
Reactor
An Object Behavioral Pattern for

Demultiplexing and Dispatching Handles for Synchronous Events

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science
Washington University, St. Louis, MO1

An earlier version of this paper appeared as a chapter in
the book “Pattern Languages of Program Design” ISBN 0-
201-6073-4, edited by Jim Coplien and Douglas C. Schmidt
and published by Addison-Wesley, 1995.

1 Intent

The Reactor design pattern handles service requests that
are delivered concurrently by multiple clients. This pattern
simplifies event-driven applications by integrating the syn-
chronous demultiplexing of events and the dispatching of
their corresponding event handlers. In addition, the Reac-
tor pattern also decouples the generic demultiplexing and
dispatching code from the application-specific event handler
code.

2 Also Known As

Dispatcher, Notifier

3 Motivation

This section provides the context and motivation for using
the Reactor pattern.

3.1 Context and Forces

The Reactor pattern should be applied when an applica-
tion must handle events from multiple clients concurrently
without incurring the programming complexity, performance
overhead, and non-portability of multi-threading.

To illustrate the Reactor pattern, consider the event-driven
server for a distributed logging service shown in Figure 1.
Client applications use the logging service to record informa-
tion about their status in a distributed environment. This sta-
tus information commonly includes error notifications, de-
bugging traces, and performance reports. Logging records
are sent to a central logging server, which can write the
records to various output devices, such as a console, a printer,
a file, or a network management database.

1This work was supported in part by a grant by Siemens.

NETWORKNETWORK

DATABASE

SERVER

PRINTER

CLIENT

CONSOLE

CLIENT

LOGGING

SERVER

SOCKET HANDLES

CONNECTION
REQUEST

LOGGING
RECORDS

LOGGING
RECORDS

CLIENT

Figure 1: Distributed Logging Service

The logging server shown in Figure 1 handles logging
records and connection requests sent by clients. Logging
records and connection requests can arrive concurrently on
multiple socket handles. A socket handle identifies network
communication resources managed within the OS.

The logging server communicates with clients using a
connection-oriented protocol, such as TCP [1]. The server
listens on a “passive-mode” socket handle for connection re-
quests to arrive from new clients. A passive-mode socket is
a factory that creates a separate “data-mode” socket handle
for each newly connected client. Once clients are connected,
they can send logging records concurrently to the server.

Server applications in a distributed system must handle
multiple clients that send requests for their services. Be-
fore invoking a specific service, however, the server appli-
cation must demultiplex and dispatch each incoming request
to its corresponding service handler. Developing an effective
server mechanisms for demultiplexing and dispatching client
requests requires the resolution of the following forces:

� Concurrency: A server must not block indefinitely han-
dling any single source of events at the exclusion of other
event sources since this may significantly delay the respon-

1

seness to multiple clients;

� Efficiency: A server must minimize latency, maximize
throughput, and avoid utilizing the CPU(s) unnecessarily;

� Programming simplicity: The design of a server should
simplify the use of efficient concurrency strategies;

� Adaptability: Integrating new or improved services,
such as changing message formats or adding server-side
caching, should incur minimal modifications and mainte-
nance costs for existing code;

� Portability: Porting a server to a new OS platform
should not require significant effort;

� Separation of concerns: Implementing event handlers
for new services should not require modifications to the
generic event demultiplexing and dispatching mechanisms.

3.2 Common Traps and Pitfalls with Conven-
tional Multi-threaded Solutions

Perhaps the most intuitive way to develop a concurrent log-
ging server is to use multiple threads that can process multi-
ple clients concurrently, as shown in Figure 2. This approach

NETWORKNETWORK

SERVERSERVER

LOGGING SERVERLOGGING SERVER

LoggingLogging
HandlerHandler

LoggingLogging
HandlerHandler

LoggingLogging
AcceptorAcceptor

THREAD2 THREAD3THREAD1

1: accept ()
3: create()

2: connect()

4: send()

5: recv()
6: write()

CLIENTCLIENT
AA

CLIENTCLIENT
BB

Figure 2: Multi-threaded Logging Server

synchronously accepts network connections and spawns a
“thread-per-connection” to handle client logging records.

However, using multi-threading to implement the process-
ing of logging records in the server fails to resolve the fol-
lowing forces:

� Efficiency: Threading may lead to poor performance due
to context switching, synchronization, and data movement
[2];

� Programming simplicity: Threading may require com-
plex concurrency control schemes;

� Portability: Threading is not available on all OS plat-
forms.

As a result of these drawbacks, multi-threading is often not
the most efficient nor the least complex solution to develop a
concurrent logging server.

For completeness, a C++ code example that uses syn-
chronous threading to implement the logging server appears
in Appendix A.

3.3 Solution: Concurrency Through Reactive
Operations

Often, a more convenient, efficient, and portable way to de-
velop a logging server is to use theReactor pattern. This
pattern integrates the synchronous demultiplexing of events
and the dispatching of their corresponding event handlers.
It also decouples the implementation of application-specific
services from the general-purpose event demultiplexing and
dispatching mechanisms.

