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Abstract

Dynamic deployment and configuration (D&C) of
components in response to environmental changes or sys-
tem mission mode changes is essential to facilitate run-
time resource management for component-based dis-
tributed real-time and embedded (DRE) systems. It
is therefore essential that D&C can be performed
a timely and predictable manner. This paper pro-
vides three contributions to the study of predictable
D&C for component-based DRE systems. First, we de-
scribe how the predictability of component-based D&C
can be affected by application dependency relationships
and priorities. Second, we describe how a multi-graph al-
gorithm called partial priority inheritance via graph
recomposition (PARIGE) can improve D&C pre-
dictability. Third, we empirically evaluate the effec-
tiveness of PARIGE on a representative DRE system
based on NASA Earth Science Enterprise’s Magneto-
spheric Multi-Scale (MMS) mission system. The results
show that PARIGE incurs negligible ∼1% D&C per-
formance overhead, but can avoid unbounded deploy-
ment time priority inversion when component assem-
blies with different priorities have complex dependencies
among each other, thereby significantly improving the re-
sponsiveness of mission-critical tasks with higher priori-
ties.

Keywords: Component middleware, Distributed
Real-time and Embedded systems, Deployment and
Configuration.

1. Introduction

Emerging trends and challenges. Develop-
ing distributed real-time and embedded (DRE)
systems whose quality of service (QoS) can be as-
sured even in the face of changes in available resources
or QoS requirements is an important and challeng-
ing R&D problem. Systems with such characteristics
are called open DRE systems [1] since they oper-
ate in open environment and must be prepared to
accommodate changing operating conditions or re-
quirements, such as power levels, CPU/network band-
width or mission modes. Examples of open DRE sys-
tems include shipboard computing environment [2],

and intelligence, surveillance and reconnaissance sys-
tems.

Open DRE system are often large and complex, e.g.,
a shipboard computing system may consist of thou-
sands of software components that run a wide range
of missions, such as ship navigation, ship structural
health monitoring, vision-based object tracking and ob-
ject characterization. To manage the overall complex-
ity of such systems, the missions are often decomposed
into many domain-related tasks that can be modeled
as operational strings [4], which are assemblies of soft-
ware components that capture the partial order and
workflow of a set of executing software capabilities for
particular domain tasks.

Operational strings can be deployed onto multiple
nodes of the target running environment, and differ-
ent components in operational strings can communi-
cate remotely with each other. Operational strings of-
ten run concurrently in the same target environment
and share many system resources, such as CPU, mem-
ory, and network bandwidth. Typically, to achieve cer-
tain mission goals different operational strings can co-
operate with each other through their ports, which del-
egate to the ports of monolithic components that con-
sist of the operational strings.

In complex DRE systems, many operational strings
may be deployed dynamically, e.g., in response to mis-
sion mode or environmental changes. If dependencies
exist among these operational strings, deployment pri-
ority inversions can occur at runtime. A deployment
priority inversion occurs when a higher priority opera-
tional string cannot be deployed before lower priority
operational string(s) because of the dependencies be-
tween them. Existing D&C frameworks [5, 6, 7] only
consider the dependency between operational strings
and ignore their priorities, which can cause unbounded
deployment priority inversions for DRE systems.
Solution Approach → Partial Priority Inheri-
tance via Graph Recomposition.

To address the challenges of open DRE systems de-
scribed above, we developed a technique based on an
algorithm called partial priority inheritance via graph
recomposition (PARIGE). This algorithm analyzes the
dependencies between operational strings and removes



all the dependencies from higher priority operational
strings to lower priority ones by promoting1 compo-
nents from lower priority operational strings to higher
priority ones. By applying our technique, a D&C frame-
work can avoid potential priority inversions when mul-
tiple operational strings are deployed at runtime.

