
Optimizing the ORB Core to Enhance
Real-time CORBA Predictability and Performance

Arvind S. Krishna, Douglas C. Schmidt Krishna Raman, Raymond Klefstad
{arvindk,schmidt}@dre.vanderbilt.edu {kraman,klefstad}@uci.edu

Electrical Engineering & Computer Science Electrical Engineering & Computer Science
Vanderbilt University University of California, Irvine

This paper has been submitted to the 5th International
Symposium on Distributed Objects and Application, Sicily,
November 3-7, 2003

Abstract
Distributed real-time and embedded (DRE) applications pos-
sess stringent quality of service (QoS) requirements, such as
low latency, bounded jitter, and high throughput. An increas-
ing number of DRE applications are developed using QoS-
enabled middleware, such as Real-time CORBA and the Real-
time Specification for Java (RTSJ), to ensure predictable end-
to-end QoS. Real-time CORBA is an open middleware stan-
dard that allows DRE applications to allocate, schedule, and
control the QoS of CPU, memory, and networking resources.
The RTSJ provides extensions to Java that enable it to be used
as the basis for Real-time CORBA middleware and applica-
tions.

This paper provides the following contributions to the study
of QoS-enabled middleware for DRE applications. First,
we outline key Real-time CORBA implementation challenges
within the ORB Core, focusing on efficient buffer allocation
and collocation strategies. Second, we describe how these
challenges have been addressed in ZEN, which is an imple-
mentation of Real-time CORBA that runs atop RTSJ platforms.
Third, we describe how RTSJ features, such as scoped mem-
ory and no-heap real-time threads, can be applied in a real-
time ORB Core to enhance the predictability of DRE appli-
cations using Real-time CORBA and the RTSJ. Our results
show that carefully applied optimization strategies can enable
RTSJ-based Real-time CORBA ORBs to achieve effective QoS
support for a range of DRE applications.

1 Introduction
Motivation. Over the past decade, distributed computing
middleware, such as CORBA [1], COM+ [2], Java RMI [3],
and SOAP/.NET [4], have emerged to reduce the complex-
ity of distributed systems. This type of middleware simplifies

the development of distributed systems by off-loading the te-
dious and error-prone aspects of distributed computing from
application developers to middleware developers. Distributed
computing middleware has been used successfully in desktop
and enterprise systems [5, 6] where scalability, evolvability,
and interoperability are essential for success. In this context,
middleware offers several benefits: hardware-, language-, and
OS-independence, as well as open-source availability.

The benefits of middleware are also desirable for distributed
real-time and embedded (DRE) systems [7]. Examples of
DRE systems include telecommunication networks (e.g., wire-
less phone services), tele-medicine (e.g., robotic surgery), pro-
cess automation (e.g., hot rolling mills), and defense applica-
tions (e.g., total ship computing environments). DRE systems
possess stringent quality of service (QoS) constraints, such as
bandwidth, latency, jitter, and dependability requirements.

The Real-time CORBA specification [8] was standardized
by the OMG to support the QoS needs of a certain class
DRE systems, i.e., those that rely on fixed-priority schedul-
ing. Real-time CORBA leverages features from the CORBA
standard (such as the GIOP protocol) and the Messaging spec-
ification [9] (such as the QoS policy framework) to add QoS
control capabilities to regular CORBA. These QoS capabili-
ties help to improve DRE application predictability by bound-
ing priority inversions and managing system resources end-to-
end. Specifically, Real-time CORBA provides standard fea-
tures that allow DRE applications to configure and control the
following system resources:

• Processor resources via thread pools, priority mecha-
nisms, intra-process mutexes, and a global scheduling
service for real-time applications with fixed priorities,

• Communication resources via protocol properties and
explicit bindings to server objects using priority bands
and private connections, and

• Memory resources via buffering requests in queues and
bounding the size of thread pools.

Optimizing Real-time CORBA Object Request Brokers.
Underneath any CORBA middleware application is an Object

Request Broker (ORB), which allows clients to invoke oper-
ations on distributed objects without concern for object lo-
cation, programming language, OS platform, communication
protocols and interconnects, and hardware [10]. Figure 1 il-
lustrates the key elements in the CORBA reference model [11]
that collaborate to provide this degree of portability, interop-
erability, and transparency.1 The heart of the CORBA refer-

ORB CORE

OBJECT

ADAPTER

GIOP/IIOP

IDL
STUBS

operation()
in argsin args

out args + return valueout args + return value

CLIENTCLIENT
OBJECTOBJECT
((SERVANTSERVANT))

OBJOBJ

REFREF

STANDARD INTERFACESTANDARD INTERFACE STANDARD LANGUAGE MAPPINGSTANDARD LANGUAGE MAPPING

ORB-ORB-SPECIFIC INTERFACESPECIFIC INTERFACE STANDARD PROTOCOLSTANDARD PROTOCOL

IDLIDL
SKELETONSKELETON

IDL
COMPILER

IDL
COMPILER

Figure 1: Key Elements in the CORBA Reference Model

ence model is the ORB Core, which is the element in standard
CORBA that handles connection and memory management,
data transfer, endpoint demultiplexing, and concurrency con-
trol for client and server applications [10]. When a client in-
vokes an operation on a target object, the ORB Core delivers
the request to the object and returns the response (if the oper-
ation is has two-way semantics).

Our prior work on CORBA has explored many dimen-
sions of ORB design and performance, including scalable
event processing; request demultiplexing; I/O subsystem and
protocol integration; connection management, explicit bind-
ing, and real-time threading [12] architectures, asynchronous
and synchronous concurrent request processing, and IDL
stub/skeleton optimizations. This paper explores a previous
unexamined dimension of ORB design: optimizing the ORB
Core to support real-time applications by increasing the pre-
dictability, performance, and scalability of ORBs developed
using the Real-Time Specification for Java (RTSJ) [13].

The vehicle used to showcase these optimizations is
ZEN [14]. ZEN is an open-source2 Real-time CORBA ORB
designed using the micro-kernel architectural pattern [15] and
implemented using Real-time Java. The design of ZEN was
inspired by many of the patterns, techniques, and lessons
learned when developing The ACE ORB (TAO). [16]. TAO
is an open-source3 Real-time CORBA ORB implemented us-

1This overview only focuses on the CORBA elements relevant to this pa-
per. For a complete synopsis of CORBA’s elements see [11].

2ZEN can be downloaded from www.zen.uci.edu.
3TAO can be downloaded from deuce.doc.wustl.edu/

Download.html.

ing C++, with enhancements designed to ensure efficient, pre-
dictable, and scalable QoS behavior for high-performance and
real-time applications.

TAO and ZEN are a rapidly maturing Real-time CORBA
ORBs designed for applications with hard real-time require-
ments, such as avionics mission computing [16], as well as
those with softer real-time requirements, such as telecommu-
nication call processing and streaming video [17]. When com-
bined with quality real-time operating systems [18], TAO and
ZEN can meet both the QoS needs of DRE applications and
the development benefits offered by middleware. Figure 2
illustrates ZEN’s pluggable micro-kernel ORB architecture.
Unlike monolithic ORBs, a micro-kernel ORB like ZEN fac-

�����
���

���
���

�	

���

��

��������
������

���
���

���

��
���

������
�������

		��

���� ����
��������

	��
��� ��

��!

������
�� ��"��

�� �#�
�$%%��

���������

&	��
�� �#�#

���
�����'
������

Figure 2: ZEN’s Pluggable Micro-kernel ORB Architecture

tors out services whose behavior can vary based on (1) a user’s
choice for certain behavior and (2) the use of certain standard
CORBA capabilities, such as object adapters, protocol trans-
ports, etc. In a micro-kernel ORB, these capabilities are moved
out of the ORB “kernel,” thereby reducing the footprint of the
middleware and also increasing design flexibility.

