
HP Object Oriented
DCE C++ Class Library

Programmer’s Guide

Printed in U.S.A.

June 1994

E0694

First Edition
               © Copyright 1994 Hewlett-Packard Company. All Rights Reserved.

®



H

ii

NOTICE

The information contained in this document is subject to change without no-
tice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH
REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for er-
rors contained herein or for incidental or consequential damages in connection
with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its soft-
ware on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copy-
right. All rights reserved. No part of this document may be photocopied, repro-
duced or translated to another language without the prior written consent of
Hewlett-Packard Company.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restric-
tions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.2277013.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Rights for non-DOD U.S. Government Departments and Agencies are as set
forth in FAR 52.22719(c)(1,2).



Preface

iii

Preface
This document describes how to use Hewlett-Packard’s Object Oriented
Distributed Computing Environment (OODCE) C++ class library to
develop object-based client/server applications.

This document is intended to be used by an applications programmer who
has experience with OSF’s DCE software, and the C++ and C
programming languages.

This manual is organized as follows:

Chapter 1 “Introduction” provides an general description of OODCE,
including the DCE programming model and the OODCE
development model.

Chapter 2 “The Basics” provides information on a sample application
and OODCE’sidl++  compiler.

Chapter 3 “Using the Cell Directory Service” describes how to place
bindings in the Cell Directory Service and how to register
server information in remote procedure call (RPC) groups
and profiles.

Chapter 4 “Error Handling” describes how to communicate errors
between a server and a client.

Chapter 5 “Basic Pthreads” describes the basics of using Pthread
objects.

Chapter 6 “Basic Security” describes how to use the basic security
features offered by the OODCE library.

Chapter 7 “Basic Access Control List Management” describes how to
use access control lists to provide security in OODCE.

Chapter 8 “Advanced Application Development” describes advanced
features of OODCE for developing object-based systems.



Related Documentation

iv

Chapter 9 “Advanced ACL Management” describes how to use
OODCE to write your own ACL database, instantiate a
persistent database, and use multiple reference monitors.

Chapter 10 “Advanced Thread Programming” describes how to use
thread attributes, thread-specific storage, and condition
variables.

Appendix A “OODCE Glossary of Terms” defines OODCE terms used in
this manual.

Appendix B “Basic Application Development Summary” provides a step-
by-step guide to OODCE application development.

Related Documentation
The following HP OODCE documentation is supplied with this release.

HP DCE Application Development Tools Installation Notes (B2922-90601)
provides hardcopy notes that describe how to install the HP OODCE
software and access the online help.

HP OODCE Online Help System consists of the following help volumes:

• HP OODCE Release Notes provides information on contents,
prerequisites, defects and limitations. It also provides hyperlinked
access to all other OODCE help volumes.

• HP OODCE Sample Applications provides reference, tutorial, and
background information on the Sleeper sample application.



Related Documentation

v

• HP OODCE Application Development Tools provides an overview of
the idl++  compiler, a description ofidl++  generated files, a quick start
for the compiler, pointers to reference information, an overview of the
Tracing and Logging Facility, feature descriptions, and reference
information on tracing and logging.

• HP OODCE Class Reference gives an overview of OODCE classes, a
description of class hierarchy, and pointers to reference information
(man pages) for all classes.

To access online help from the HP VUE Front Panel:

1. Click the Help icon on the VUE Front Panel (the ? icon). AWelcome
to Help Manager help window appears.

2. In the Help Manager window, click theHP Distributed Application
Development Tools product family title. A list of the help volumes
appears.

3. To display one of the HP Tools help volumes, click its title.

To access help from a shell, enter this command at a shell prompt:

     /usr/vue/bin/helpview -h HPtoolswelcome

This displays theWelcome Help help volume. The help volume contains
hyperlinks to all of the other HP volumes.



Related Documentation

vi

Related OSF Documents

For additional information on the Distributed Computing Environment, see
the following documents:

• Introduction to OSF DCE

• OSF DCE User’s Guide and Reference

• OSF DCE Application Development Guide

• OSF DCE Application Development Reference

• OSF DCE Release Notes.