The three three main steps of our approach are as
follows:
• Step 1 converts a deployment descriptor (which

contains metadata describing a set of operational
strings) into an in-memory directed graph repre-
sentation. Each vertex in the graph represents a
component in the operational string and each edge
represents a connection between two components.
• Since a deployment plan may have multiple op-

erational strings with different priorities having
dependencies among each other, step 2 analyzes
the dependency relationship between all the op-
erational strings by performing a graph-based al-
gorithm called partial priority inheritance via graph
recomposition (PARIGE). This algorithm removes
all the priority inverted dependencies between op-
erational strings by promoting component(s) from
the lower priority operational string to the higher
priority string.
• After graphs are recomposed, step 3 converts them

back to deployment descriptor format and fed to
the D&C framework for deployment. For the op-
erational strings with dependencies on each other,
the D&C framework can then deploy the opera-
tional strings from the highest priority to the low-
est priority.

When a DRE system has many operational
strings with complex dependencies it is hard to de-
termine manually which components in which op-
erational strings should be promoted and which
operational string to promote. This paper there-
fore makes the following three contributions to the
research on D&C for component-based DRE sys-
tems:
• Analyze dependency relationships among opera-

tional strings to determine how each relationship
can affect deployment predictability.
• Present a multi-graph algorithm called “partial

priority-inheritance via graph recomposition” to
avoid deployment priority inversion.
• Empirically evaluate the multi-graph algorithm to

determine how effective it is on a representative
DRE system.

1 In the context of this paper, promoting a component means
that before this component is deployed it is temporarily moved
from a lower priority operational string to a higher priority op-
erational string for deployment purpose only.

Paper organization. The remainder of this paper is
organized as follows: Section 2 describes a represen-
tative DRE system case study that elicits key chal-
lenges to ensure the predictability of operational string
D&C; Section 3 presents the PARIGE algorithm based
on a multi-graph recomposition technique that resolves
these challenges; Section 4 presents results of exper-
iments that evaluate our techniques empirically; Sec-
tion 5 compares our work with related research; and
Section 6 presents concluding remarks and lessons
learned.

2. Motivating Case Study

This section describes different configurations of op-
erational strings in DRE systems that can cause de-
ployment priority inversion to occur due to the de-
pendencies among the strings. To make our discussion
concrete, we use NASA’s Magnetospheric Multi-Scale
(MMS) mission system [8] as a case study. We first
present the case study and then identify key challenges
that must be addressed to ensure D&C predictability
for the case study.

2.1. Overview of NASA MMS Mission Sys-
tem

The NASA Earth Science Enterprise’s MMS mission
system system uses five satellites with multiple sen-
sors on each satellite to perform solar-terrestrial probe
tasks. The satellites orbit the earth in formation, and
collect electromagnetic and particle data in the earth’s
magnetosphere. The MMS mission operates in three
data modes: slow, fast, and burst. These data modes
may also include different goals, orbits, and data prior-
ities. Each satellite must be capable of determining the
necessary task sequences to achieve prescribed goals
based on the current environmental and system condi-
tions, as well as revising task sequences in response to
changing conditions.

To achieve autonomy, an automated planner is de-
ployed within the MMS system to handle autonomous
mode changes driven by the satellite position and the
results of analyzing collected data. The task sequences
are implemented by components for coordinating the
trajectory and orientation of satellites, sensor selec-
tion and data collection for individual satellites, and
data integration and compression to create telemetry
streams that are beamed down to earth stations.

Figure 1 shows three operational strings that a plan-
ner generates for a mission task in one of the satel-
lites. Each operational string has different deployment
priority (i.e., high, medium, and low) that are deter-
mined by how each operational string is accessed by
the overall MMS system. The three operational strings
are briefly described as follows:
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Figure 1: Operational Strings Generated by Planner

• Operational string A defines a mission-critical
task that collects field data when a satellite moves
to particular locations. To ensure this task is per-
formed properly, the operational string must be
deployed as fast as possible to avoid loss of data.
Operational string A can store the collected data
in its own data store, but can also send the data to
other operational strings through its event sources.
• Operational string B is designed for a domain-

centric data analysis. Different scientific analy-
sis tasks can be configured through the facets of
components of this operational string. For exam-
ple, Science Agent components can be configured
to achieve scientific objectives, such as analyz-
ing models of complex phenomena like extended
weather forecasting.
• Operational string C is for less essential data

analysis task and can collect auxiliary field data,
such as Sun zenith, satellite view zenith [9], which
can serve as additional input for analysis. This
operational string only operates occasionally, e.g.,
when the data analysis component in operational
string B explicitly issues a request to request
such data as additional input for scientific analy-
sis models. The components in operational string
C are driven by events exchanged through their
event sources and sinks.