Although the Real-time CORBA specification was inte-
grated into the OMG standard in 1998 [19], it has not been
adopted universally by DRE application developers. A key
barrier to adoption arises from the steep learning curve caused
by the complexity of the CORBA-C++ mapping [20, 21, 22].
To address this problem, the Java programming language has
emerged as an attractive alternative. Since Java has less ac-
cidental complexity than C++, it is easier for application pro-
grammers to master it. Java also has other desirable language
features, such as strong typing, dynamic class loading, reflec-
tion/introspection, and native support for concurrency and syn-

2

chronization.
Conventional Java runtime systems and middleware have

historically been unsuitable for DRE applications, however,
due to

1. The under-specified scheduling semantics of Java
threads, which can lead to the most eligible thread not
always being run.

2. The ability of the Java Garbage Collector (GC) to pre-
empt any other Java thread, which can yield very long
preemption latencies.

To address the above problems, the Real-time Java Experts
Group has defined the RTSJ [13], which extends Java in sev-
eral ways, including (1) new memory management models that
allow access to physical memory and can be used in lieu of
garbage collection and (2) stronger guarantees on thread se-
mantics than in conventional Java. To have a predictable Java-
based Real-time CORBA ORB, it is necessary to (1) apply
optimizations to the ORB Core to ensure predictability and (2)
apply RTSJ features effectively within the ORB Core.
Paper organization. To address the challenges outlined
above, the remainder of this paper is organized as follows:
Section 2 presents key challenges within the ORB Core layer,
focusing on buffer management and object location tech-
niques, and explains how these challenges have been ad-
dressed in ZEN; Section 3 describes the main problems that
arose while designing ZEN using conventional Java imple-
mentations, analyzes the critical request/response code path
within ZEN to identify sources for the application of RTSJ
features, and illustrates how RTSJ features can be associated
with key ORB components to enhance predictability; Sec-
tion 4 summarizes how our work on ZEN relates to other re-
search efforts; and Section 5 presents our concluding remarks
and outlines our future work.

2 Optimizations Applied to ZEN’s
ORB Core

The ORB Core is the layer of a CORBA ORB implementa-
tion that is responsible for connection and memory manage-
ment, data transfer, endpoint demultiplexing, and concurrency
control. An ORB Core is also the minimal run-time layer as-
sociated with both a typical client and server. When a client
invokes an operation on an object, the ORB Core is respon-
sible for delivering the request to the server and returning the
response, if any, to the client. For remote objects, the ORB
Core, transfers requests using the General Internet Inter-ORB
Protocol (GIOP) that runs atop many transport protocols, in-
cluding TCP/IP.

Optimizing the ORB Core to support DRE applications
poses several challenges to ORB implementors. This section

outlines some of the key challenges present in this layer and
describe the optimizations we have applied that ensure the pre-
dictability and efficiency required by DRE applications. These
optimizations include minimizing memory management oper-
ations using efficient buffer management algorithms and trans-
parently collocating clients and servants that are present in the
same address space.

2.1 Buffer Management Optimizations
Context. The ORB Core uses memory buffers for storing
GIOP messages both before sending and after receiving across
a transport. These buffers are serially reusable, which means
that only one thread can use a given buffer at any time, though
after its completion the same buffer may be reused by another
thread.
Problem. A naive Java implementation for ORB buffers
would use operator new to allocate each one, thereby allowing
the Java garbage collector to reclaim them for later use. Con-
tinued allocation/deallocation of these buffers would eventu-
ally lead to an invocation of the garbage collector, which is
undesirable in DRE applications since it may incur unbounded
jitter [23].
Solution → Buffer management optimizations. One so-
lution to the problem of unbounded jitter is to pre-allocate
buffer pools at ORB initialization time. A simple pool man-
ager can allocate from the pool and return unneeded buffers
to the pool after they are no longer needed. Application de-
velopers and/or system integrators can be given configuration
control over buffer size and pool size. We can provide alterna-
tive dynamic storage management algorithms, such as first fit,
random fit [24], and best fit [25].
Applying the solution in ZEN. ZEN supports the following
buffer management strategies:
• Linked List strategy, in which a simple list is used to

maintain all allocated buffers. The first fit algorithm is
used to locate the most appropriate buffer. This strat-
egy is suitable when buffer sizes are comparable. When
buffer sizes vary, however, the search time considerably
degrades as the list is not ordered. For example, the worst
case behavior for this strategy is O(n) when all buffers in
the list are smaller than the required size.

• Multi-level buckets strategy in which, the buffers are di-
vided into partitions i.e., buckets based using a partition
strategy that is typically a factor of the block size. To lo-
cate a buffer of given size, the most appropriate bucket is
first determined, then the first fit strategy is used to return
the most appropriate buffer. A default bucket is used for
significantly large/small buffer sizes. This strategy is an
improvement over the linked list scheme and has constant
time lookup time for the non-default case. The default
bucket has a behavior similar to the linked list scheme.

3

• Buffer Pools strategy in which the ORB maintains a pre-
allocated pool of buffers of a fixed size. These individual
buffers may be chained to hold larger messages and are
written using gather-write I/O system calls. This strategy
has a constant buffer lookup time, but incurs the over-
head of managing multiple buffers. Moreover, earlier ver-
sions of Java (i.e., up to JDK 1.3) did not provide gather-
write facility requiring multiple I/O calls to read/write the
buffer to the stream. ZEN provides this facility via Java’s
new I/O (nio) [26] package.

In ZEN, the abstract ByteBufferManager class man-
ages the various buffer management schemes. The read/write
helper methods defined on the buffer manager are used
to marshal/demarshal GIOP messages, which are repre-
sented in ZEN as instances of CDRInputStream and
CDROutputStream classes. ZEN provides two buffer man-
ager implementations, shown in Figure 3 and explained below:

• The VectoredByteBufferManager implements
the Buffer Pool optimization strategy explained above.
This manager can only be supported with a JDK version
1.4 or later that provides gather-write I/O system calls.

• The NonVectoredByteBufferManager imple-
ments the multi-level bucket buffer management strategy.

The application developer can chooses ei-
ther one of the buffer managers by setting the
zen.cdr.bufferManagerStrategy property in
the properties file. ZEN uses the Strategy pattern [27] to
transparently plug in concrete buffer managers implementa-
tions. Moreover, this pluggable approach enables other buffer
manager implementations to be provided, as long as they
inherit from the BufferManager base class.

BufferManager
+setEndian(in e:boolean): void
+align(boundry:int): void
+writeByte(in v:byte): void
+writeLong()(in v:long): void
+writeShort(in v:short): void
+writeLongLong(v:long): long
+readByte(): byte
+readLong(): long
+readShort(): short
+readLongLong(): long
+free()(): void

NonVectoredByteBufferManager VectoredByteBufferManager

Figure 3: ZEN Buffer Manager Class Diagram

Each of ZEN’s concrete buffer manager classes are asso-
ciated with a buffer allocator that controls how buffers are
allocated and deallocated. The ByteBufferAllocator
class shown in Figure 4 is the base class for all concrete buffer
allocators. ZEN, provides the following concrete allocation
schemes:
• DynamicByteBufferAllocator, where buffers

are allocated/deallocated for each GIOP message
sent/received.

• CachedByteBufferAllocator, where
all the allocated buffers are cached and new
buffers are created only if necessary. The
CacheNIOByteBufferAllocator class deals
with caching buffers in the Java nio package.

• DynamicNIOByteBufferAllocator deals with
nio buffers, but buffers are allocated for each request.