Object Oriented Programming Documents

For information on object oriented programming, see the following
documents:

• Booch, Grady.Object-Oriented Design: With Applications. New York:
Benjamin/Cummings Publishing Co. Inc. 1991.

• Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.,
and Jeremaes, P.Object-Oriented Development: The Fusion Method.
New York: Prentice-Hall. 1993.

• Jacobson, Ivar.Object-Oriented Software Engineering: a Use Case
Driven Approach. New York: Addison-Wesley. 1992.

• Mellor, Stephen and Shlaer, Sally.Object-Oriented Systems Analysis.
New York: Prentice-Hall. 1992.

• Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy,
Frederick; and Lorensen, William.Object-Oriented Modeling and
Design. New York: Prentice-Hall. 1991.

• Taylor, David A.Object-Oriented Information Systems: Planning and
Implementation. New York: John Wiley & Sons. 1992.



Related Documentation

vii

• Wirfs-Brock, R., Wilkerson, B., and Wierner, L.Designing Object-
Oriented Software. New York: Prentice-Hall.

C++ Programming Documents

For information on C++ programming, see the following documents:

• Coplien, Jim.Advanced C++; Programming Styles and Idioms. New
York: Addison-Wesley. 1992.

• Lippman, Stanley B.C++ Primer. 2nd Ed. New York: Addison-Wesley.
1989.

• Meyers, Scott.Effective C++. New York: Addison-Wesley. 1992.

• Murray, Robert B.C++ Strategies and Tactics. New York: Addison-
Wesley. 1993.

• Stroustrup, Bjarne.The C++ Programming Language. 2nd Ed. New
York: Addison-Wesley. 1991.

Hewlett Packard Documents

For information on programming with threads and the Distributed
Computing Environment, see the following documents:

• Programmer’s Notes on HP DCE Threads (B3190-90002)

• Introduction to OSF DCE (B3190-9005, ISBN 0-13-490624-1)

• OSF Application Development Guide (B3190-90006, ISBN 0-13-
643826-1)

• OSF Application Development Reference (B3190-90007, ISBN 0-13-
643834-2)



