. This time also depends on
the signature of the operation.

11. The send operation in theORB messaginglayer
passes the marshaled return data down to the ORB transport
layer.

12. Thesend operation in theORB transportlayer adds
the appropriate IOP header to the reply, sends the reply, and
closes the connection if it detects an error. Also included in the
category is the time the server is blocked in the send operation
while the client runs.

13. The I/Osend operation gets the peer I/O handle from
the server connection handler and calls the appropriatesend
operation. As in the client-side I/Osend operation described
above, the server uses a gather-write I/O call.

Depending on the type and number of operation parame-
ters, theORB transport recvstep typically requires the most
ORB processing time. This time is dominated by the required
data copies. By using a transport adapter which implements a
shared buffer strategy these costs can be reduced significantly.

Component costs: Figure 7 compares the relative over-

11
2

11
1

52 51

49 48

49 47

24 23

27 27

31

27

30

27

0

50

100

150

200

250

IIOP IIOP w/GIOPlite UIOP UIOP w/GIOPlite

Transport Protocol

T
o

ta
l T

im
e

(u
se

cs
)

OS and I/O ORB Transport Messaging

Figure 7: Comparison of ORB and Transport/OS Overhead
Using Timeprobes

head attributable to the ORB messaging component, transport
adaptor, ORB and OS for two-wayIDL Cubit calls to the
cube void operation for each possible protocol combina-
tion. This figure shows that when using IIOP the I/O and OS
overhead accounts for just over 50% of the total round trip
latency.

11

It also shows that the difference in performance between
IIOP and UIOP is primarily due to the larger OS and I/O over-
head that TCP/IP has, as compared to local IPC.

The only overhead that depends on size is(de)marshaling,
which depends on the type complexity, number, and size of
operation parameters, anddata copying, which depends on
the size of the data. In our whitebox experiment, only the
parameter size changes,i.e., thesequence s vary in length.
Moreover, TAO’s (de)marshaling optimizations incur minimal
overhead when running between homogeneous ORB endsys-
tems.

In Figure 8, the parameter size is varied and the above test
is repeated. It shows that as the size of the operation parame-

64 64 65 65 65 66 73 81 85 93

77 77 77 77 77 77 78 76 76 77

27 27 27 27 28 28 29 31 33

3627 27 28 28 28 28

30 34 34

35

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512 1024 2048

Bytes in Octet Sequence

T
o

ta
l T

im
e

(u
se

cs
)

OS and I/O ORB Transport Messaging

Figure 8: ORB and Transport/OS Overhead Versus Parameter
Size
ters increases, I/O overhead grows faster than the overall ORB
overhead (including messaging and transport). This result il-
lustrates that the overall ORB overhead is largely independent
of the request size. In particular, demultiplexing a request,
creating message headers, and invoking an operation upcall
are not affected by the size of the request.

TAO employs standard buffer size and data copy tradeoff
optimizations. This optimization is demonstrated in Figure 8
by the fact that there is a slight increase in the time spent both
in the transport component and in the ORB itself when the
sequence size is greater than 256 bytes. The data copy tradeoff
optimization is fully configurable via run-time command line
options, so it is possible to configure TAO to further improve
performance above the 256 byte data copy threshold.

For the operations tested in theIDL Cubit benchmark, the
overhead of the ORB is dominated by memory bandwidth lim-
itations. Both the loopback driver and local IPC driver copy
data within the same host. Therefore, memory bandwidth limi-
tations should essentially be the same for both IIOP and UIOP.
This result is illustrated in Figure 7 by the fact that the time
spent in the ORB is generally constant for the four protocol
combinations shown.

In general, the use of UIOP demonstrates the advantages of
this framework and how optimized, domain-specific protocols
can be deployed.

5 Related Work

The design of TAO’s pluggable protocols framework is influ-
enced by prior research on the design and optimization of pro-
tocol frameworks for communication subsystems. This sec-
tion outlines this research and compares it with our work.