ByteBufferAllocator
+get(requestedSize:int): Buffer
+return(b:Buffer): void

CacheByteBufferAllocator CacheNIOByteBufferAllocator

DynamicByteBufferAllocator DynamicNIOByteBufferAllocator

Figure 4: ZEN Buffer Allocators Class Diagram

In ZEN, buffer allocators can be configured by setting the
zen.cdr.bufferAllocationStrategy in the proper-
ties file. Similar to buffer managers, concrete buffer allocators
implementations are plugged in using the Strategy pattern.

DRE applications often send small messages, whereas en-
terprise application may need to send larger messages. It
is therefore important to configure the minimum block size
(unit of allocation) to minimize fragmentation [28]. ZEN
allows the end-user to configure the block size using the
zen.giop.messageBlock property defined in the prop-
erties file. This variable should be set with a value correspond-
ing to the message sizes that the system expects. The default
value for this property is set to 1,024 bytes in ZEN. Combining
buffer manager and allocators yields the different alternatives
summarized in Table 1. As shown in the table, only certain
combinations are possible.

Vectored NonVectored
cached non-compatible compatible

cached-nio compatible non-compatible
dynamic non-compatible compatible

dynamic-nio compatible non-compatible

Table 1: ZEN’s Buffer Management Summary

Empirical results. We compared the performance of ZEN’s
buffer management optimizations. The following experiments
were conducted:
• Garbage collection analysis compared the reduction in

the number of garbage collection sweep by using caching
with dynamic allocations. Our motivation was to observe
if the buffer optimizations reduce garbage collection, and
in turn increase predictability.

• Throughput analysis compared difference in throughput
between Vectored and NonVectored buffer man-
agement strategies. Our motivation was to compare
Buffer Pool and Multi-level bucket schemes in ZEN.

4

Since the RTSJ does not yet support java’s nio package, these
experiments were conducted using JDK 1.4.2. The testbed
used was an Intel Pentium IV 1800 Mhz processor with 512
MB of main memory running Linux OS 2.4.21-0.11. We also
used ZEN version 0.8 for these experiments.

• Garbage collection analysis. In this experiment the
message sizes of the GIOP request sent by the client were
increased by a factor of 2 starting with 1KB and continu-
ing to 16KB. In each case, the number of GC executions
at the server was measured for a total of 10,000 iterations.
Figure 5 shows that buffer caching significantly reduces

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1K 2K 4K 8K 16K

Message Sizes (KiloBytes)

G
C

 e
xe

cu
tio

ns

Cached
Dynamic

Figure 5: Cached v/s Dynamic GC analysis

the number of GC sweeps. For both cases, GC executions
increased with increasing buffer sizes. However, with
caching the increase is gradual, whereas the increase for
dynamic allocation is sharper. For example, in the case
when message size is 16KB, the number of GC sweeps
for dynamic case is greater by a factor ∼3, whereas for
1K it is greater only by a factor of ∼1.5. These results
show that use of ZEN’s buffer management algorithms
reduce GC executions significantly.

• Throughput analysis. For this experiment throughput
was defined as the number of events processed/sec at the
server. In this experiment the message sizes of the GIOP
request sent by the client was increased by a factor of
2, starting with 1KB and continuing to 16KB. In each
case, throughput at the server was measured for a total of
10,000 iterations.

As shown in Figure 6, for both strategies throughput de-
creases with increase in buffer size. The Vectored strat-
egy, however, incurred greater overhead than the Non-
Vectored strategy. This result was not expected since
(1) the vectored strategy does not incur any data copying
overhead as buffers are chained and (2) the Non-Vectored
strategy incurs significant resizing overhead leading to
greater data copying. Researchers [29] at University of
Maryland also observed decreased throughput when us-
ing java’s nio package. Their experiments showed that

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1K 2K 4K 8K 16K

Message Size

C
al

lc
/s

ec

Non vectored
Vectored(Java Nio)

Figure 6: Vectored v/s Non-Vectored Throughput Analysis

to speed up performance, nio’s ByteBuffers should
be converted into normal byte[] arrays for processing
and should be used while writing to the network. We plan
to implement this optimization in ZEN shortly.

2.2 Collocation Optimizations
Context. In addition to separating interfaces from imple-
mentations, a key strength of CORBA is its decoupling of ser-
vant implementations from how the servants are configured
into server processes. CORBA is often used to communicate
between remote objects. There are configurations, however,
where a client and servant must be collocated in the same ad-
dress space [30].
Problem When the client and server are collocated in the
same address space, there should be no overhead from mar-
shaling and demarshaling data or transmitting requests and
replies over a “loop back” transport device. A naive imple-
mentation of CORBA would incur these overheads, thereby
reducing performance and increasing jitter.
Solution → Collocation Optimization Clients can obtain
an object reference in several ways, e.g., from a CORBA Nam-
ing Service or Trading Service. Likewise, clients can use the
string_to_object operation to convert a stringified In-
teroperable Object Reference (IOR) into an object reference.
To ensure locality transparency, an ORB’s collocation strat-
egy must determine if the object is collocated within the same
ORB and/or process. If so, it should optimize the request
processing strategy by not incurring the overheads mentioned
above.
Applying the solution in ZEN. ZEN supports the following
two levels of collocation optimizations:

1. Per-process collocation, where the client and server
ORBs are present in the same address space.

2. Per-ORB collocation, where the client and server ORBs
are the same. This scheme is more fine-grained than per-
process collocation, as the information relating to the tar-

5

get POA servant is directly available to the client. More-
over, this scheme also localizes the side-effects [30] of
collocation, such as priority inversions [31] within a sin-
gle ORB.

For these two levels of collocation, the following two strate-
gies can be applied:

1. Standard collocation where the ZEN Thru_POA col-
location strategy uses “collocation-safe stubs.” As indi-
cated by this strategy’s name, all invocations go through
the POA, i.e., the steps for processing the request are the
same as that of a remote request. This strategy ensures
that all standard POA services (such as POA_Current)
and various locks within the ORB Core and the POA are
honored. Thru_POA is the default collocation strategy
in ZEN.

2. Direct collocation where the collocation strategy for-
wards all requests directly to the servant, thereby bypass-
ing the POA. Since the Thru_POA strategy adheres to all
CORBA semantics for request processing, it incurs a con-
siderable amount of overhead that may not be acceptable
for DRE applications. In contrast, the direct strategy
directly delivers a request to the servant, thereby avoiding
marshaling overhead and context setup overhead (initial-
izing current services in the POA and the ORB). This ex-
tension is not compliant with the CORBA specification,
however, and is provided as an extension for DRE appli-
cations having stringent latency requirements.

There are four different collocation alternatives supported by
ZEN, as shown in the Table 2. Irrespective of the combina-

Thru POA Direct
Per-Process collocation safe suitable for DRE systems

collocation unsafe
Per-ORB collocation safe suitable for DRE systems

Table 2: ZEN’s Collocation Alternatives

tion used, the following three steps are involved in processing
collocated requests:

1. Determining collocation. To determine if an object
reference is collocated, ZEN’s ORB Core maintains a colloca-
tion table that maps ORB endpoints to ORB object references.
For IIOP, the endpoints are specified using hostname and
port number tuples.

Multiple ORBs can reside in the same server process and
each of these ORBs may support multiple transport endpoints.
Rather than having one table per protocol, all endpoint struc-
tures in ZEN inherit from the Address class. By overrid-
ing the hashCode() and equals() methods for each type
of endpoint, a single table can maintain information about all

ORBs and their respective endpoints. Figure 7 shows the in-
ternal table structure of the collocation table managed in ZEN.