Related Documentation

viii



Contents

ix

1 Introduction to OODCE   1-1

DCE 1-3

The C++ Language 1-4

Product Objectives 1-5

The DCE Programming Model 1-6

DCE Objects, Types, and Interfaces 1-6

Mapping C++ Onto the DCE Programming Model 1-9

The DCE and OODCE Error Models 1-12

Security Model 1-13

Naming in OODCE 1-14

Threads Support in OODCE 1-15

The OODCE Development Model 1-15

OODCE IDL++ Compilation and Results 1-15

Server Functionality 1-20

2 The Basics   2-1

Sleeper Interface Definition 2-3

Manager Classes 2-4

Abstract Manager Class 2-5

Concrete Manager Class 2-6

Entry Point Vector and Code 2-7

Client Class 2-9

Locating Manager Objects 2-10

Client Class Example 2-11

DCE Stub Files 2-12



x

Contents

Writing the Server Program 2-12

Implementing the Manager Object 2-13

Implementing Server Main Function 2-14

Complete Server Main Function Example 2-20

Selecting Communication Protocols 2-21

Selecting a Specific Protocol 2-22

Using Well Known Endpoints 2-24

Writing the Client Program 2-26

3 Using the Cell Directory Service   3-1

Placing Bindings in the CDS 3-2

How to Set the CDS Name Used By a Server Program 3-2

How a Client Uses the CDS to Find Manager Objects 3-4

How to Register Server Information into RPC Groups 3-6

How to Register Server Information in RPC Profiles 3-8

Using Object UUIDs in the CDS 3-11

4 Error Handling   4-1

Handling Exceptions Raised by the OODCE Library 4-2

Communicating Errors Between Your Application Server and Client 4-6

Communicating OODCE Exceptions from Server to Client 4-6

Fatal Library Errors 4-6

Communicating Application Server Exceptions to the Client
Program 4-7



Contents

xi

Interoperability with C Based DCE Systems 4-7

Using Application Status Codes Instead of Exceptions 4-8

5 Basic Pthreads   5-1

Creating a New Thread 5-2

Creating a Mutual Exclusion Lock 5-3

How to Operate on Your Current Thread 5-4

6 Basic Security   6-1

How to Set Up a Login Context for Client and Server Programs 6-2

Using DCELoginContext and DCEPassword in OODCE 6-3

How to Set Security Preferences 6-6

How to Set Server Security Preferences 6-6

How to Set Client Security Preferences 6-7

How to use a Reference Monitor 6-9

How to use Default Reference Monitor in Server Code 6-11



xii

Contents

7 Basic Access Control List Management   7-1

How to Initialize the ACL Management System 7-3

Creating a New Constructor 7-5

How to Create a New ACL Schema 7-7

Passing a Static Table of Permissions to the DCEAclSchema
Constructor 7-7

Creating an Empty DCEAclSchema and Adding Permissions 7-8

How to Create a New Database 7-9

How to Create a New ACL 7-10

How to Check Authorization Privileges. 7-11

8 Advanced Application Development   8-1

How to Implement a Custom Naming Policy 8-2

Modifying Server Export and UnExport Functions 8-2

How to Support Custom Naming for the Client 8-4

Creating a New Client Class to Support Custom Naming 8-5

How to Develop Manager Objects with Multiple Interfaces 8-6

How to use C++ Inheritance for Server Development 8-6

Using C++ Inheritance for Client Access 8-11

Dynamic Object Management 8-12

Dynamic Object Creation 8-12

Object Activation 8-20

Creating and Using Object References 8-29



Contents

xiii

9 Advanced ACL Management   9-1

How to Write Your Own Database Implementation 9-2

How to Instantiate an Existing (Persistent) Database 9-3

Multiple Refmon’s 9-3

Implementing ACL Management for a Factory Object 9-4

10 Advanced Threads Programming   10-1

Using DCEPthread Attributes 10-2

Setting the Attributes 10-3

Attributes for Multiple Threads 10-4

Changing and Interrogating Thread Attributes 10-4

Using Thread-Specific Storage 10-6

Using Condition Variables 10-7

A OODCE Glossary of Terms   A-1

B Basic Application Development Summary   B-1

Index   Index-1



xiv

Contents



1

Introduction to OODCE



Introduction to OODCE

1-2

Distributed processing is a major paradigm shift for application
developers. The ability to develop complex systems where processing
is distributed across many different computing platforms is both very
attractive and daunting. It is attractive because the distributed
computing model provides system planners and developers with
flexibility and power. It is daunting because of the problems inherent
in combining large scale systems with different hardware and systems
software.

With the success of the Open Software Foundation’s (OSF) Distributed
Computing Environment (DCE), however, the difficulties of designing
and implementing distributed systems have been greatly reduced. DCE
provides a solid foundation for the development of distributed
heterogeneous systems. It provides a powerful communications
mechanism capable of translating data between machines with different
architectures and a set of basic services that include:

• Security

• Location service

• Time service

• Distributed file system.

Many DCE users, however, have asked for even simpler models,
interfaces, and methods of using it. The C applications programming
interfaces (API’s) were, for them, too low level. They required that
applications developers learn a substantial amount about DCE when
creating even the simplest applications. In addition, many users have
been moving towards object-oriented analysis and design, and using
the C++ programming language to implement their systems. These
customers began requesting an API for DCE that was both easier to use
and better supported theC++ programming language. In response, we
developed the Object Oriented DCE (OODCE) product.

The following sections describe the integration and use of theC++

programming language and the Distributed Computing Environment
from the Open Software Foundation. The focus is on using object
oriented programming techniques to simplify developing distributed
applications over DCE and the exploitation of the distributed
programming model that exists within the DCE.