The following figure uses OMT notation [3] to illustrate
the structure of a logging server designed according to the
Reactor pattern:

Initiation DispatcherInitiation Dispatcher

handle_events()
register_handler(h)
remove_handler(h)

Logging_AcceptorLogging_Acceptor

handle_event(type)
get_handle()

select (handlers);
foreach h in handlers loop
 h->handle_event(type)
end loop

new Logging_Handler

Logging_HandlerLogging_Handler

handle_event(type)
get_handle()

recv(log record);

Event HandlerEvent Handler

handle_event(type)
get_handle()

handlers

HandleHandle owns

Synchronous EventSynchronous Event
DemultiplexerDemultiplexer

select()

uses

notifies

The Event Handler base class provides a standard
interface for dispatching handlers that have registered to
process certain types of events. TheInitiation
Dispatcher uses this interface to call back to a hook
method on an application-specificEvent Handler when
it is possible to initiate an operation without blocking.
Concrete Event Handler s, such as theLogging
Handler andLogging Acceptor , can be customized
to process events associated with socket handles. A C++
code example that applies the Reactor pattern to the logging
server appears in Section 8.6.

4 Applicability

Use the Reactor pattern when:

� One or more events may arrive concurrently from dif-
ferent sources of events, and blocking or continuously

2

polling for incoming events on any individual source is
inefficient;

� An Event Handler possesses the following charac-
teristics:

– It exchanges fixed-sized or bounded-sized mes-
sages with its peerswithout requiring blocking
I/O;

– It processes each message it receives within a rel-
atively short period of time;

� Using multi-threading to implement event demultiplex-
ing is either:

– Infeasible– due to lack of multi-threading support
on an OS platform;

– Undesirable– due to poor performance on uni-
processors or due to the need for overly complex
concurrency control schemes;

– Redundant– due to the use of multi-threading at a
higher level within an application’s architecture;2

� The functionality, portability, and extensibility of
application-specific event handlers will benefit by be-
ing decoupled from the application-independent mech-
anisms that perform event demultiplexing and event
handler dispatching.

5 Structure and Participants

The structure of the participants Reactor pattern is illustrated
in the following OMT class diagram:

Initiation DispatcherInitiation Dispatcher

handle_events()
register_handler(h)
remove_handler(h)

select (handlers);
foreach h in handlers loop
 h->handle_event(type)
end loop

Event HandlerEvent Handler

handle_event(type)
get_handle()

handlers

HandleHandle ownsuses

notifies

ConcreteConcrete
EventEvent

HandlerHandler

Synchronous EventSynchronous Event
DemultiplexerDemultiplexer

select()

The key participants in the Reactor pattern include the fol-
lowing:
Handles

� Handles identify resources that are managed by an
OS. These resources commonly include network con-
nections, open files, timers, and synchronization ob-
jects. Handles are used in the logging server to

2For example, thehandle event method of anEvent Handler
may become an Active Object [4] by spawning a separate thread and han-
dling one or more incoming events within this thread.

identify socket endpoints so that theSynchronous
Event Demultiplexer can wait forREAD events
to occur on them.

Synchronous Event Demultiplexer

� The Synchronous Event Demultiplexer
blocks awaiting events to occur on a set ofHandles .
It returns when it is possible to initiate an operation on
aHandle without blocking. A common demultiplexer
for I/O events isselect [1]. select indicates which
Handle s can have operations invoked on them syn-
chronously without blocking the application process.

Initiation Dispatcher

� Defines an interface for registering, removing, and dis-
patching Event Handler s. The Synchronous
Event Demultiplexer informs theInitiation
Dispatcher when to call back application-specific
event handlers in response to certain types of events.
Common events include connection acceptance events,
data input and output events, and timeout events.

Event Handler

� Specifies an interface used by theInitiation
Dispatcher to call back to hook methods [5] defined
by Event Handler s that pre-register to process cer-
tain types of events.

Concrete Event Handler

� Implements the hook method(s) that process events
in an application-specific manner. There are
two Concrete Event Handler s in the log-
ging server: Logging Handler and Logging
Acceptor . The Logging Handler is responsi-
ble for receiving and processing logging records. The
Logging Acceptor creates and connectsLogging
Handler s that process logging records from clients.

6 Collaborations

6.1 General Collaborations

The following collaborations generally occur in the Reactor
pattern:

� When aConcrete Event Handler is registered
with the Initiation Dispatcher , the appli-
cation indicates the type of event(s) thisEvent
Handler wants theInitiation Dispatcher to
notify it about when the events occur on the associated
Handle .

� The Initiation Dispatcher combines the
Handle of all the registeredEvent Handlers and
uses theSynchronous Event Demultiplexer to
wait for events to occur on theseHandles .

3

� TheSynchronous Event Demultiplexer no-
tifies the Initiation Dispatcher when a
Handle corresponding to an event source becomes
“ready.” For instance, the TCP protocol layer uses the
select synchronous event demultiplexing operation
to notify the Initiation Dispatcher operation
that a socket is “ready for reading.”