ORB Core

CollocationTable
-table: Hashtable
+hash(addr:Address,orb:ORB): void
+find(addr:Address): ORB
+remove(addr:Address): void

Address

endpoint

1
1..*

AcceptorRegistry
+matchEndpoint(addr:Address)
+addEndPoint(addr:Address,orb:ORB)

1

1

1..*

1

{contains}

Figure 7: ZEN’s Collocation Tables: Static Structure

2. Resolving locality. Figure 8 shows how ZEN de-
termines if an object is collocated. The client applica-

: Clients

orb: ORB
1: resolve_reference

reqHndlr: ServerRequestHndlr

3: find_POA()

obj:CollocatedObject

4: createObject

registry:AcceptorRegistry
2: resolve_locality

5: narrow

poa: POA

6: getCollocatedServant

7: createCollocatedStub
_stub: _DirectStub

8: invoke

Figure 8: Finding a Collocated Object in ZEN

tion uses the ORB to resolve the reference obtained ((1)).
The ORB consults its registry and resolves locality based
on the level of locality configured in the client ORB
((2)). If local, the collocated POA is determined using the
ServerRequestHandler ((3)). The ORB then creates a
special collocated CORBA object ((4)). The client application
narrows this generic object ((5)), which obtains the collocated
servant from the POA ((6)). If a servant is found, a special
DirectStub is created for servant-based operations (7,8),
otherwise the appropriate exception is raised.

3. Performing object invocations. ZEN has two strate-
gies for performing object invocations after it resolves locality.
These two schemes – Thru_POA and Direct collocation
optimization – are discussed below:
• Thru POA collocation optimization. This strategy uses

a collocation safe stub to handle operation invocations
on a collocated object. Invoking an operation via a col-
location safe stub ensures the following checks are per-
formed: (1) applicable client policies are used, (2) the

6

server ORB (same/different than the client ORB) has not
been shutdown, (3) the thread-safety of all ORB and POA
operations, (4) the POA managing the servant still exists,
(5) the POA Manager of this POA is queried to check
if invocations are allowed, (6) the servant for the collo-
cated object is still active, (7) the POA Current’s context
is set up for this upcall, and (8) all POA policies (e.g., the
ThreadPolicy, LifespanPolicy, and ServantRetentionPol-
icy are respected.

• Direct collocation optimization. To minimize the over-
head of the standard collocation strategy describes above,
it is possible to implement collocation to forward all re-
quests directly to the servant class, thereby bypassing the
POA. When implemented correctly, the performance of
ZEN’s Direct collocation strategy should be competi-
tive to that of invoking a virtual method call on the ser-
vant. This strategy is not compliant with the CORBA
standard, however, since: (1) the POA Current is not set
up, (2) interceptors are not enabled, (3) the POA manager
state is ignored, (4) not all POA policies are not consid-
ered (e.g., the ThreadPolicy and RequestProcessing poli-
cies are circumvented, and (5) the ORB’s status is not
checked.

Empirical results. The performance of the collocation
strategies described above was compared with that of no collo-
cation, i.e., where client and server communicate via the loop-
back device. The level of collocation was set to the the per-
ORB strategy for this experiment. The measurements were
performed on an Intel Pentium III 864 Mhz processor with 256
MB of main memory. For these experiments, ZEN version 0.8
was compiled using the GNU gcj compiler version 3.2.1 and
executed using jRate [32] 0.3a on Linux 2.4.7-timesys-3.1.214
kernel.

Figure 9 shows the performance of the individual colloca-
tion strategies in ZEN. With no collocation, ZEN performs
1,675 call/sec. With the Thru_POA collocation optimization,
the performance is greatly improved to about 43,000 calls/sec.
The Direct collocation strategy gives the best performance
of around 53,000 calls/sec. These metrics show that Direct
collocation would be more suitable for real-time systems that
require high throughput and low latency. The standard collo-
cation strategy is still three times faster than the non-collocated
request processing strategy.

3 Enhancing ZEN’s ORB Core using
the RTSJ

The OMG Real-time CORBA specification was adopted sev-
eral years before the RTSJ was standardized. CORBA’s Java
mapping therefore does not use any RTSJ features, such as

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

ca
lls

/s
ec

w/o Collocation
Thru_POA Collocation
Direct Collocation

ZEN Collocation Strategies

Figure 9: Performance of ZEN’s Collocation Strategies

NoHeapRealtimeThread and ScopedMemory. To have
a predictable Java-based Real-time CORBA ORB like ZEN,
however, it is necessary to take advantage of RTSJ features to
reduce interference with the GC and ensure predictability.

This section first identifies problems in the original design
of ZEN, which was initially based on regular (i.e., non-RTSJ)
Java. We then analyze a typical end-to-end critical code path
of a CORBA request within the original ZEN ORB, which was
based on regular Java. Based on this analysis, we describe how
we are enhancing the ZEN ORB Core to use RTSJ features,
such as real-time threads and scoped memory, to improve its
predictability.

3.1 Problems in the Original Design of ZEN

In the original architecture of ZEN [14], key ORB compo-
nents that are involved in request/response processing (such
as acceptors, connectors, transports, and thread pools) were
originally allocated in the heap as shown in Figure 10 . This
architecture suffered from the following problem: the ORB al-
locates several temporary objects during the processing of a
remote request/response. This allocation can lead to demand
garbage collection, i.e., execution of the GC when the Java
new operator cannot find enough memory. Execution of the
GC can cause unbounded preemption latency to the thread pro-
cessing the request. The situation is exacerbated if the request
is critical (i.e., highest priority), which can be catastrophic for
certain types of safety- and mission-critical DRE applications.
To eliminate priority inversions related to invocations of the
garbage collector during a request upcall, it is essential that
key ORB objects be allocated either within scoped or immor-
tal memory. These objects would not cause demand garbage
collection, thus minimizing the interference with the GC and
enhancing the predictability of the ORB and DRE application.

7

Transport Layer

Acceptor

Buffer Manager

GIOP Messaging CDR Stream Object Resolvers

 IOR ParsersOther
ORB

Components

Object Adapter

HEAP MEMORY

Transport

Figure 10: The Original ZEN ORB Core Architecture

Sidebar 1 provides an overview of the RTSJ thread & memory
models.

3.2 Applying RTSJ Features to ZEN
RTSJ application goals. The goals for the application of
RTSJ features include:
• Minimizing interference with GC. Garbage collection

is generally considered to be unsuitable for DRE ap-
plications with stringent real-time requirements. Al-
though there have been recent advances in GC algo-
rithms [33, 34], the Java GC can preempt any thread in
the system, leading to the thread incurring unacceptably
long preemption latencies. A key goal of ZEN is there-
fore to avoid allocating critical ORB components in heap
memory to reduce the number of GC sweeps.

• Compliance with the CORBA specification. To pre-
serve compliance with the Real-time CORBA specifi-
cation, the RTSJ features must be incorporated within
ZEN’s ORB Core without requiring any modifications
to the Real-time CORBA specification. Options that re-
quire the end-user to be RTSJ-aware, such as associating
scoped memory at the POA level, are provided as non-
standard ZEN-specific options.

• Interoperability with normal Java. ZEN is de-
signed to use intelligent strategies for component cre-
ation and extensibility [35] that allow configurability of
real-time features (such as the number of static/dynamic
threads, thread priorities, and buffer size) using proper-
ties and policies. These strategies use techniques, such
as reflection [36, 37, 38] and aspects [39], to create
real-time/vanilla Java components, thereby minimizing
time/space overhead for applications that do not require
real-time features.

Identification of Steps Our redesign of ZEN for Real-time
CORBA began by identifying the participants associated with

Sidebar 1: Overview of the RTSJ Thread &
Memory models.