Introduction to OODCE
DCE

1-3

DCE
The OSF’s Distributed Computing Environment represents a collection
of integrated services and tools that provide a basic infrastructure for
developing distributed applications. Many companies contributed
technologies to DCE. These companies and others are now offering the
DCE infrastructure running on both open and proprietary operating
platforms.

The services provided by DCE are as follows:

Remote Procedure Call The Remote Procedure Call (RPC)
mechanism provides the communications
layer over which the other DCE services
communicate. In particular, DCE RPC
enables programs to call remote procedures
that execute in other processes on a network.

Directory Service A hierarchical directory service that can
provide a scalable namespace across
geographic boundaries. Currently, RPC uses
the directory service to locate and bind to
instances of server processes within DCE.

Security Service The security service provides two basic
functions:

• An authentication mechanism that
validates users at login time and provides
mutual authentication between clients
and servers operating in DCE

• A privilege service that provides
protected (secure) security attribute
information for security principals that
can be used to implement an
authorization scheme based on access
control lists.



Introduction to OODCE
DCE

1-4

Distributed Time Service Provides time synchronization between
networked hosts within DCE.

Distributed File System Provides secure access to file data across a
DCE administrative unit called acell.

Threads Service Since much DCE depends on a multi-
threading capability, DCE provides a user
space implementation of POSIX threads API
(IEEE Standard 1003.4a) that can be used
with operating systems that do not provide
their own threading mechanism.

In DCE, all of these services are integrated and form a standard, well
defined infrastructure on which to build distributed applications. A
basic set of tools is also provided to support developing DCE-based
applications and managing the DCE services.

The C++Language

C++ is an object-oriented programming language that supports the
objected oriented development paradigm. This paradigm is well suited
to the development of large scale systems because it can clearly define
and specify the behavior of small individual components in easy to
understand terms. Once defined and implemented, these “Software
ICs” can be assembled in many different ways to create larger
components. This approach reuses not only the implementation itself,
but also the specification and analysis effort that was invested in that
implementation. The resulting gain in productivity is potentially great.

The advent of the integrated circuit freed engineers from dealing with
the vagaries of individual transistor circuits and permitted them to deal
with circuits at a much higher level. This, in turn, brought down
development costs and made many products commercially feasible for
the mass market.



Introduction to OODCE
DCE

1-5

Distributed systems can also benefit from the abstraction that the
object-oriented paradigm supports. The definition of behaviors in terms
that relate to the object itself (such as Write a Check, or Debit an
Account) tends to keep implementation detail out of specifications and
analyses. This makes it easier to provide different implementations for
the same object, even on different machines and architectures.

Product Objectives

The primary objective of the Object Oriented DCE product is to reduce
the cost of developing DCE-based distributed systems. To do this,
OODCE:

• Simplifies the development of DCE based systems.

• Provides an environment for developingC++ based systems that
maintain theC++ development model; that is, clients and servers can
both be written inC++. Useful distributed systems can be
implemented without resorting to the C language API.

• Lives within and exploits the object model already provided by the
DCE RPC service. The definition of a new distributed object model
is not the intent of this product.

• Provides useful class abstractions that represent conceptual entities
within DCE that hide complexity and provide correct default
behavior.

The main objectives center around enhancing the DCE development
model and easing the learning curve. In essence, DCE applications
developers need no longer concern themselves with the details of DCE
itself when they use OODCE. Like electronics engineers today, they
need only to use the “OODCE chips” provided and concern themselves
only with the application they are writing.

The next section explains the DCE programming model in more detail,
then provides a top level overview of the OODCE representation of
that model.



Introduction to OODCE
The DCE Programming Model

1-6

The DCE Programming Model
DCE is not an object-based system; however, the RPC mechanism
supports an object model. This section explains the DCE programming
model and develops a basic set ofC++ classes that can be used to
exploit that model.