� The Initiation Dispatcher triggers Event
Handler methods in response to events on the ready
Handles . When events occur, theInitiation
Dispatcher uses theHandles activated by the
event sources as “keys” to locate and dispatch the ap-
propriateEvent Handler hook methods.

� The Initiation Dispatcher calls back to
the handle event hook method of theEvent
Handler to perform application-specific functionality
in response to an event. The type of event that occurred
can be passed as a parameter to the method (an alterna-
tive approach is described in Section 8.4).

The following interaction diagram illustrates the collabo-
ration between application code and participants in the Re-
actor pattern:

mainmain
programprogram

REGISTER HANDLERREGISTER HANDLER

DISPATCHDISPATCH

 HANDLER HANDLER((SS))

RUN EVENT LOOPRUN EVENT LOOP

EXTRACT HANDLEEXTRACT HANDLE

INITIALIZEINITIALIZE

callback :callback :
ConcreteConcrete

Event_HandlerEvent_Handler

handle_events()

handle_event(event_type)

InitiationInitiation
DispatcherDispatcher

get_handle()

Initiation_Dispatcher()

select()

HandlesHandles

WAIT FOR EVENTS

IN
IT

IA
L

IZ
A

T
IO

N

M
O

D
E

E
V

E
N

T
 H

A
N

D
L

IN
G

M
O

D
E

register_handler(callback, event_type)

6.2 Collaboration Scenarios

The collaborations within the Reactor pattern for the logging
server can be illustrated with two scenarios. These scenarios
show how a logging server designed using reactive event dis-
patching handles connections requests and logging data from
multiple clients.

6.2.1 Client Connects to a Reactive Logging Server

The first scenario shows the steps taken when a client con-
nects to the logging server.

NETWORKNETWORK

SERVERSERVER LOGGING SERVERLOGGING SERVER

4: connect()

LoggingLogging
AcceptorAcceptor

1: register
 handler()

2: handle_events()
3: select()

CLIENTCLIENT

5: handle
 event()

6: accept()
7: create()

8: register
 handler()

InitiationInitiation
DispatcherDispatcher

LoggingLogging
HandlerHandler

This sequence of steps can be summarized as follows:

1. The logging server registers theLogging
Acceptor with theInitiation Dispatcher to
accept new connections;

2. The logging server invokes thehandle events
method of theInitiation Dispatcher ;

3. The Initiation Dispatcher invokes the syn-
chronous event demultiplexingselect operation to
wait for connection requests or logging data to arrive;

4. A client connects to the logging server;

5. The Logging Acceptor is notified by
the Initiation Dispatcher of the new connec-
tion request;

6. TheLogging Acceptor accepts the new connec-
tion;

7. TheAcceptor creates aLogging Handler to ser-
vice the new client;

8. Logging Handler registers its socket handle with
the Initiation Dispatcher and instructs the
dispatcher to notify it when the socket becomes “ready
for reading.”

6.2.2 Client Sends Logging Record to a Reactive Log-
ging Server

The second scenario shows the sequence of steps that the
reactive logging server takes to service a logging record.

4

NETWORKNETWORK

SERVERSERVER LOGGING SERVERLOGGING SERVER

1: send()
CLIENTCLIENT

AA

InitiationInitiation
DispatcherDispatcher

3: recv()
4: write()

CLIENTCLIENT
BB

2: handle
 event()

5: return

LoggingLogging
HandlerHandler

for Afor A

LoggingLogging
HandlerHandler

for Bfor B

This sequence of steps can be summarized as follows:

1. The client sends a logging record;

2. TheInitiation Dispatcher notifies the associ-
atedLogging Handler when a client logging record
is queued on its socket handle by OS;

3. The record is received in a non-blocking manner (steps
2 and 3 repeat until the logging record has been com-
pletely received);

4. The Logging Handler processes the logging
record and writes it to the standard output.

5. The Logging Handler returns control to the
Initiation Dispatcher ’s event loop.

7 Consequences

7.1 Benefits

The Reactor pattern offers the following benefits:

Separation of concerns: The Reactor pattern decou-
ples application-independent demultiplexing and dispatch-
ing mechanisms from application-specific hook method
functionality. The application-independent mechanisms be-
come reusable components that know how to demultiplex
events and dispatch the appropriate hook methods defined
by Event Handlers . In contrast, the application-specific
functionality in a hook method knows how to perform a par-
ticular type of service.

Improve modularity, reusability, and configurability of
event-driven applications: The pattern decouples server
functionality into separate classes. For instance, there are
two separate classes in the logging server: one for estab-
lishing connections and another for receiving and process-
ing logging records. This decoupling enables the reuse
of the connection establishment class for different types of
connection-oriented services (such as file transfer, remote lo-
gin, and video-on-demand). Therefore, to modify or extend
the functionality of the logging server, only the implementa-
tion of the logging class must change.

Improves application portability: The Initiation
Dispatcher ’s interface can be reused independently of
the OS system calls that perform event demultiplexing.
These system calls detect and report the occurrence of one
or more events that may occur simultaneously on multiple
sources of events. Common sources of events may include
I/O handles, timers, and synchronization objects. On UNIX
platforms, the event demultiplexing system calls are called
select andpoll [1]. In the Windows NT Win32 API, the
WaitForMultipleObjects system call performs event
demultiplexing [6].