Configurable communication frameworks: The x-
kernel [27], Conduit+ [28], System V STREAMS [29],
ADAPTIVE [30], and F-CSS [31] are all configurable
communication frameworks that provide a protocol back-
plane consisting of standard, reusable services that support
network protocol development and experimentation. These
frameworks support flexible composition of modular protocol
processing components, such as connection-oriented and con-
nectionless message delivery and routing, based on uniform
interfaces.

The frameworks for communication subsystems listed
above focus on implementing various protocol layers beneath
relatively low-level programming APIs, such as sockets. In
contrast, TAO’s pluggable protocols framework focuses on
implementing and/or adapting to transport protocols beneath
a higher-level communication middleware API,i.e., the stan-
dard CORBA programming API. Therefore, existing commu-
nication subsystem frameworks can provide building block
protocol components for TAO’s pluggable protocols frame-
work.

Patterns-based communication frameworks: An increas-
ing number of communication frameworks are being designed
and documented using patterns [15, 28]. In particular, Con-
duit+ [28] is an OO framework for configuring network pro-
tocol software to support ATM signaling. Key portions of the
Conduit+ protocol framework,e.g., demultiplexing, connec-
tion management, and message buffering, were designed using
patterns like Strategy, Visitor, and Composite [20]. Likewise,
the concurrency, connection management, and demultiplexing
components in TAO’s ORB Core and Object Adapter also have
been explicitly designed using patterns like Reactor, Acceptor-
Connector, and Active Object [15].

CORBA pluggable protocol frameworks: The architec-
ture of TAO’s pluggable protocols framework is based on the
ORBacus Open Communications Interface (OCI) [32]. The
OCI framework provides a flexible, intuitive, and portable in-
terface for pluggable protocols. The framework interfaces are
defined in IDL, with a few special rules to map critical types,
such as data buffers.

12

Defining pluggable protocol interfaces with IDL permits de-
velopers to familiarize themselves with a single programming
model that can be used to implement protocols in different lan-
guages. In addition, the use of IDL makes it possible to write
pluggable protocols that are portable among different ORB
implementations and platforms.

Though the OCI pluggable protocols framework is useful
for many applications and ORBs, the following aspects make
it less suitable for high-performance and real-time systems:

� IDL interfaces add extra overhead: As mentioned
above, the use of IDL has several advantages. However, unless
new IDL mapping rules are approved for locality constrained
objects, an ORB must set up a nontrivial amount of context
information,e.g., to handle POA Servant Managers [33], to
make local invocations have the same semantics as remote in-
vocations. Although overhead can be minimized by usingad
hoc optimizations, some additional method invocation over-
head will be incurred by common IDL mappings.

In contrast, the framework we propose utilizes regular C++
classes, this limits the portability of the system, but completely
eliminates the overhead introduced by the IDL interfaces.

� The current OCI version does not support zero-copy
buffers: The OCI interfaces do not currently support zero-
copy I/O; which would permit the ORB to marshal data di-
rectly into kernel buffers making a single copy or at most one
copy. TAO supports the use of different buffering strategies
which allow protocol developers to implement schemes where
memory can be shared between the application, ORB and/or
I/O subsystem. By supporting different buffering strategies,
the effectiveness of the framework for high-performance com-
munication links is enhanced. For example, the transport
adapter could manage a per-connection set of buffer pools. By
strategizing the CDR classes’ use of internal buffers, protocol
implementers can focus on optimizing for specific hardware or
communication channels rather than building general software
components.

� The current OCI version does not optimize profile
parsing: Parsing an IOP profile is a relatively expensive op-
eration. The OCI framework does not provide any means to
manipulate a pre-parsed profile, which is a common use-case.

Our framework allows each protocol implementation to rep-
resent a profile as it sees fit. Since these profiles are only cre-
ated in a few instances, it is possible for them to parse the octet
stream representation and store it in a more convenient format.
The parsing can be also done on demand to minimize startup
time. The protocol implementor is free to choose the strategy
that best fits the application.