Operational strings are organized from domain per-
spective, e.g., each operational string is designed to ac-
complish certain domain tasks, such as collecting cer-
tain field data, or perform certain analysis on different
data models. In our MMS scenario, operational string
A services (e.g., collecting essential field data for sci-
entific analysis) are most important for the MMS sys-
tem, so it has the highest deployment priority among
the three operational strings. Conversely, operational
string C has the lowest deployment priority among
the three since it is designed as a less essential ser-
vice, i.e., collecting auxiliary data only when neces-
sary. Finally, operational string B is designed to have
medium deployment priority because its scientific anal-
ysis role is less important than operational string A,

but more important than operational string C. Opera-
tional string B, however, needs to send events to oper-
ational C to notify it to collect auxiliary field data and
perform analysis when necessary. The deployment pri-
orities of operational strings are not the same as exe-
cution priorities because the latter deals with real-time
QoS at run-time.

As shown in Figure 1, there are two dependencies be-
tween operational strings: from A to B and from B to
C. These dependencies cross the boundary of an indi-
vidual operational string. We therefore call them ex-
ternal dependencies, in contrast to those dependencies
within an operational string.

2.2. Challenges of Ensuring D&C Pre-
dictability in the MMS Case Study

Below we describe four challenges that arise when
operational strings are deployed dynamically in open
DRE systems, such as the NASA MMS mission case
study described above.

Challenge 1: Avoid deployment priority inver-
sion between two operational strings. In conven-
tional D&C technologies, such as the OMG D&C spec-
ification [10, 6], when a component of an operational
string has a connection (either facet/receptacle or event
sink/source) to another component in a separate opera-
tional string, an external reference must be specified to
indicate the remote component and the provided port
in the other operational string upon which it depends.
To deploy this operational string successfully, the exter-
nal reference endpoint of the other operational string
must be activated before the deployment of source op-
erational string can occur. When such a dependency is
from a higher priority operational string to a lower pri-
ority operational string, however, the low priority op-
erational string must be deployed before the high pri-
ority operational string can be deployed to avoid de-
ployment failure caused by the dependency, which re-
sults in a priority inversion at deployment-time.

For example, in our MMS system case study de-
scribed in Section 2.1 the dependency from operational
string B (medium priority) to operational C (low prior-
ity) can cause a deployment priority inversion between
operational strings B and C. This dependency requires
the deployment of operational string C before opera-
tional string B to resolve the dependency. Not all com-
ponents in operational string C need be deployed to
resolve the external dependency between B and C.

Challenge 2: Avoid deployment priority inver-
sion propagation effect. A more general priority in-
version situation involves multiple operational strings.
In this case, to resolve a dependency from a higher pri-
ority string to a lower priority string, not only must the



lower priority string be deployed before the high prior-
ity operational string, but also the operational strings
the lower priority string depends on. When these oper-
ational strings have lower priority than the high prior-
ity string, however, deployment priority inversion will
occur between operational strings.

For example, in our MMS system case study opera-
tional string A has a high priority and an external de-
pendency on operational string B. More specifically, it
is the Data Analysis component of operational string
B that A depends on. The Data Analysis component
further depends on the Messaging component in op-
erational string C, however, which can cause another
deployment priority inversion between A and C.

3. An Algorithm for Partial Priority In-
heritance via Graph Recomposition

This section describes how we resolved the chal-
lenges described in Section 2.2 using an algo-
rithm called partial priority inheritance via graph
recomposition (PARIGE). This algorithm converts
each operational string into a graph, where each ver-
tex and edge of the graph represent a component
and a connection/dependency between two compo-
nents, respectively. If there is an external dependency
between operational strings, then the graph con-
verted from one operational string will have a special
type of vertex that represents the external depen-
dency. This special vertex type contains informa-
tion about the actual refereed operational string and
the component in the operational string that it de-
pends on.