DCE Objects, Types, and Interfaces

DCE provides a number of features that can be considered object
oriented. While these features are not fully exploited in the C usage
model, their full power can be brought to the forefront when examining
DCE from the object oriented viewpoint. Central to the DCE
programming model is its support of objects that export a set of well
defined interfaces. These objects can be typed, and are managed by a
larger object called a server. Servers are responsible for:

• Making the objects locatable and accessible by remote clients

• Enforcing the security policy defined for the objects

• Performing other management tasks as defined by the system
designer.

An OODCE object is an entity that is manipulated by a set of well
defined operations. Systems can be envisioned in which a server
manages thousands of objects. Because of the potentially large number
of objects, the DCE designers had to develop a new method of object
identification, the Universally Unique Identifier (UUID).

A UUID is a large number that is generated and is guaranteed to be
unique for all time across all DCE cells in the world. Each object can
be assigned a UUID so that it can be located and used by remote
clients.



Introduction to OODCE
The DCE Programming Model

1-7

Operations that can be performed on a DCE object are grouped into
logical sets called interfaces. DCE interfaces define the calling syntax
that is used by both the requestor (DCE client) and the provider (DCE
object) of an operation. The specification of an interface is independent
of the mechanism used to convey requests between the requester and
provider and the method by which the operations are provided or
implemented. Specification of DCE interfaces use an Interface
Definition Language (IDL) to define the operation signatures.

To support change and enhancement, DCE interfaces support the
concept of versioning. DCE interface versions are identified by a major
number and a minor number. An increase in the minor number
signifies a compatible upgrade to the interface, that is, interfaces that
share the same major number and have a higher minor number are
fully compatible with interfaces that have a lower minor number. On
the other hand, interfaces that have different major numbers are not
considered compatible. Because the version of an interface is so
significant, DCE interface names include both a UUID and its version.

DCE objects that share characteristics can be typed. DCE types
associate objects with code that implements them. Like other DCE
entities, UUIDs are used to name types. Object types can be used to
locate groups or categories of objects rather than a specific object. For
example, a client that wants to print to a laser printer can search for
objects that have a “laser printer” type.

A DCE manager is a specific implementation of a type. Objects of the
same type within a server process usually share the same
implementation. However, each instance of a DCE object of a
particular type usually maintains its own state information. The same
type, however, may need to be implemented using a different manager
on a machine with a different architecture or from a different vendor.

DCE objects are accessed via a server process that is said to export
interface information on behalf of the objects it supports. The server
process can be thought of as an object manager that makes the objects
it supports accessible across a network or process boundary via the
DCE interfaces they support. The server process listens for incoming
client requests. These requests get dispatched to the object of the
correct type that implements the requested interface and operation.



Introduction to OODCE
The DCE Programming Model

1-8

The following figure shows the basic programming model
implemented by DCE.

Figure 1-1. The DCE Programming Model

DCEInterface (Color)

Type Blue (Manager)
Type Red (Manager)

Object b1
Object b2

Object b3

Object b6

Object b7

Object b5

Object b8

Object b4

Object r1

Object r2

Export DCEInterface Color
Export Types Red, Blue
Export Objects b1...bn, r1...rn

Server Process



Introduction to OODCE
The DCE Programming Model

1-9

Mapping C++ Onto the DCE Programming Model

From the description of the DCE programming model in the previous
section, a corresponding object model suitable forC++ development
can be derived. OODCE maps the DCE entities into two slightly
different views for theC++ developer: one from the viewpoint of a
server, the other from the viewpoint of a client.

On the server side, the DCE notion of an interface is mapped onto the
C++ notion of an abstract class. The operations defined in DCE
interfaces become pure virtual member functions of this abstract class.
The DCE notion of type maps onto concreteC++ classes, derived from
the abstract interface class. DCE managers are the implementation of
these concrete classes. DCE objects then map to instances of theC++

objects (or collections ofC++ objects) that are constructed from these
concrete classes. The following figure shows a representation of the
OODCE programming model from the viewpoint of a server.