� ACE and OCI interfaces require extra adaptation lay-
ers: TAO uses the ACE framework [34] to isolate itself from
non-portable aspects of underlying operating systems. This

design leverages the testing, optimizations, wide range of plat-
forms, and the communication patterns supported and imple-
mented by ACE, enabling us to focus on the particular prob-
lems of developing a high-performance, real-time ORB. Using
the OCI IDL-derived interfaces incurs an extra layer of adap-
tation between ACE and TAO, which unnecessarily increases
framework overhead.

TAO implements a highly optimized pluggable protocol
framework that is tuned for high-performance and real-time
application requirements. For example, TAO’s pluggable pro-
tocols framework can be integrated with zero-copy high-speed
network interfaces [24, 8].

However, TAO’s pluggable protocols framework does not
preclude the use of more general frameworks like the ORBa-
cus OCI. In fact, we plan to implement OCI as a pluggable
protocol into TAO, thereby allowing application developers to
test and use OCI pluggable protocols. If applications have very
stringent performance requirements, developers can use the in-
ternal TAO pluggable protocol framework to obtain the higher
performance and greater predictability.

6 Concluding Remarks

To be an effective development platform for performance-
sensitive applications, OO middleware must preserve commu-
nication layer QoS properties of applications end-to-end. It is
essential, therefore, to define a pluggable protocols framework
that allows custom inter-ORB messaging and transport proto-
cols to be configured flexibly and transparently by CORBA
applications.

This paper identifies the protocol-related limitations of cur-
rent ORBs and describes a CORBA-based pluggable protocols
framework we developed and integrated with TAO to address
these limitations. TAO’s pluggable protocols framework con-
tains two main components: an ORB messaging component
and an ORB transport adapter component. These two com-
ponents allows applications developers and end-users to trans-
parently extend their communication infrastructure to support
the dynamic and/or static binding of new ORB messaging and
transport protocols. Moreover, TAO’s OO design makes it
straightforward to develop custom inter-ORB protocol stacks
that can be optimized for particular application requirements
and endsystem/network environments.

This paper illustrates empirically the performance of TAO’s
pluggable protocols framework when running CORBA ap-
plications over high-speed interconnects, such as ATM. Our
benchmarking results demonstrate that applying appropriate
optimizations to communication middleware can yield highly
efficient and predictable implementations, without sacrificing
flexibility or reuse. These results support our contention that
communication middleware performance is largely an imple-

13

mentation issue. Thus, well-tuned, standard-based communi-
cation middleware like TAO can replacead hocand propri-
etary solutions that are still commonly used in traditional dis-
tributed applications and embedded real-time systems.

We are currently developing pluggable protocols for high-
speed networks such as ATM and Myrinet. One focus of our
future work is to determine effective patterns for supporting
advanced I/O features, such as buffer management schemes
using intelligent I/O interfaces and shared memory, available
in current high-speed network adaptors. In addition, we are
exploring the integration of high-speed messaging protocols,
such as Fast Messages [21], with standard CORBA communi-
cation middleware.

References
[1] ATD, “Advanced Technology Demonstration Network.”

http://www.atd.net/.

[2] Object Management Group,The Common Object Request
Broker: Architecture and Specification, 2.2 ed., Feb. 1998.

[3] D. Box, Essential COM. Addison-Wesley, Reading, MA, 1997.

[4] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object
Model for the Java System,”USENIX Computing Systems,
vol. 9, November/December 1996.

[5] S. Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environments,”IEEE
Communications Magazine, vol. 14, February 1997.

[6] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”
Computer Communications, vol. 21, pp. 294–324, Apr. 1998.

[7] G. Parulkar, D. C. Schmidt, and J. S. Turner, “a
I
t
P
m: a

Strategy for Integrating IP with ATM,” inProceedings of the
Symposium on Communications Architectures and Protocols
(SIGCOMM), ACM, September 1995.

[8] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of a Real-time I/O Subsystem,” inProceedings of
the5th IEEE Real-Time Technology and Applications
Symposium, (Vancouver, British Columbia, Canada), IEEE,
June 1999.

[9] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,”The
International Journal of Time-Critical Computing Systems,
special issue on Real-Time Middleware, 1999, to appear.

[10] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, V. Kachroo,
and A. Gokhale, “Applying Optimization Patterns to the
Design of Real-time ORBs,” inProceedings of the5th

Conference on Object-Oriented Technologies and Systems,
(San Diego, CA), USENIX, May 1999.