Provides coarse-grained concurrency control: The Re-
actor pattern serializes the invocation of event handlers at
the level of event demultiplexing and dispatching within
a process or thread. Serialization at theInitiation
Dispatcher level often eliminates the need for more com-
plicated synchronization or locking within an application
process.

7.2 Liabilities

The Reactor pattern has the following liabilities:

Restricted applicability: The Reactor pattern can only be
applied efficiently if the OS supportsHandles . It is pos-
sible to emulate the semantics of the Reactor pattern using
multiple threads within theInitiation Dispatcher ,
e.g. one thread for eachHandle . However, this design
is typically very inefficient since it serializes allEvent
Handler s, thereby increasing synchronization and context
switching overhead without enhancing parallelism.

Non-preemptive: In a single-threaded application pro-
cess,Event Handlers are not preempted while they are
executing. This implies that anEvent Handler should
not perform blocking I/O on an individualHandle since
this will block the entire process and decrease the respon-
siveness for clients connected to otherHandles . There-
fore, for long-duration operations, such as transferring multi-
megabyte medical images [7], the Active Object pattern
[8] may be more effective. An Active Object uses multi-
threading or multi-processing to complete its tasks in parallel
with the Initiation Dispatcher ’s main event-loop.

Hard to debug: Applications written with the Reactor pat-
tern can be hard to debug since the inverted flow of con-
trol oscillates between the framework infrastructure and the
method callbacks on application-specific handlers. This in-
creases the difficulty of “single-stepping” through the run-
time behavior of a framework within a debugger since appli-
cation developers may not understand or have access to the
framework code. This is similar to the problems encountered
trying to debug a compiler lexical analyzer and parser writ-
ten with LEX and YACC. In these applications, debugging
is straightforward when the thread of control is within the
user-defined action routines. Once the thread of control re-
turns to the generated Deterministic Finite Automata (DFA)
skeleton, however, it is hard to follow the program logic.

5

8 Implementation

This section describes how to implement the Reactor pattern
in C++. The implementation described below is influenced
by the reusable components provided in the ACE communi-
cation software framework [2].

8.1 Select the Synchronous Event Demulti-
plexer Mechanism

The Initiation Dispatcher uses aSynchronous
Event Demultiplexer to wait synchronously until one
or more events occur. This is commonly implemented us-
ing an OS event demultiplexing system call likeselect .
The select call indicates whichHandle (s) are ready
to perform I/O operations without blocking the applica-
tion process. In general, theSynchronous Event
Demultiplexer can be selected from existing OS mecha-
nisms, rather than developed by implementers of the Reactor
pattern.

8.2 Develop an Initiation Dispatcher

The following are the steps necessary to develop the
Initiation Dispatcher :

Implement the Event Handler table: A Initiation
Dispatcher maintains a table ofConcrete Event
Handler s. Therefore, theInitiation Dispatcher
should provide methods to register and remove the handlers
from this table at run-time.

Implement the event loop entry point: The entry point
into the event loop of theInitiation Dispatcher
should be provided by ahandle events method. This
method controls theHandle demultiplexing provided by
theSynchronous Event Demultiplexer , as well as
performingEvent Handler dispatching. When events oc-
cur, theInitiation Dispatcher returns from the syn-
chronous event demultiplexing call and “reacts” by dispatch-
ing theEvent Handler ’s handle event hook method
for each handle that is “ready.” This hook method executes
user-defined code and returns control to theInitiation
Dispatcher when it completes.

The following C++ class illustrates the core methods on
theInitiation Dispatcher’s public interface:

enum Event_Type
// = TITLE
// Types of events handled by the
// Initiation_Dispatcher.
//
// = DESCRIPTION
// These values are powers of two so
// their bits can be efficiently ‘‘or’d’’
// together to form composite values.

{
ACCEPT_EVENT = 01,
READ_EVENT = 02,
WRITE_EVENT = 04,
TIMEOUT_EVENT = 010,

SIGNAL_EVENT = 011,
CLOSE_EVENT = 012

};

class Initiation_Dispatcher
// = TITLE
// Demultiplex and dispatch Event_Handlers
// in response to client requests.

{
public:

// Register an Event_Handler of a particular
// Event_Type.
int register_handler (Event_Handler *eh,

Event_Type et);

// Remove an Event_Handler of a particular
// Event_Type.
int remove_handler (Event_Handler *eh,

Event_Type et);

// Entry point into the reactive event loop.
int handle_events (Time_Value *timeout = 0);

};

Implement the necessary synchronization mechanisms:
If the Reactor pattern is used in an application with only one
thread of control it is possible to eliminate all synchroniza-
tion. In this case, theInitiation Dispatcher serial-
izes theEvent Handler handle event hooks within
the application’s process.

However, the Initiation Dispatcher can also
serve as a central event dispatcher in multi-threaded applica-
tions. In this case, critical sections within theInitiation
Dispatcher must be serialized to prevent race conditions
when modifying or activating shared variables (such as the
table holding theEvent Handler s). A common tech-
nique for preventing race conditions uses mutual exclusion
mechanisms like semaphores or mutex variables.