The PARIGE algorithm promotes components from
one graph to another based on operational string char-
acteristics, including their priorities and their depen-
dency relationships with other operational strings in
the same deployment request. After graphs for all the
operational string are recomposed to account for the
component promotion, a new set of operational strings
will be populated from these recomposed graphs, which
can avoid deployment priority inversion.

3.1. Overview of the PARIGE Algorithm
Although the PARIGE algorithm recomposes oper-

ational strings by promoting components from one op-
erational to another, it has also the following proper-
ties that makes it well-suited for D&C of DRE systems:

1. The PARIGE algorithm does not affect the
functional behavior of component-based DRE
systems.

The PARIGE algorithm evaluates the component
dependency relationships and their priorities and re-
composes these operational strings to avoid deployment

priority inversion. From the perspective of all opera-
tional strings to be deployed, however, the individual
monolithic components and their connections among
each other are not modified by the algorithm. In par-
ticular, the effect of the PARIGE algorithm on opera-
tional string recomposition is only visible for the D&C
framework, which does not affect the running system’s
functional behavior. This algorithm thus does not af-
fect the functionally of operational strings because the
topology of all the operational strings (including all the
monolithic components and connections) that fulfills
functional behavior of the system remains unchanged.

2. The PARIGE algorithm does not affect the
QoS behavior of operational strings. When com-
ponents are promoted from a lower priority operational
string to a higher priority operational strings, the pri-
ority of the components is also bumped up to match
the priority of the higher priority string, which is essen-
tial for a task to avoid priority inversion at deployment-
time [11]. Since the PARIGE algorithm only promotes
components that one or more higher priority oper-
ational strings have dependencies on at deployment
time, it does not change the actual real-time priori-
ties or other real-time QoS configurations designed for
run-time. Therefore, the PARIGE algorithm does not
affect the QoS behavior of operational strings.

Figure 2 presents an overview of the PARIGE algo-
rithm by showing an example with three operational
strings having priorities high, medium, and low. The
dotted and solid arrows represent dependencies be-
tween operational strings. In particular, the dotted ar-
rows in the figure represent priority inverted dependen-
cies, i.e., dependencies from higher priority operational
strings to lower priority operational strings. Likewise,
the solid arrows represents external dependencies with-
out causing priority inversion.

The numbered vertices in Figure 2 denote the ver-
tices promoted from one graph into another. For ex-
ample, in the first iteration of the algorithm, one ver-
tex is promoted from the medium priority operational
string to the high priority operational string and an-
other vertex is promoted from the low priority opera-
tional string to the high priority string. In the second
iteration, another vertex is promoted from the low pri-
ority operational string to the medium priority string.

The PARIGE algorithm recomposes the graphs by
parsing the input set of graphs and removing dotted
arrows by promoting some component(s) from a lower
priority operational string to a higher priority string.
This process may introduce some new dependencies be-
tween operational strings due to component promotion.
The algorithm, however, only introduces solid arrows,
i.e., only dependencies from lower priority operational



Figure 2: PARIGE Algorithm in Action

strings to higher priority strings exist after the recom-
position.

When the algorithm finishes, all dotted arrows in
the graphs will be removed and there will be no de-
pendencies from higher priority operational strings to
lower priority operational strings. As a result, both pri-
ority inversions at run-time and deployment-time can
be avoided.

3.2. Design of The PARIGE Algorithm

The goal of the PARIGE algorithm is to remove all
dependencies from higher priority operational strings
to lower priority operational strings. To accomplish
this, the algorithm starts with the operational string
having the highest priority and processes all the exter-
nal dependencies of this operational string. After all
external dependencies from the highest priority opera-
tional string are removed, the algorithm then processes
the operational string with the next highest priority.
When multiple operational strings have the same pri-
ority, we apply the following tie-breaking policies se-
quentially: (1) evaluating the second metric of each
operational string, if given, (2) evaluating the num-
ber of external dependencies to the same priority oper-
ational strings and treating the operational string with
the least number of external dependencies as the higher
priority than others, and (3) breaking the tie randomly

if such a tie still exists.
When processing an external dependency from a

higher priority operational string to a lower priority
operational string, the algorithm must trace the de-
pendency into other operational strings and promote
components from them if the lower priority operational
string has dependencies to them. For example, if a high
priority operational string depends on a component X
in a medium priority operational string, and if compo-
nent X also has dependency on a component in a low
priority operational string, then the component in the
low priority string also must be promoted into the high
priority string.