This sidebar briefly describes the RTSJ thread and memory models:

RTSJ memory model. The RTSJ has devised memory regions
that bypass the GC, thereby giving application programmers con-
trol over the time at which memory is allocated and reclaimed. The
memory regions introduced include:

• Immortal memory. The RTSJ introduces the concept of im-
mortal memory, where allocated objects have the same life-
time as the Java Virtual Machine (JVM). The objects allo-
cated in it are not subject to garbage collection.

• Scoped Memory. Like immortal memory, a scoped memory
area is not garbage collected. Unlike immortal memory, how-
ever, the lifetime of a scoped memory region is not persistent.
Instead, it is reference counted, indicating the number of ac-
tive threads in that region. After the count drops to zero, the
memory region is considered inactive and objects allocated
in it are reclaimed.

• Nested Scopes. A real-time thread can make a scoped mem-
ory (m1) region its current allocation context by using the
enter() method on the region. Subsequently, the thread
may enter another scoped region (m2) making it its alloca-
tion context. The region m2 is an inner/nested scope of m1.

To maintain referential integrity, the JVM enforces certain rules for
assignment in all memory regions, summarized in the table shown
below:

Reference to: Heap Immortal Scoped
Heap Yes Yes No

Immortal Yes Yes No
Scoped Yes Yes Inner Scope

Local Variable Yes Yes Inner Scope

Threading model. The RTSJ extends the Java threading model
and introduces two new types of threads: RealtimeThread and
NoHeapRealtimeThread (NHRT). NHRT threads are special
real-time threads that do not “touch” the heap, i.e., they cannot load
or store a reference to an object in the heap. NoHeapRealtime-
Thread can therefore have execution eligibility higher than the
garbage collector.

processing a request at both the client and server sides. For
each participant identified, we associated the component with
non-heap regions and resolved challenges arising from this as-
sociation.

The first step needed to identify where to apply RTSJ fea-
tures required the analysis of the end-to-end critical code path
in ZEN. Figure 11 depicts the participants involved in ser-
vicing a CORBA two-way invocation. The discussion of the
critical code path has been generalized using the Acceptor-
Connector [40] pattern and thread-per-connection concurrency
strategy. Sidebar 2 describes the various concurrency strate-

8

Client ORB

1,3

Buffer Manager

Transport T 1

9, 15

9, 14
GIOP

Message
Parsers

1.0 1.01.1

10, 16

Waiting
Strategy

C1 C2

C3

Connector

8, 17

Connection Cache

C1
C2 C3

Client Application

2

Server ORB

13

Object Adapter

Acceptor 4

5

12

Buffer Manager

Transport T 1

6, 7,14

Connection
Cache
C1

C2

C3

11, 14
GIOP

Message
Parsers

1.0 1.01.1

Figure 11: Tracing an Invocation Through the ZEN CORBA
ORB

gies and patterns used by ZEN to process GIOP requests.

Sidebar 2: Concurrency Strategies and Pat-
terns in ZEN

ZEN’s architecture is based on many of the patterns described
in [40]. Below we outline the key patterns in the ZEN ORB for
request demultiplexing and dispatching:

• Thread-per-connection. In a server using this strategy, each
concurrently connected clients is serviced by a dedicated
thread. The thread completes a requested operation syn-
chronously before servicing other requests. Hence to service
multiple clients, the server spawns multiple threads. This is
the default strategy used in ZEN.

• Reactive synchronous. GIOP request and reply handlers
register with a Reactor [40] that uses a synchronous event
demultiplexer to wait for data to arrive. When data arrives,
the reactor is notified by the demultiplexer, which then dis-
patches the registered handler to service the request. In ZEN,
reactive I/O support is present via java’s nio package. Reac-
tive I/O can be enabled in ZEN by turning on the zen.asynch
option in the properties file.

• Acceptor-Connector is an initialization pattern that decou-
ples the connection establishment between ORBs from the
processing they perform after they are connected.

• Half-Sync/Half-Async is a pattern that decouples asyn-
chronous and synchronous service processing in concurrent
systems to simplify programming without unduly reducing
performance. Synchronous service layer performs applica-
tion processing services that run in separate threads. The
Asynchronous service layer performs ORB-level processing
of requests sent from clients.

We next describe the sequence of steps a client ORB
performs to actively create a connection when a CORBA
request is invoked by the application, i.e., result =
object.operation (arg).

Connection management. We first describe how ZEN es-
tablishes a connection between a CORBA client and a server.

1. The client ORB’s connection cache
(ConnectorRegistry class in ZEN) is queried
for an existing connection to the server, obtained from
the object reference on which the operation is invoked.

2. If no previous connection exists, a separate connection
handler is created (Transport class in ZEN) T1 and
the Connector connects to the server

3. This connection is added to the ConnectorRegistry
since C1 is bidirectional.

The activities of the server ORB for accepting a connection
are described next:

4. An acceptor accepts the new incoming connection.
5. This connection C1 is then added to the server’s connec-

tion cache (AcceptorRegistry class in ZEN) as the
server may send requests to the client.

6. A new connection handler T1 is created to service re-
quests.

7. The Transport’s event loop waits for data events from the
client.

Synchronous request/reply processing. The following are
the steps involved when a client invokes a synchronous two-
way request to the server.

8. The BufferManager class is queried to obtain a buffer
to marshal the parameters in the operation invocation.

9. The appropriate GIOP Message Writer marshals the re-
quest and the Transport sends the request to the server.

10. The WaitingStrategy class associated with the
transport waits for a reply from the server.

The server ORB performs the following activities to process
the request.

11. The request header on connection C1 is read to determine
the size of the request.

12. A buffer of the corresponding size is obtained from the
buffer manager to hold the request and the request data is
read into the buffer.

13. The request is the demultiplexed to obtain the target POA,
servant, and skeleton servicing the request. The upcall is
dispatched to the servant after demarshaling the request.

14. The reply is marshaled using the corresponding GIOP
message writer; Transport sends reply to the client.

The client ORB performs the following activities to process
the reply from the server:

15. The Reader reads the reply from the server on the con-
nection.

9

16. Using the request ID, the Waiting Strategy identifies the
target Transport.

17. The parameters are then demarshaled and control is re-
turned to the client application, which processes the re-
ply.

Analyzing Request Processing Steps The request process-
ing steps described above reveal the following characteristics:

• Repetitive. The steps involved with request/reply pro-
cessing are repetitive, i.e., carried out for every request.
Steps 11-14 at the server side for request processing and
steps 15-17 at the client side remain the same for each
request from the client/server. Similarly, steps 1-3 are
performed for every remote request sent to the server.

• Independent & memoryless. Steps required for
processing request/response from two different
client/server(s) are independent, i.e., they do not
share any context. Moreover, two requests from the same
client do not share any context.

• Ephemeral. The objects created during the execution of
these steps remain valid only for the duration of one cycle
of request/response processing. ORBs therefore usually
cache these resources to minimize resource management.

• Thread bound. Each of the steps are executed by a re-
quest processing thread. For example, steps 11-14 at the
server side are executed by the transport and thread-pool
threads.

The aforementioned characteristics of the steps lend them-
selves to the application of RTSJ features in the following
manner:

• Real-time Threads. The thread-bound property of the
steps enables components e.g., acceptor-connector and
transports to be associated with real-time threads. In par-
ticular, each of these components is designed based on an
logic part, implemented as a Java class that implements
the Runnable interface. This part is then associated
with a scoped memory region and bound with the thread
at creation time.

• Scoped memory. The ephemeral property of the steps
enable the Upcall4 objects to be associated with scoped
memory regions. Sidebar 3 explains the various ways of
creating upcall objects in scoped memory.