To prevent deadlock, mutual exclusion mechanisms can
use recursive locks[9]. Recursive locks are an effi-
cient means to prevent deadlock when locks are held by
the same thread acrossEvent Handler hook meth-
ods within the Initiation Dispatcher . A recur-
sive lock may be re-acquired by the thread that owns the
lock without blocking the thread. This property is impor-
tant since the Reactor’shandle events hook method
calls back on application-specificEvent Handler s.
Therefore, application hook method code may subse-
quently re-enter theInitiation Dispatcher using its
register handler andremove handler methods.

8.3 Determine the Type of the Dispatching
Target

Two types ofEvent Handlers can be associated with
a Handle to serve as the target of anInitiation
Dispatcher ’s dispatch operation:

Event Handler objects: A common way to associate an
Event Handler with a Handle is to make theEvent
Handler an object. For instance, the Reactor pattern imple-
mentation shown in Section 5 registersEvent Handler

6

subclass objects with anInitiation Dispatcher .
Using an object as the dispatching target makes it convenient
to subclassEvent Handlers in order to reuse and extend
existing components. In addition, objects integrate the state
and methods of a service.

Event Handler functions: Another way to associate an
Event Handler with a Handle is to register a function
with the Initiation Dispatcher . Using functions as
the dispatching target makes it convenient to register call-
backs without having to define a new class that inherits from
Event Handler . A hybrid approach using the Adapter
pattern [10] can be employed to support both objects and
functions.

8.4 Define the Event Handling Interface

Assuming that we useEvent Handler objects rather than
functions, the next step is to define the interface of the
Event Handler . There are two approaches:

A single-method interface: The OMT diagram in Sec-
tion 5 illustrates an implementation of theEvent
Handler base class interface that contains a single
method, calledhandle event , which is used by the
Initiation Dispatcher to dispatch events. In this
case, the type of the event is passed as a parameter to the
method.

The following C++ abstract base class illustrates the
single-method interface:

class Event_Handler
// = TITLE
// Abstract base class that serves as the
// target of the Initiation_Dispatcher.

{
public:

// Hook method that is called back by the
// Initiation_Dispatcher to handle events.
virtual int handle_event (Event_Type et) = 0;

// Hook method that returns the underlying
// I/O Handle.
virtual Handle get_handle (void) const = 0;

};

The advantage of the single-method interface is that it is
possible to add new types of events without changing the in-
terface. However, this approach encourages the use of switch
statements in the subclass’shandle event method, which
limits its extensibility.

A multi-method interface: Another way to implement the
Event Handler in-
terface is to define separate virtual hook methods for each
type of event (such ashandle input , handle output ,
or handle timeout).

The following C++ abstract base class illustrates the
single-method interface:

class Event_Handler
{
public:

// Hook methods that are called back by
// the Initiation_Dispatcher to handle
// particular types of events.
virtual int handle_accept (void) = 0;
virtual int handle_input (void) = 0;
virtual int handle_output (void) = 0;
virtual int handle_timeout (void) = 0;
virtual int handle_close (void) = 0;

// Hook method that returns the underlying
// I/O Handle.
virtual Handle get_handle (void) const = 0;

};

The benefit of the multi-method interface is that it is easy
to extend since subclassing does not involve switch state-
ments. However, it requires the framework developer to an-
ticipate the set ofEvent Handler methods in advance.

Both approaches described above are examples of the
hook method pattern described in [5] and the Factory Call-
back pattern described in [11]. The intent of these patterns is
to provide well-defined hooks that can be specialized by ap-
plications and called back by lower-level dispatching code.

8.5 Determine the Number of Initiation Dis-
patchers in an Application

Many applications can be structured using just one instance
of the Reactor pattern. In this case, theInitiation
Dispatcher can be implemented as a Singleton [10]. This
design is useful for centralizing event demultiplexing and
dispatching into a single location within an application.

However, some operating systems limit the number of
Handles that can be waited for within a single thread
of control. For instance, Win32 allowsselect and
WaitForMultipleObjects to wait for no more than 64
Handles in a single thread. In this case, it may be neces-
sary to create multiple threads, each of which runs its own
instance of the Reactor pattern.

Note thatEvent Handlers are only serializedwithin
an instance of the Reactor pattern. Therefore, multiple
Event Handlers in multiple threads can run in paral-
lel. This may necessitate additional synchronization mech-
anisms if Event Handlers in different threads access
shared state.

8.6 Implement the Concrete Event Handlers

The following code implements theConcrete Event
Handlers for the logging server described in Section 3.1.
These handlers providepassive connection establishment
(Logging Acceptor) and data reception(Logging
Handler).

The Logging Acceptor class: This class is an example
of the Acceptor pattern [12]. The Acceptor pattern decou-
ples the task of service initialization from the tasks per-
formed after a service is initialized. This pattern enables
the application-specific portion of a service, such as the

7

Logging Handler , to vary independently of the mech-
anism used to establish the connection.