We define a dependency trace as a totally ordered se-
quence S. Each element in the sequence is a component
of an operational string that has a priority value asso-
ciated with it. The starting element of the sequence
is the source component of the external dependency
of interest. The PARIGE algorithm analyzes all the
dependency traces in the operational strings and re-
composes the operational strings based on dependency
trace characteristics.

3.2.1. Promotion of Components Between Two
Operational Strings In this case, a dependency oc-
curs between two operational strings, where a high pri-
ority operational string has a dependency on a lower
priority operational string.

The unique characteristic of this category is that the
dependency trace does not cross the boundary of the
lower priority operational string. Since no other opera-
tional strings are involved besides the two operational
strings of interest, removing such a priority inverted ex-
ternal dependency only requires promoting all compo-
nents in the dependency trace from the lower priority
operational string to the high priority one.

3.2.2. Promotion of Components Across Multi-
ple Operational Strings This more general case in-
volves multiple operational strings, with a dependency
trace that spans across the operational strings. A de-
pendency trace that spans across multiple operational
strings can be further categorized into the following
two situations.

1. Ordered dependency trace. Figure 3 shows
an ordered dependency trace. In an ordered depen-
dency trace the priorities of each element in the se-
quence have a non-increasing order, i.e., all external
dependencies in the sequence are priority-inverted. As
a result, all the priority-inverted external dependen-
cies must be removed through the component promo-
tion mechanism described in Section 3.1. The category
described in Section 3.2.1 where only two operational
strings are involved is a special case of an ordered de-
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Figure 3: An Ordered Dependency Trace

pendency trace. To remove all priority-inverted exter-
nal dependencies, the PARIGE algorithm simply pro-
motes all components in the dependency trace into the
operational string where the first component of the de-
pendency trace is located.

2. Unordered dependency trace. Figure 4 shows
an unordered dependency trace, where the priorities of
the elements in the dependency trace do not have a
particular order, i.e., some external dependencies are
priority-inverted (shown as dotted lines), whereas oth-
ers are not (shown as solid lines). The PARIGE al-
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Figure 4: An Unordered Dependency Trace

gorithm always starts with the highest priority opera-
tional string and removes all external dependencies on
it before moving to the next operational string. The al-
gorithm therefore ensures that in an unordered depen-
dency trace, the elements whose priorities are higher
than that of the starting element will have no external
dependencies, which ensures the convergence of the al-
gorithm.

For example, given the three operational strings
from Section 2, if the high priority operational string
has an external dependency on a component in low pri-
ority operational string and this component must be
promoted into the medium priority operational string.
When this promotion happens, the high priority string
will depend on the medium priority string, which intro-

duces additional priority-inverted external dependen-
cies.

To remove all priority-inverted external dependen-
cies of an unordered dependency trace, we break the en-
tire dependency trace into two concatenated segments.
As shown in Figure 5, the first segment is a priority un-
ordered subsequence, where all the priorities of opera-
tional strings are lower than the priority of the source
of the dependency trace. The second segment is a prior-

Unordered subsequence, but all the priorities 
are lower than the priority of the source of the  
entire dependency trace.

Ordered subsequence, but all the priorities 
are higher than the priority of the source of 
the entire dependency trace. 

Priority YPriority X Priority U Priority V

Dependency from Higher Priority to Lower Priority
Dependency from Lower Priority to Higher Priority 

Figure 5: Two Partitions of An Unordered Dependency
Trace

ity ordered subsequence, where all priorities are higher
than the priority of the source of the dependency trace.
For the first segment, we can promote all the compo-
nents in the subsequence into the operational string
where the first component of the dependency trace is
located, which will ultimately result in an ordered de-
pendency trace.