[11] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design
and Performance of a Real-time CORBA Event Service,” in
Proceedings of OOPSLA ’97, (Atlanta, GA), ACM, October
1997.

[12] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,”
Journal of Real-time Systems, To appear 1999.

[13] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP
Protocol Engine for Minimal Footprint Multimedia Systems,”
Journal on Selected Areas in Communications special issue on
Service Enabling Platforms for Networked Multimedia
Systems, Sept. 1999.

[14] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, (Stanford, CA), pp. 306–317,
ACM, August 1996.

[15] D. C. Schmidt and C. Cleeland, “Applying Patterns to Develop
Extensible ORB Middleware,”IEEE Communications
Magazine, vol. 37, April 1999.

[16] Object Management Group,Telecom Domain Task Force
Request For Information Supporting Wireless Access and
Mobility in CORBA - Request For Information, OMG
Document telecom/98-06-04 ed., June 1998.

[17] R. S. Madukkarumukumana and H. V. Shah and C. Pu,
“Harnessing User-Level Networking Architectures for
Distributed Object Computing over High-Speed Networks,” in
Proceedings of the 2nd Usenix Windows NT Symposium,
August 1998.

[18] Object Management Group,Realtime CORBA Joint Revised
Submission, OMG Document orbos/99-02-12 ed., March 1999.

[19] Object Management Group,CORBA Messaging Specification,
OMG Document orbos/98-05-05 ed., May 1998.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[21] M. Lauria, S. Pakin, and A. Chien, “Efficient Layering for
High Speed Communication: Fast Messages 2.x.,” in
Proceedings of the 7th High Performance Distributed
Computing (HPDC7) conference, (Chicago, Illinois), July
1998.

[22] S. Mungee, N. Surendran, and D. C. Schmidt, “The Design and
Performance of a CORBA Audio/Video Streaming Service,” in
Proceedings of the Hawaiian International Conference on
System Sciences, Jan. 1999.

[23] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design and
Performance of RIO – A Real-time I/O Subsystem for ORB
Endsystems,” inProceedings of the International Symposium
on Distributed Objects and Applications (DOA’99),
(Edinburgh, Scotland), OMG, Sept. 1999.

[24] Z. D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC
Approach to High Performance Network Interface Design:
Protected DMA and Other Techniques,” inProceedings of
INFOCOM ’97, (Kobe, Japan), IEEE, April 1997.

[25] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“Rtp: A transport protocol for real-time applications,”Network
Information Center RFC 1889, January 1996.

[26] P. S. Inc.,Quantify User’s Guide. PureAtria Software Inc.,
1996.

14

[27] N. C. Hutchinson and L. L. Peterson, “Thex-kernel: An
Architecture for Implementing Network Protocols,”IEEE
Transactions on Software Engineering, vol. 17, pp. 64–76,
January 1991.

[28] H. Hueni, R. Johnson, and R. Engel, “A Framework for
Network Protocol Software,” inProceedings of OOPSLA ’95,
(Austin, Texas), ACM, October 1995.

[29] D. Ritchie, “A Stream Input–Output System,”AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[30] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A
Dynamically Assembled Protocol Transformation, Integration,
and eValuation Environment,”Journal of Concurrency:
Practice and Experience, vol. 5, pp. 269–286, June 1993.

[31] M. Zitterbart, B. Stiller, and A. Tantawy, “A Model for
High-Performance Communication Subsystems,”IEEE
Journal on Selected Areas in Communication, vol. 11,
pp. 507–519, May 1993.

[32] I. Object-Oriented Concepts, “ORBacus User Manual -
Version 3.1.2.” www.ooc.com/ob, 1999.

[33] M. Henning and S. Vinoski,Advanced CORBA Programming
With C++. Addison-Wesley Longman, 1999.

[34] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed
Communication Systems,”IEE/BCS Distributed Systems
Engineering Journal (Special Issue on Configurable
Distributed Systems), vol. 2, pp. 280–293, December 1994.

15