Introduction to OODCE
The DCE Programming Model

1-10

Figure 1-2. The OODCE Server Side Programming Model

On the client side, the DCE interface maps onto a concreteC++ class
that provides version control and accesses remote operations via
member functions of the class. Using the facilities provided by
OODCE, the DCE client has no control over implementation details on
the server, so the DCE type of an object is lost. The applications
developer can insert “IsA” type operations into the interface definition
to obtain the object’s type directly from the object, and, using
parameters in calls to a factory object, can determine the class of an
object when it is created.

Class Blue Class Red

Object b1
Object b2

Object b3

Object b6

Object b7

Object b5

Object b8

Object b4

Object r1

Object r2

Export DCEInterface Color
Export Classes Red, Blue
Export Objects b1...bn, r1...rn

Global Server Object
class DCEInterfaceMgr

class Color_1_0_Mgr_ABS



Introduction to OODCE
The DCE Programming Model

1-11

The following figure shows a representation of the OODCE
programming model from the viewpoint of a client.

Figure 1-3. The OODCE Client Side Programming Model

A client proxy object locates and binds to a DCE object that is
implemented at the server by a specificC++ object instance. There is a
direct mapping between a DCE object UUID and aC++ object instance
(or a set ofC++ objects). A specific client object acts as a proxy for a
specificC++ object on the server that implements the same interface
and provides the illusion that the client side code is accessing a local
C++ object.

N O T E This illusion can only be maintained in as much as DCE can support it.
Unexpected and unrecoverable communication failures are always a
possibility and need to be dealt with by the client when they happen.

Object b1

Object b2

Object b3

Object b6
Object b7

Object b5

Object b8

Object b4

Object r1

Object r2

Search for DCEInterface Color
Search for Objects b1...bn, r1...rn

class DCEInterface

class Color_1_0
Proxy Objects



Introduction to OODCE
The DCE Programming Model

1-12

Local member function calls on the client are translated into remote
method calls that are sent to the server process that manages the
matching DCE object. On the server, requests from a client are sent to
a specificC++ object as a local member function call. Results are
returned in a similar manner.

The OODCE class library maintains this mapping though specific
system level objects and a tool that generates the required classes from
an IDL specification.

The DCE and OODCE Error Models

DCE provides two methods to detect errors that occur during remote
procedure calls: status codes and exceptions. Status codes are the
predominant method used to return error information. The use of
exceptions within DCE is relatively sparse and appears to be
inconsistent with the status code model. In addition, the threads
component of DCE appears to have a slightly different error model
than the rest of the system, complicating development for DCE
applications developers. The exception handling inC++ provides a
very convenient and extensible model for error handling that is
particularly suited to library code. Therefore, the different DCE error
models have been mapped into a single,C++ exception-based error
model.

The result is a very consistent and extensible error model for DCE
development. Each DCE status code is given a correspondingC++

exception class. The exception classes are arranged in a hierarchy that
is rooted in a single base class. Wrapper code is provided around the
DCE error model such thatC++ developers need only deal withC++

exceptions when calling facilities in the class library. The existence of
a single, extensible error model also encourages developers to use
exceptions in their ownC++ code to handle fault conditions.



Introduction to OODCE
The DCE Programming Model

1-13

Security Model

The C++ language does not support security. DCE, however, provides
facilities for mutual authentication, communications security, and
access control. To provide access to this functionality from theC++

development environment, the DCE security model is provided
through the definition of system classes. To facilitate development,
base classes are provided. Because many details of a security policy
are application specific, some of these classes are abstract, providing
only interface details rather than full implementations.

The classes provide a framework within which security can be
implemented and the DCE security services are exploited. Although
the class library provides little in the way of actual implementation of
security models, it does provide a mechanism by which basic security
checks can be automatically invoked. Security implementations coded
to the provided system class can be automatically called to do security
checks before the object that is the target of the request is invoked. As
much security checking as possible should be done outside of an object
implementation to allow for consistency and portability of the object
code.