The repetitive, independence, and memoryless properties of
the steps further shape how an ORB implementor can asso-
ciate scoped memory. The repetitive and memoryless proper-
ties enable the request/response processing steps to be carried

4Upcall objects are per request objects that have the context necessary to
process a remote request.

out within a scoped memory region5, process the request and
send the response to the client. The memory region is then ex-
ited6 enabling all the objects created to be freed, thus minimiz-
ing the number of GC sweeps. This cycle is repeated for the
next request. The independence property validates the above
mechanism, allowing objects created during request process-
ing to be freed before processing a subsequent request.

Sidebar 3: Object Creation in Scoped Memory

The RTSJ provides the following mechanisms for associating ob-
jects with scoped memory:

• newInstance()– using this method an object can be explicitly
created in a scoped memory region. This method takes in the
class constructor and the list of parameters arguments and
uses reflection to instantiate the object.

• new Thread()– each real-time thread at creation time may be
associated with a scoped memory region. This action leads to
that region being used as the default allocation context. For
e.g., NHRT threads are associated with a scoped memory as
they cannot “touch” the heap.

• enter()– using this method, a real-time thread can make a
memory region its current allocation context. This method
takes a runnable object as an argument. Objects created dur-
ing the execution of the runnable’s run() method are cre-
ated in the current memory region and are finalized once the
run method is completed.

• executeInArea()– this method has the effect of executing
the runnable object’s run method in the memory area on
which the method was invoked. This method along with
newInstance and newArray methods, allow applica-
tions to change the current execution context without actually
changing the thread’s scope stack.

Creation of scoped memory regions unlike heap/immortal
memory requires the size of the memory region to be specified.
However, the footprint required to process request/response is
dynamic, i.e., varies based on:
• Request size. The request size at the server depends on

the size of the request sent by the client.
• Options associated. The footprint required during re-

quest processing depends on the options enabled.
• Type of Request. The request size directly depends on

the type of GIOP request e.g., a LOCATE REQUEST mes-
sage would be of a different size when compared to a
normal request.

The most appropriate memory size would therefore have to be
chosen during initialization time. One solution to this prob-
lem is to create the one huge chunk of memory. However,

5Using the enter() method the memory region can be made the current
allocation context.

6Exiting a memory region is implicit, done after the completion of the run
method.

10

this solution is non scalable. Further, some JVMs may not be
able to allocate huge chunk of scoped memory region. To ad-
dress this problem, in ZEN we use Nested Scopes (explained
in Sidebar 1) for every request/response demultiplexing phase,
which is explained in Section 3.3.

3.3 Applying Scoped Memory within ZEN’s
ORB Core

To enhance predictability, we apply RTSJ features e.g.,
scoped memory to ORB components along the critical re-
quest/response processing path. Moreover, to minimize the
effect of pre-allocating memory regions, we use nested scope
memory regions for each demultiplexing phase. Below, we
explain the three broad phases of request processing, i.e., at
the server side and describe how we associate scoped memory
with each of the three phases. Similar correlation exists at the
client side.
1. I/O layer.

• Steps. This phase of demultiplexing corresponds to the
steps 4-7 described in Section 3.2.

• Participants. The participants for this phase include, ac-
ceptors, connectors, and transports.

• RTSJ application. Each of these components are thread-
bound components and are designed based on the inner
class paradigm. This class derives from the Runnable
interface and corresponds to the logic run by the thread.
Instead of creating the entire component in scoped mem-
ory, we create the inner logic class in a scoped memory
region, mI/O. This logic class is associated with the
thread at creation time. During ORB execution, multi-
ple clients may connect to it, creating transports for every
active client. Each of the transports will have a dedicated
mI/O region. We collectively refer to these regions as a
space.

2. ORB Core layer.

• Steps. This phase of demultiplexing corresponds to the
Steps 11-12 in Section 3.2.

• Participants. GIOP Message parsers, Buffer Allocators
and CDR Streams.

• RTSJ application. On receipt of new data events
from the socket, the Transport reads the message header
from the stream. Based on the size of the header, a
RequestMessage7 is created. After reading the re-
quest from the stream, the appropriate message parser is
associated based on the type of the request. The mes-
sage parser and the RequestMessage buffer are created
in a nested memory region, mORB . The ORB space is

7This class encapsulates a buffer to hold the request.

a nested memory region. Based on RTSJ memory rules,
references from the ORB to the I/O space are valid, i.e.,
every mORB scope may hold references to the corre-
sponding mI/O region.

3. POA Layer.

• Steps. This phase of demultiplexing corresponds to the
steps 13-14 in Section 3.2.

• Participants. Upcall objects, and thread-pools
• RTSJ application. The message parser parses the re-

quest to find the target POA and servant. An Upcall
object is created to hold all information necessary
to perform the upcall on the skeleton. A worker
thread in the thread-pool then performs the upcall. A
CDROutputStream is created, to hold the response,
which is then sent to the client. The Upcall objects and
the output buffers are created in a nested scoped memory
region mP OA. The POA space is the innermost memory
region. Again, references from POA to ORB or I/O space
are valid.

NETWORK

D
IR

E
C

TI
O

N
 O

F
S

C
O

P
E

 N
E

S
TI

N
G

THREAD POOL

Upcall
Objects

POA
SCOPE

I/O SCOPE

Acceptor

Transport Transport Transport

ORB CORE SCOPE
CDR Streams

IDL
Skeleton

IDL
Skeleton

HEAP SCOPESERVANTSERVANT

����

�����	�

��
��
�

�� ��� ���

Figure 12: The Layered Architecture of ZEN

Figure 12 illustrates the layered architecture of ZEN’s ORB
Core. The figure also shows an application layer, associated
with heap memory, where servants and IDL skeletons are cre-
ated. Currently, the application of RTSJ features is within the
ORB Core and does not require the application developer to be
RTSJ aware. The architecture does not violate any of the RTSJ

11

reference rules as (1) any of the ORB Core layers may hold ref-
erences to the application layer and (2) a real-time thread can
always allocate from Heap memory (enter it) without violating
the single-parent rule.

Figure 13 (A) illustrates the nesting of scopes within the
ZEN ORB Core. The I/O space is the outermost memory re-
gion while the POA layer is the innermost. Memory regions
are entered from outer →inner, while references are main-
tained from inner → outer. On completion of a request, the
memory regions are exited from innermost to outermost. All
the objects thus created for request processing are finalized
minimizing interference with the GC. Figure 13(B) depicts the
scope stack structure of the request processing threads in ZEN.

I/O SPACE

ORB SPACE

POA SPACE

NESTED SCO
PES

REFE
RENCES: I

NNER
 O

UTE
R

en
te

r()
 exit POA

SPACE

ORB
SPACE

I/O
SPACE

A B

Figure 13: Scope Nesting in ZEN ORB

The ZEN architecture is compliant with the CORBA speci-
fication and is transparent to the application developer. In our
architecture, however, a NoHeapRealtimeThread cannot
be used for request processing as the application layer is heap
allocated. The use of a NoHeapRealtimeThread is crit-
ical to enhancing the predictability of a Real-time CORBA
ORB, which would require that the end-user be RTSJ aware.
In ZEN, we plan to provide policies at the POA level that
would determine the type of real-time thread to used for re-
quest processing. Thus an RTSJ aware end user can allocate
servants in a memory region other than the heap and set the
type of upcall processing thread to NHRT to enhance pre-
dictability.