The PARIGE algorithm uses multi-graph breadth
first search (BFS) to trace dependencies and graph re-
construction to promote components and connections
between components. Due to the paper space limita-
tion, we do not include detailed design of the algo-
rithm in this paper. For a reference to the algorithm
design, please refer to our technical

3.3. Analysis of the Algorithm
To show that it is possible to apply the PARIGE al-

gorithm at run-time to deploy operational strings dy-
namically, we now analyze the effects of the PARIGE
algorithm for actual operational string deployment.

3.3.1. PARIGE Algorithm Effects on Opera-
tional String Deployment Two effects that the
PARIGE algorithm could have on the predictability of
operational string deployment are described below.

Operational string growth effect. This effect
measures the cost of promoting a number of compo-
nents from lower priority operational strings to higher
priority operational strings. Since the deployment of
each component takes time and consumes resources,



the fewer components that are promoted, the more ben-
efits the algorithm can provide since priority-inverted
dependencies can be satisfied without deploying many
components in lower priority operational strings. In the
worst case, all components from lower priority opera-
tional strings could be promoted to higher priority op-
erational strings, which essentially merges different op-
erational strings together. In production DRE systems,
such worst cases happen rarely, i.e., all the components
in all operational strings have just only one dependence
trace. Even in such situations, the PARIGE algorithm
still performs the same as a conventional approach that
does not take priority into account and only accounts
for dependencies among operational strings.

Component host distribution effect. This ef-
fect means that due to the promotion of compo-
nents, components that can be deployed by con-
tacting the NodeManager once now contacts the
same NodeManager multiple times during deploy-
ment. Such an effect can increase the overall deploy-
ment time due to the increasing number of round trip
delays. One way to alleviate this problem is to in-
crease the parallelism among different nodes by using
asynchronous techniques between the Execution-
Manager and NodeManagers, such as the Asyn-
chronous Method Invocation (AMI) messaging pol-
icy provided by CORBA [12]. For example, AMI can
coordinate all the NodeManagers in the domain par-
allelism deployment can be achieved among all the
nodes, therefore alleviating the component host distri-
bution effects.

4. Empirical Results

To evaluate the benefits of our PARIGE algorithm,
we applied it to a representative DRE system proto-
type of the NASA MMS mission system described in
Section 2. This section first describes the characteris-
tics of the hardware and software testbed and explains
our experiment design. We then empirically evaluate
the effectiveness of our PARIGE algorithm and its per-
formance overhead.

4.1. Experiment Testbed

We used the ISISlab open testbed (www.dre.
vanderbilt.edu/ISISlab) for all our experi-
ments. Our experiments used up to 6 nodes run-
ning Linux FC4 with Ingo Molnar’s real-time kernel
patches. When operational strings are deployed we use
one node to run the central coordinator Execution-
Manager and the rest of the nodes as the deployment
targets.

The NASA MMS mission system prototyped used
for our experiments was developed using the CIAO [13]
and DAnCE [7] component middleware. This applica-
tion consists of 45 components grouped together into 3
operational strings.

4.2. Deployment Latency vs. Deployment
Priority

Hypothesis. The hypothesis of this experiment is
that the PARIGE algorithm can avoid priority inver-
sion when deploying multiple operational strings where
higher priority operational strings have dependencies
on lower priority operational strings.

Experimental design. We conducted two experi-
ments on different configurations of operational string
dependencies. Our first experiment consisted of 3 op-
erational strings, each of which having 15 components
evenly distributed into 5 nodes. Therefore, each node
has 9 components. The high priority operational string
has one dependency on the medium priority opera-
tional string, which in turn has one dependency on
the low priority operational string. The dependency
between two operational strings has low growth rate,
i.e., only one component in a lower priority operational
string needs to be promoted. Next we conducted an-
other experiment with two operational strings but with
high growth rate, i.e., all the component in the lower
priority operational string must to be promoted to the
higher priority operational string.