A Logging Acceptor passively accepts connections
from client applications and createsLogging Handler
objects, which receive and process logging records from
clients. The key methods and data members in theLogging
Acceptor class are defined below:

class Logging_Acceptor : public Event_Handler
// = TITLE
// Handles client connection requests.

{
public:

// Initialize the acceptor_ endpoint and
// register with the Initiation Dispatcher.
Logging_Acceptor (const INET_Addr &addr);

// Factory method that accepts a new
// SOCK_Stream connection and creates a
// Logging_Handler object to handle logging
// records sent using the connection.
virtual void handle_event (Event_Type et);

// Get the I/O Handle (called by the
// Initiation Dispatcher when
// Logging_Acceptor is registered).
virtual HANDLE get_handle (void) const
{

return acceptor_.get_handle ();
}

private:
// Socket factory that accepts client
// connections.
SOCK_Acceptor acceptor_;

};

TheLogging Acceptor class inherits from theEvent
Handler base class. This enables an application to reg-
ister the Logging Acceptor with an Initiation
Dispatcher .

The Logging Acceptor also contains an instance of
SOCK Acceptor . This is a concrete factory that enables
theLogging Acceptor to accept connection requests on
a passive mode socket that is listening to a communication
port. When a connection arrives from a client, theSOCK
Acceptor accepts the connection and produces aSOCK
Stream object. Henceforth, theSOCK Stream object is
used to transfer data reliably between the client and the log-
ging server.

TheSOCK Acceptor andSOCK Stream classes used
to implement the logging server are part of the C++ socket
wrapper library provided by ACE [13]. These socket wrap-
pers encapsulate theSOCK Streamsemantics of the socket
interface within a portable and type-secure object-oriented
interface. In the Internet domain,SOCK Stream sockets
are implemented using the TCP transport protocol.

The constructor for theLogging Acceptor registers
itself with theInitiation Dispatcher Singleton [10]
for ACCEPTevents, as follows:

Logging_Acceptor::Logging_Acceptor
(const INET_Addr &addr)

: acceptor_ (addr)
{

// Register acceptor with the Initiation
// Dispatcher.
Initiation_Dispatcher::instance ()->

register_handler (this, ACCEPT_EVENT);
}

Henceforth, whenever a client connection arrives, the
Initiation Dispatcher calls back to theLogging
Acceptor ’s handle event method, as shown below:

void
Logging_Acceptor::handle_event (Event_Type et)
{

// Can only be called for an ACCEPT event.
assert (et == ACCEPT_EVENT);

SOCK_Stream new_connection;

// Accept the connection.
acceptor_.accept (new_connection);

// Create a new Logging Handler.
Logging_Handler *handler =

new Logging_Handler (new_connection);
}

Thehandle event method invokes theaccept method
of the SOCK Acceptor to passively establish aSOCK
Stream . Once theSOCK Stream is connected with
the new client, aLogging Handler is allocated dy-
namically to process the logging requests. As shown
below, theLogging Handler registers itself with the
Initiation Dispatcher , which will then demulti-
plex all the logging records of its associated client to it.

The Logging Handler class: The logging server uses the
Logging Handler class shown below to receive logging
records sent by client applications:

class Logging_Handler : public Event_Handler
// = TITLE
// Receive and process logging records
// sent by a client application.

{
public:

// Initialize the client stream.
Logging_Handler (SOCK_Stream &cs);

// Hook method that handles the reception
// of logging records from clients.
virtual void handle_event (Event_Type et);

// Get the I/O Handle (called by the
// Initiation Dispatcher when
// Logging_Handler is registered).
virtual HANDLE get_handle (void) const
{

return this->peer_stream_.get_handle ();
}

private:
// Receives logging records from a client.
SOCK_Stream peer_stream_;

};

Logging Handler inherits from Event Handler ,
which enables it to be registered with theInitiation
Dispatcher , as shown below:

8

Logging_Handler::Logging_Handler
(SOCK_Stream &cs)

: peer_stream_ (cs)
{

// Register with the dispatcher for
// READ events.
Initiation_Dispatcher::instance ()->

register_handler (this, READ_EVENT);
}

Once it’s created, aLogging Handler registers itself
for READ events with theInitiation Dispatcher
Singleton. Henceforth, when a logging record arrives,
the Initiation Dispatcher automatically dispatches
the handle event method of the associatedLogging
Handler , as shown below:

void
Logging_Handler::handle_event (Event_Type et)
{

if (et == READ_EVENT) {
Log_Record log_record;

this->peer_stream_.recv (log_record);

// Write logging record to standard output.
log_record.write (STDOUT);

}
else if (et == CLOSE_EVENT) {

this->peer_stream_.close ();
delete (void *) this;

}
}

When a READ

event occurs, theInitiation Dispatcher calls back
to Logging Handler ’s handle event method. This
method receives, processes, and writes the logging record to
the standard output. Likewise, when the client closes down
the connection theInitiation Dispatcher passes a
CLOSE event, which informs theLogging Handler to
shut down itsSOCK Stream and delete itself.

8.7 Implement the Server

The logging server contains a singlemain function.