4 Related Work
In recent years, a considerable amount of research has focused
on enhancing the predictability of real-time middleware for
DRE applications. In this section, we summarize key efforts
related to our work on ZEN.
Real-time CORBA middleware research. Real-time
CORBA 1.0 implementations are available from variety of
suppliers including e*ORB from PrismTechnologies and
ORBExpress from Object Interface Systems. Real-time
CORBA has also been extensively studied in the research
literature.

The Time-triggered Message-triggered Objects (TMO)
project [41] at the University of California, Irvine, supports
the integrated design of distributed OO systems and real-time
simulators of their operating environments. The TMO model
provides structured timing semantics for distributed real-time
object-oriented applications by extending conventional invo-
cation semantics for object methods, i.e., CORBA operations,
to include (1) invocation of time-triggered operations based on
system times and (2) invocation and time bounded execution
of conventional message-triggered operations.

The ROFES project [42] is a Real-time CORBA implemen-
tation for embedded systems. ROFES uses a microkernel-
like architecture [42]. ROFES has been adapted to work
with several different hard real-time networks, including
SCI [43], CAN, ATM, and an ethernet-based time-triggered
protocol [44].

The URI project [45] is a Real-time CORBA system devel-
oped at the US Navy Research and Development Laboratories
(NRaD) and the University of Rhode Island (URI). The system
supports expression and enforcement of dynamic end-to-end
timing constraints through timed distributed method invoca-
tions (TDMIs) [46]

The The ACE ORB TAO [47] is a widely-used, open-
source ORB compliant with most of the CORBA 3.0 speci-
fication [11]. TAO has been used in mission-critical DRE ap-
plications for over six years [48]. TAO supports the Real-time
CORBA 1.0 specification and portions of Real-time CORBA
2.0.
RTSJ middleware research. RTSJ middleware is an emerg-
ing field of study. Researchers are focusing at RTSJ imple-
mentations, benchmarking efforts, and program compositional
techniques.

The TimeSys corporation has developed the official RTSJ
Reference Implementation (RI) [49], which is a fully compli-
ant implementation of Java that implements all the mandatory
features in the RTSJ. TimeSys has also released the commer-
cial version, JTime, which is an integrated real-time JVM for
embedded systems. In addition to supporting a real-time JVM,
JTime also provides an ahead-of-time compilation model that
can enhance RTSJ performance considerably.

12

The jRate [32, 50] project is an open-source RTSJ-based
real-time Java implementation developed at Washington Uni-
versity, St. Louis. jRate extends the open-source GNU Com-
piler for Java (GCJ) run-time system [51] to provide an ahead-
of-time compiled platform for RTSJ.

The Real-Time Java for Embedded Systems (RTJES) pro-
gram [52] is working to mature and demonstrate real-time Java
technology. A key objective of the RTJES program is to as-
sess important real-time capabilities of real-time Java technol-
ogy via a comprehensive benchmarking effort. This effort is
examining the applicability of real-time Java within the con-
text of real-time embedded system requirements derived from
Boeing’s Bold Stroke avionics mission computing architec-
ture [53].

The researchers at the Washington University, St Louis are
investigating automatic mechanisms [54] that enable exist-
ing Java programs to become storage-aware RTSJ programs.
Their work centers on validating RTSJ storage rules using
program traces and introducing storage mechanisms automat-
ically and reversibly into Java code.

5 Concluding Remarks and Future
Work

Distributed Real-time and Embedded (DRE) systems are
growing in number and importance as software is increasingly
used to automate and integrate information systems with phys-
ical systems. Over 99% of all microprocessors are now used
for DRE systems [55] to control physical, chemical, or biolog-
ical processes and devices in real time. In general, real-time
middleware (1) off-loads the tedious and error-prone aspects
of distributed computing from application developers to mid-
dleware developers, (2) provides standards that ultimately re-
duce development time, and (3) enhances extensibility for fu-
ture application needs. In particular, Real-time CORBA has
been used successfully in DRE systems, conveying the advan-
tages of middleware to the unique and challenging require-
ments of DRE systems.

This paper presents the optimizations applied in ZEN to im-
plement Real-time CORBA using Real-time Java. To achieve
effective end-to-end real-time predictability within an ORB
Core, the following two levels of optimizations must be con-
sidered:

1. Applying optimization principles to ensure predictability.
2. Applying RTSJ features effectively within an Real-time

CORBA ORB Core.

As a part of the first level of optimizations, this paper illus-
trated the optimizations applied to the ZEN ORB Core, includ-
ing its memory management and collocation schemes. Since
these optimizations are applied at the algorithmic and data

structural level, they are independent of the RTSJ implementa-
tion. For the second level optimization, the paper focused on a
previously unexplored dimension in real-time middleware: the
integration of RTSJ features to support Real-time CORBA. We
showed how scoped memory and real-time threads can be as-
sociated within a real-time ORB Core without violating RTSJ
rules, yet still remaining compatible with the CORBA specifi-
cation.

Our ongoing research on ZEN is focusing on:

• Completing the Real-time CORBA implementation
that resides atop a mature RTSJ layer,

• Effective use of RTSJ features to implement Real-time
CORBA, such as using appropriate policies at the POA
level to associate scoped memory with the CORBA POA,

• Resolving challenges arising from use of Real-time
Java features, e.g., the association of scoped memory
with the POA may restrict servants from being registered
with multiple POAs due to rules associated with scoped
memory.

• Enhance our benchmarking suite based on represen-
tative operational DRE applications. Our first target
platform is Boeing Bold Stroke [53], which is a frame-
work for avionics mission computing applications. We
are collaborating with researchers from Boeing and the
AFRL Real-Time Java for Embedded Systems (RTJES)
program [52] to define a comprehensive benchmarking
suite [56].

References
[1] Object Management Group, The Common Object Request Broker:

Architecture and Specification, Revision 2.6, Dec. 2001.

[2] J. P. Morgenthal, “Microsoft COM+ Will Challenge Application Server
Market.” www.microsoft.com/com/wpaper/complus-appserv.asp, 1999.

[3] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for
the Java System,” USENIX Computing Systems, vol. 9,
November/December 1996.

[4] J. Snell and K. MacLeod, Programming Web Applications with SOAP.
O’Reilly, 2001.

[5] M. Pohlmann and M. Schonefeld, “An evolutionary integration
approach using dynamic corba in a typical banking environment.”
http://www.corba.org/success.htm, 2001.

[6] R. Zahavi and D. S. Linthicum, Enterprise Application Integration with
CORBA Component & Web-Based Solutions. New York: John Wiley &
Sons, 1999.

[7] D. C. Schmidt, “R&D Advances in Middleware for Distributed,
Real-time, and Embedded Systems,” Communications of the ACM
special issue on Middleware, vol. 45, pp. 43–48, June 2002.

[8] Object Management Group, Real-time CORBA Specification, OMG
Document formal/02-08-02 ed., Aug. 2002.

[9] Object Management Group, CORBA Messaging Specification. Object
Management Group, OMG Document orbos/98-05-05 ed., May 1998.

[10] M. Henning and S. Vinoski, Advanced CORBA Programming with
C++. Reading, MA: Addison-Wesley, 1999.

[11] Object Management Group, The Common Object Request Broker:
Architecture and Specification, 3.0 ed., June 2002.

13

[12] I. Pyarali, D. C. Schmidt, and R. Cytron, “Techniques for Enhancing
Real-time CORBA Quality of Service,” IEEE Proceedings Special
Issue on Real-time Systems, May 2003.

[13] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull, The
Real-Time Specification for Java. Addison-Wesley, 2000.

[14] R. Klefstad, D. C. Schmidt, and C. O’Ryan, “The Design of a
Real-time CORBA ORB using Real-time Java,” in Proceedings of the
International Symposium on Object-Oriented Real-time Distributed
Computing, IEEE, Apr. 2002.