Empirical results and analysis.
Figures 6 and 7 shows the end-to-end latency of

D&C request for each operational string in the two ex-
periments described above. As shown in the Figure 6,
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Figure 6: D&C Latency Changes by the PARIGE Al-
gorithm

without applying the PARIGE algorithm, the high pri-
ority operational string yields the highest latency while



the low priority operational string yields the lowest la-
tency, while the latency of medium priority operational
string lies in between.

In our experiments, there is one dependency from
high priority operational string to medium prior-
ity operational string and another dependency from
medium priority operational string to low priority op-
erational string. Without applying the PARIGE al-
gorithm, therefore, the low priority operational
string must be deployed first among the three, fol-
lowed by medium priority and high priority opera-
tional strings, respectively. The PARIGE algorithm re-
moves the priority inverted dependencies which avoids
deployment priority inversion, as illustrated in the fig-
ure.

Figures 6 also shows how the component host dis-
tribution effect introduced by the PARIGE algorithm
is masked by applying AMI messaging policy, as de-
scribed in Section 3.3.1. In our experiment, applying
AMI improves the performance of the deployment in
two aspects. First, the deployment latency of each op-
erational string is reduced because of the Execution-
Manager can coordinate the NodeManagers to do de-
ployment in parallel. Second, it masks the component
host distribution effect, which results in a reduced to-
tal latency of all operational strings, as shown in the
figure.
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Figure 7 shows that after applying the PARIGE al-
gorithm the high priority operational string has the
lowest latency since it has no external dependency on
any other operational strings. The size change of each
operational string is also minimal since the number of
promoted components is small due to the dependency
trace characteristics.

On the other hand, the dependency between the two

operational strings in our second experiment caused all
components from the low priority operational string
to be promoted to the high priority string, essentially
merging the two operational strings together. As a re-
sult, the latency of deploying the high priority opera-
tional string is nearly the same as deploying it with-
out applying the PARIGE algorithm. However, in a
DRE system with multiple operational strings to de-
ploy, it is rare that all components have only one de-
pendence trace, as described in Section 3.3.1.

4.3. Performance Overhead of the
PARIGE Algorithm

Hypothesis. The hypothesis of this experiment is
that the performance overhead of the PARIGE algo-
rithm is small enough so it can be applied to deploy
operational strings at run-time. In contrast to off-line
analysis techniques, the PARIGE algorithm must be
deployed by ExecutionManager to handle requests at
runtime, therefore, the PARIGE algorithm should not
incur excessive performance overhead to the end-to-end
latency of deployment of operational strings.

Experimental design. The experiments consist of
3 operational strings each having 15 components and
2 external dependencies in total. The high priority op-
erational string has one dependency on the medium
priority operational string, which in turn has one de-
pendency on the low priority operational string. We
first measured the end-to-end latency for deploying all
the operational strings without applying the PARIGE
algorithm. We then measured the end-to-end latency
for deploying increasing number of operational strings
with the PARIGE algorithm to measure how much la-
tency overhead was contributed by running the algo-
rithm.

Empirical results and analysis. We first mea-
sure the PARIGE algorithm performance itself to de-
termine how its performance is affected by the size
of the problem, i.e., number of components (deter-
mined by number of operational strings) and number of
priority-inverted external dependencies. We then mea-
sure its performance overhead against an actual exam-
ple with 3 operational strings and 2 external dependen-
cies, as described above.

Figure 8 shows the performance result of PARIGE
algorithm itself with increasing number of components
and number of external dependencies. The results show
that the performance of PARIGE algorithm is roughly
linear to both the number of components and number
of external dependencies. The linear runtime perfor-
mance characteristics of PARIGE algorithm makes it
suitable for dynamically deploying operational strings
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online at runtime because the deployment latency of
all operational strings exhibits a linear time complex-
ity to the number of components in the operational
strings.