The logging server main function: This function imple-
ments a single-threaded concurrent logging server that waits
in an event loop for anInitiation Dispatcher to no-
tify it to initiate accept andrecv operations via callbacks
to the appropriateEvent Handler s. The main entry point
into the logging server is defined as follows:

// Server port number.
const u_short PORT = 10000;

int
main (void)
{

// Logging server port number.
INET_Addr server_addr (PORT);

// Initialize logging server endpoint.
Logging_Acceptor ca (server_addr);

// Main event loop that handles client

// logging records and connection requests.
for (;;)

Initiation_Dispatcher::instance ()->
handle_events ();

/* NOTREACHED */
return 0;

}

The main program creates aLogging Acceptor , initial-
izes it with the port number of the logging server, and en-
ters its main event-loop. Subsequently, theInitiation
Dispatcher Singleton uses theselect event demulti-
plexing system call to synchronously wait for connection re-
quests and logging records to arrive from clients.

The following interaction diagram illustrates the collabo-
ration between the objects participating in the logging server
example:

LoggingLogging
ServerServer

REGISTER HANDLERREGISTER HANDLER

FOR ACCEPTSFOR ACCEPTS

START EVENT LOOPSTART EVENT LOOP

CONNECTION EVENTCONNECTION EVENT

ACCEPT ANDACCEPT AND

CREATE HANDLERCREATE HANDLER

FOREACH EVENT DOFOREACH EVENT DO

EXTRACT HANDLEEXTRACT HANDLE

INITIALIZEINITIALIZE

la :la :
LoggingLogging
AcceptorAcceptor

handle_events()

handle_event(READ_EVENT)

InitiationInitiation
DispatcherDispatcher

get_handle()

Initiation_Dispatcher()

register_handler(la, ACCEPT_EVENT)

select()

lh :lh :
LoggingLogging
HandlerHandler

handle_event(ACCEPT_EVENT)

sock = acceptor_.accept()
lh = new Logging_Acceptor (sock);

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

LOGGING RECORDLOGGING RECORD

HandlesHandles

REGISTER HANDLERREGISTER HANDLER

FOR INPUTFOR INPUT
register_handler(lh, READ_EVENT)

Once theInitiation Dispatcher object is initial-
ized, it becomes the primary focus of the control flow within
the logging server. All subsequent activity is triggered by
hook methods on theLogging Acceptor andLogging
Handler objects registered with, and controlled by, the
Initiation Dispatcher .

When data arrives on the network connection, the
Initiation Dispatcher calls back theLogging
Acceptor , which accepts the network connection and cre-
ates aLogging Handler . This Logging Handler
then registers with theInitiation Dispatcher for
READ events. Thus, when a client sends a logging record, the
Initiation Dispatcher calls back to theLogging
Handler to process the incoming record from that client
connection in the logging server’s single thread of control.

9 Known Uses

The Reactor pattern has been used in many object-oriented
frameworks, including the following:

� InterViews: The Reactor pattern is implemented by
the InterViews [14] window system distribution, where
it is known as theDispatcher . The InterViews
Dispatcher is used to define an application’s main event

9

loop and to manage connections to one or more physical GUI
displays.

� ACE Framework: The ACE framework [15] uses the
Reactor pattern as its central event demultiplexer and dis-
patcher.

The Reactor pattern has been used in many commercial
projects, including:

� CORBA ORBs: The ORB Core layer in many single-
threaded implementations of CORBA [16] (such as VisiBro-
ker and Orbix) use the Reactor pattern demultiplex and dis-
patch ORB requests to servants.

� Ericsson EOS Call Center Management System: This
system uses the Reactor pattern to manage events routed by
Event Servers [17] between PBXs and supervisors in Call
Center Management system.

�Project Spectrum: The high-speed medical image trans-
fer subsystem of project Spectrum [7] uses the Reactor pat-
tern in a medical imaging system.

10 Related Patterns

The Reactor pattern is related to the Observer pattern [10],
where all dependents are informed when a single subject
changes. In the Reactor pattern, a single handler is informed
when an event of interest to the handler occurs on a source
of events. The Reactor pattern is generally used to demul-
tiplex events from multiple sources to their associated event
handlers, whereas an Observer is often associated with only
a single source of events.

The Reactor pattern is related to the Chain of Responsibil-
ity (CoR) pattern [10], where a request is delegated to the re-
sponsible service provider. The Reactor pattern differs from
the CoR pattern since the Reactor associates a specific Event
Handler with a particular source of events, whereas the CoR
pattern searches the chain to locate the first matching Event
Handler.

The Reactor pattern can be considered asynchronousvari-
ant of the asynchronous Proactor pattern [18]. The Proac-
tor supports the demultiplexing and dispatching of multiple
event handlers that are triggered by thecompletionof asyn-
chronousevents. In contrast, the Reactor pattern is respon-
sible for demultiplexing and dispatching of multiple event
handlers that are triggered when it is possible toinitiate an
operationsynchronouslywithout blocking.

The Active Object pattern [8] decouples method execution
from method invocation to simplify synchronized access to
a shared resource by methods invoked in different threads
of control. The Reactor pattern is often used in place of the
Active Object pattern when threads are not available or when
the overhead and complexity of threading is undesirable.