[15] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture—A System of Patterns. New
York: Wiley & Sons, 1996.

[16] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,” Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

[17] D. C. Schmidt, V. Kachroo, Y. Krishnamurthy, and F. Kuhns,
“Applying QoS-enabled Distributed Object Computing Middleware to
Next-generation Distributed Applications,” IEEE Communications
Magazine, vol. 38, pp. 112–123, Oct. 2000.

[18] D. C. Schmidt, M. Deshpande, and C. O’Ryan, “Operating System
Performance in Support of Real-time Middleware,” in Proceedings of
the 7th Workshop on Object-oriented Real-time Dependable Systems,
(San Diego, CA), IEEE, Jan. 2002.

[19] Object Management Group, Real-time CORBA Joint Revised
Submission, OMG Document orbos/99-02-12 ed., Feb. 1999.

[20] D. C. Schmidt and S. Vinoski, “The History of the OMG C++
Mapping,” C/C++ Users Journal, Nov. 2000.

[21] D. C. Schmidt and S. Vinoski, “Standard C++ and the OMG C++
Mapping,” C/C++ Users Journal, Jan. 2001.

[22] I. ZeroC, “The Internet Communications EngineTM .”
www.zeroc.com/ice.html, 2003.

[23] S. Grarup and J. Seligmann, “Incremental garbage collection,” Tech.
Rep. Student Thesis, Department of Computer Science, Aarhus
University, Aug. 1993.

[24] S. Albers and M. Mitzenmacher, “Average case analyses of first fit and
random fit bin packing,” in 9th Annual ACM Symposium on Discrete
Algorithms, May 1998.

[25] E. Coffman, D. Johnson, P. Shor, and R. Weber, “Markov chains,
computer proofs and average-case analysis of best fit bin packing,” in
Proceedings of the 25th Annual ACM Symposium on Theory of
Computing, (New York, USA), Aug. 1993.

[26] R. Hutchins, Java NIO. O’Reilly & Associates, 2002.
[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[28] M. S. Johnstone and P. R. Wilson, “Memory fragmentation problem:
Solved?,” 1977.

[29] W. Pugh and J. Spacco, “Mpjava: High-performance message passing
in java using java.nio,” in MASLAP’03 Mid-Atlantic Student Worskshop
on Programming Language and Systems, Apr. 2003.

[30] N. Wang, D. C. Schmidt, and S. Vinoski, “Collocation Optimizations
for CORBA,” C++ Report, vol. 11, pp. 47–52, November/December
1999.

[31] D. C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and
Non-determinism in Real-time Object Request Brokers,” Journal of
Real-time Systems, special issue on Real-time Computing in the Age of
the Web and the Internet, vol. 21, no. 2, 2001.

[32] A. Corsaro and D. C. Schmidt, “The Design and Performance of the
jRate Real-Time Java Implementation,” in On the Move to Meaningful
Internet Systems 2002: CoopIS, DOA, and ODBASE (R. Meersman and
Z. Tari, eds.), (Berlin), pp. 900–921, Lecture Notes in Computer
Science 2519, Springer Verlag, 2002.

[33] P. Cheng and G. Belloch, “A parallel, real-time garbage collector,” in
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 125–136, 2001.

[34] D. F. Bacon, P. Cheng, and V. T. Rajan, “A real-time garbage collector
with low overhead and consistent utilization,” in Proceedings of the
30th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 285–298, ACM Press, 2003.

[35] A. Corsaro, D. C. Schmidt, R. Klefstad, and C. O’Ryan, “Virtual
Component: a Design Pattern for Memory-Constrained Embedded
Applications,” in Proceedings of the 9

th Annual Conference on the
Pattern Languages of Programs, (Monticello, Illinois), Sept. 2002.

[36] Gordon S. Blair and G. Coulson and P. Robin and M. Papathomas, “An
Architecture for Next Generation Middleware,” in Proceedings of the
IFIP International Conference on Distributed Systems Platforms and
Open Distributed Processing, (London), pp. 191–206, Springer-Verlag,
1998.

[37] Fábio M. Costa and Gordon S. Blair, “A Reflective Architecture for
Middleware: Design and Implementation,” in ECOOP’99, Workshop
for PhD Students in Object Oriented Systems, June 1999.

[38] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The Case for
Reflective Middleware,” Communications ACM, vol. 45, pp. 33–38,
June 2002.

[39] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in
Proceedings of the 11th European Conference on Object-Oriented
Programming, June 1997.

[40] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. New York: Wiley & Sons, 2000.

[41] K. H. K. Kim, “Object Structures for Real-Time Systems and
Simulators,” IEEE Computer, pp. 62–70, Aug. 1997.

[42] RWTH Aachen, “ROFES.” http://www.rofes.de, 2002.

[43] M. P. S. Lankes and T. Bemmerl, “Design and Implementation of a
SCI-based Real-Time CORBA,” in 4th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC 2001),
(Magdeburg, Germany), IEEE, May 2001.

[44] M. R. S. Lankes and A. Jabs, “A Time-Triggered Ethernet Protocol for
Real-Time CORBA,” in 5th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC 2002),
(Washington, DC), IEEE, Apr. 2002.

[45] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. Wohlever,
I. Zykh, and R. Johnston, “Real-Time CORBA,” in Proceedings of the
Third IEEE Real-Time Technology and Applications Symposium,
(Montréal, Canada), June 1997.

[46] V. Fay-Wolfe, J. K. Black, B. Thuraisingham, and P. Krupp, “Real-time
Method Invocations in Distributed Environments,” Tech. Rep. 95-244,
University of Rhode Island, Department of Computer Science and
Statistics, 1995.

[47] Center for Distributed Object Computing, “The ACE ORB (TAO).”
www.cs.wustl.edu/∼schmidt/TAO.html, Washington University.

[48] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” in Proceedings of
OOPSLA ’97, (Atlanta, GA), pp. 184–199, ACM, Oct. 1997.

[49] TimeSys, “Real-Time Specification for Java Reference
Implementation.” www.timesys.com/rtj, 2001.

[50] A. Corsaro and D. C. Schmidt, “Evaluating Real-Time Java Features
and Performance for Real-time Embedded Systems,” in Proceedings of
the 8th IEEE Real-Time Technology and Applications Symposium,
(San Jose), IEEE, Sept. 2002.

[51] GNU is Not Unix, “GCJ: The GNU Compiler for Java.”
http://gcc.gnu.org/java, 2002.

[52] Jason Lawson, “Real-Time Java for Embedded Systems (RTJES).”
http://www.opengroup.org/rtforum/jan2002/
slides/java/lawson.pdf, 2001.

[53] D. C. Sharp, “Reducing Avionics Software Cost Through Component
Based Product Line Development,” in Proceedings of the 10th Annual
Software Technology Conference, Apr. 1998.

14

[54] M. Deters, N. Leidenfrost, and R. K. Cytron, “Translation of Java to
Real-Time Java using aspects,” in Proceedings of the International
Workshop on Aspect-Oriented Programming and Separation of
Concerns, (Lancaster, United Kingdom), pp. 25–30, Aug. 2001.
Proceedings published as Tech. Rep. CSEG/03/01 by the Computing
Department, Lancaster University.

[55] Alan Burns and Andy Wellings, Real-Time Systems and Programming
Languages, 3rd Edition. Addison Wesley Longmain, Mar. 2001.

[56] K. R. L. David C. Sharp, Edward Pla and R. J. H. II, “Evaluating
real-time java for mission-critical large-scale embedded systems,” in
Proceedings of the 9th IEEE Real-Time Technology and Applications
Symposium (G. Bollella, ed.), (Washington D.C), pp. 30–37, 2003.

15