As long as the performance overhead of the
PARIGE algorithm is acceptable to deploy one com-
ponent, therefore, it should be acceptable to deploy
any number of components. To validate this claim, we
conducted an experiment that deployed up to 64 oper-
ational strings with 960 total components. The results
in Figure 9 shows that the deployment latency of all
operational strings with and without the PARIGE al-
gorithm. The experiment measures different number
of operational strings and different number of com-
ponents, ranging from 1 operational string with 15
components to 64 operational strings with 960 com-
ponents. These results show that the actual per-

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

M
i
c
r
o
 
s
e
c
o
n
d
s

1(15) 2(30) 4(60) 8(120) 16(240) 32(480) 64(960)

Number of Operational String
(Number of Components)

End-to-End Deployment Lantency of All Operational Strings

Without PARIGE

PARIGE Latency

With PARIGE

Figure 9: Performance Overhead of the PARIGE Algo-
rithm

formance overhead of PARIGE algorithm for our
experiment is consistently less than ∼1%, which fur-
ther validates our earlier analysis.

5. Related Work

The PARIGE algorithm has many similarities to
the priority inheritance protocol (PIP) [14] used for
synchronization in real-time systems. The PIP ensures
that when a thread blocks one or more high priority
threads, it executes its critical section at the highest
priority level of all the threads it blocks, i.e., it inher-
its the highest threads priority. After executing its crit-
ical section, the thread returns to its original priority
level.

In the PARIGE algorithm, lower priority opera-
tional strings are promoted to execute at the priority
of higher priority operational strings to avoid deploy-
ment priority inversions. The “critical section” in the
PIP is thus similar to the “deployment and configura-
tion” activities in the PARIGE algorithm. Our work on
the PARIGE algorithm, however, differs from the PIP
in the following ways:

• The PARIGE algorithm avoid deadlocks because
(1) it removes all priority inverted dependencies
between operational strings and then deploy oper-
ational strings from the highest priority to the low-
est priority sequentially, and (2) it recompose op-
erational strings so circular dependency trace does
not cross the boundary of operational strings. In
contrast, the PIP may incur deadlocks because of
nested resource locks.

• Only part of the operational string is affected, i.e.,
the PARIGE algorithm just increases the deploy-
ment priorities of components with dependencies
from higher priority operational strings. In con-
trast, the PIP does not have such fine-grained level
of control because it is a general-purpose schedul-
ing mechanism for resource sharing.

• The PARIGE algorithm is more sophisticated than
the priority inheritance protocol because it tra-
verses multiple graphs to identify which compo-
nents require promotion. In contrast, the PIP is
much simpler since it is locality-constrained, i.e.,
it applies only to one resource and does not con-
cern about how other resources are scheduled.

6. Concluding Remarks

The predictability and scalability of D&C frame-
works is essential to support the QoS requirements
of open DRE systems. This paper describes a multi-
graph algorithm that helps ensure the predictability of
deploying multiple operational strings. We first ana-
lyze how deployment priority inversion can occur when
operational strings have various dependency relation-
ships. We then empirically show how the partial priority



inheritance via graph recomposition (PARIGE) algo-
rithm can effectively avoid deployment priority inver-
sions and thus improve the predictability of component
deployment in DRE systems.

The following summarizes our lessons learned thus
far from developing and applying the PARIGE algo-
rithm to ensure the predictability of deployment of op-
erational strings in DRE systems:

1. The overlap of deployment-time with run-
time makes D&C frameworks essential to en-
sure system QoS. The benefits provided by compo-
nent middleware significantly change the lifecycle of
DRE system development. Due to the complexities of
open DRE systems, D&C frameworks assume more re-
sponsibilities to ensure system QoS because deploy-
ment of system services/components occurs through-
out the lifecycle of the systems. By using information
available at deployment time, D&C frameworks can ef-
fectively identify the complex dependency relationships
among operational strings and perform various on-line
optimizations, such as the operational string recompo-
sition presented in Section 3.

2. Automated Recomposition of operational
strings can help ensure deployment predictabil-
ity of DRE systems. Although operational strings
can simplify the design of DRE systems, it is hard
to manually ensure deployment predictability of all
operational strings due to the complex dependencies
among many operational strings. The PARIGE algo-
rithm presented in this paper enhances the deployment
predictability of different operational strings by recom-
posing operational strings automatically based on the
input to the D&C framework and transparently to sys-
tem deployers.

The PARIGE algorithm is an integral part
of DAnCE. Both DAnCE and CIAO are
open-source and available for download at
www.dre.vanderbilt.edu/ciao.
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