An implementation of the Reactor pattern provides a Fa-
cade [10] for event demultiplexing. A Facade is an interface
that shields applications from complex object relationships
within a subsystem.

11 Concluding Remarks

The Reactor pattern provides several benefits for event-
driven applications. It simplifies the development of flexible
applications based on reusable components by decoupling
(1) application-independent demultiplexing and dispatching
mechanisms from (2) application-specific functionality per-
formed by user-defined methods in theEvent Handler .
Likewise, the Reactor pattern facilitates application exten-
sibility by allowing Event Handler s to evolve indepen-
dently of the event demultiplexing mechanisms provided by
the OS.

Acknowledgements

Thanks to Frank Buschmann and John Vlissides for helpful
comments on this paper.

References
[1] W. R. Stevens,UNIX Network Programming, First Edition.

Englewood Cliffs, NJ: Prentice Hall, 1990.

[2] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[3] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen,Object-Oriented Modeling and Design. Engle-
wood Cliffs, NJ: Prentice Hall, 1991.

[4] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” inPattern
Languages of Program Design(J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[5] W. Pree,Design Patterns for Object-Oriented Software De-
velopment. Reading, MA: Addison-Wesley, 1994.

[6] H. Custer,Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[7] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,”USENIX Comput-
ing Systems, vol. 9, November/December 1996.

[8] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” inProceed-
ings of the2nd Annual Conference on the Pattern Languages
of Programs, (Monticello, Illinois), pp. 1–7, September 1995.

[9] D. C. Schmidt, “An OO Encapsulation of Lightweight OS
Concurrency Mechanisms in the ACE Toolkit,” Tech. Rep.
WUCS-95-31, Washington University, St. Louis, September
1995.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[11] S. Berczuk, “A Pattern for Separating Assembly and Process-
ing,” in Pattern Languages of Program Design(J. O. Coplien
and D. C. Schmidt, eds.), Reading, MA: Addison-Wesley,
1995.

[12] D. C. Schmidt, “Acceptor and Connector: Design Patterns for
Initializing Communication Services,” inPattern Languages
of Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

10

[13] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” inProceedings
of the2nd Conference on Object-Oriented Technologies and
Systems, (Toronto, Canada), USENIX, June 1996.

[14] M. A. Linton and P. R. Calder, “The Design and Implemen-
tation of InterViews,” inProceedings of the USENIX C++
Workshop, November 1987.

[15] D. C. Schmidt, “The ACE Framework.” Available from
www.cs.wustl.edu/�schmidt/ACE.html, 1997.

[16] Object Management Group,The Common Object Request
Broker: Architecture and Specification, 2.0 ed., July 1995.

[17] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,”IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[18] T. Harrison, I. Pyarali, D. C. Schmidt, and T. Jordan, “Proac-
tor – An Object Behavioral Pattern for Dispatching Asyn-
chronous Event Handlers,” inThe4th Pattern Languages of
Programming Conference, September 1997.

A Implementing the Logging Server
with Synchronous Multi-threading

This section shows how to use synchronous I/O with multi-
ple threads to develop the logging server shown in Figure 2.
The sequence of steps to service a logging record from a
client can be summarized as follows:

1. The Logging Acceptor runs in thread 1 and
blocks in theaccept socket call waiting for client con-
nection requests;

2. A client connects to the server;

3. TheLogging Acceptor accepts the new connec-
tion and creates a newLogging Handler to ser-
vice the client – this handler is run in the newly-created
thread2;

4. The client sends a logging record;

5. The client’s logging record is synchronously received
from the network connection bythread 2;

6. The record is written to the standard output.

Steps 4, 5, and 6 are repeated until the client closes down the
connection. The code below shows an implementation of the
Logging Handler using synchronous multi-threading.

class Logging_Handler : public Task
// = TITLE
// Handle client logging records.
//
// = DESCRIPTION
// The Logging_Handler class runs as
// an Active Object, i.e., with its
// own thread of control. The Task
// base clas defines activate () and
// the svc() hook for Active Objects.

{
public:

// This method is called by the

// Logging_Acceptor when a new
// client connects to the server.
Logging_Handler (Socket_Stream &client)
{

Logging_Record record;

// Store reference to client.
client_ = client;

// Become an Active Object (which
// spawns a thread and calls the svc()
// hook).
activate ();

}

// Hook method called by activate().
void svc (void)
{

Logging_Record record;

// Synchronously read the logging
// record from the network connection
// and write it to standard output.
while (client_->recv (record) != DONE)

record.write (STDOUT);
}

private:
// Socket endpoint.
Socket_Stream client_;

// ...
};

The primary advantage of synchronous threading is the
simplification of application code. In particular, operations
performed by the logging server to service client A’s request
are mostly independent of the operations required to service
client B’s request. Thus, it is easy to service different re-
quests in separate threads because the amount of state shared
between the threads is low, which minimizes the need for
synchronization. Moreover, executing application logic in
separate threads allows developers to utilize intuitive sequen-
tial commands such as blockingaccept andrecv opera-
tions.

11