DCE Reference Monitors

OODCE supports the concept of a reference monitor by defining an
abstract class for it. A reference monitor performs a basic set of
security checks before a remote method call is passed to an object. A
reference monitor can check to ensure that the client is properly
authenticated, the protection level is appropriate, and that the client is
authorized to use the requested interface or operation. OODCE
supports the specification of a reference monitor object separately for
each interface, but many interfaces can share a single reference
monitor object. A separate reference monitor object can be specified
for the server management functions supported directly by the global
server object within the OODCE class library. OODCE supplies a
basic implementation of a usable reference monitor; however, an
applications developer can create a custom reference monitor to
enforce the security policy to meet system requirements.



Introduction to OODCE
The DCE Programming Model

1-14

Access Control Lists

The primary means for storing and accessing authorization information
in DCE is Access Control Lists (ACLs). ACLs match DCE identities
with sets of permissions or capabilities. A match can be made on the
basis of any field in a DCE identity including the principal ID, group
ID, and organization ID, and whether or not the identity is foreign
(comes from another cell).

N O T E OODCE does not support foreign identities.

Permissions or capabilities are defined on an application basis, and
usually imply that the identity they are associated with is granted (or
denied) the ability to perform one or more operations.

To support ACLs, OODCE provides a set of abstract classes and a
reference implementation for developers to use.

Login Context Management

OODCE provides abstract classes and a set of simple implementations
to establish and maintain a DCE identity. These classes can be built
upon by customers requiring elaborate schemes or security measures.
In many cases, the provided classes are adequate for prototyping and
initial development.

Naming in OODCE

OODCE fully supports the DCE naming scheme at the DCE Remote
Procedure Call (RPC) Naming Service Interface (NSI) level. The class
library supports methods and optional parameters for interfaces and
objects that cause them to be registered in the endpoint map and
optionally in the directory service. Once registered by the class library,
the names can be used as parameters in the client-side object
constructor calls. OODCE will use the names to locate and bind to the
server-side object. A set of utility classes define methods for the
various naming entities to include objects, groups, profiles and names.



Introduction to OODCE
The OODCE Development Model

1-15

Threads Support in OODCE

Because thread construction, monitoring, and control is not defined in
the C++ standard, OODCE provides a set of classes to perform these
functions for the POSIX threads (Pthread) model. The classes permit
C++ developers to create new threads by using a class constructor,
modifying the attributes of the executing thread and other threads, and
constructing and using mutex locks and condition variables. Some
abstraction is provided in the implementation of these classes. For
example, mutex lock objects are automatically initialized when
created. Developers do not need to make a separate call to initialize
them as they do when using the C API.

The OODCE Development Model
The development model supported by OODCE is one in whichC++ is
used as the primary development language. The basic DCE
development model is maintained through the use of theidl++

compiler and the OODCE class library.

Development of an OODCE object starts with the specification of an
interface using the DCE Interface Definition language (IDL). The IDL
specification describes the remote procedures and the data syntax used
between a client and a server.

OODCE IDL++  Compilation and Results

The IDL specification is passed to theidl++  compiler. Theidl++

compiler generates the required communication stubs for inter-object
communication via the specified interface. Theidl++  compiler also
generates class information and code that interfaces with the DCE
runtime to provide aC++ environment for the developer.



Introduction to OODCE
The OODCE Development Model

1-16

The following figure shows the information that theidl++  compiler
generates.

Figure 1-4. IDL to C++ Mapping

Server Side
Class

Declarations
FooS.H

DCEInterfaceMgr

Server EPV
FooE.C

Client Side
Class

Declarations

IDL Spec
Foo.idl

foo_1_0_Mgr_ABS

foo_1_0_Mgr
Default Class

(nil class)

Developer
implements mem-
ber functions for

foo

foo_1_0
Default Class

idl++

DCEInterface

Server Stubs
Foo_sstub.o

Client Side
Class

Implementation
FooC.C

Client Stubs
Foo_cstub.o

Stub header
foo.h



Introduction to OODCE
The OODCE Development Model

1-17

Server Side Class Definitions

The idl++  compiler generates an abstract class definition from the
IDL specification. The name of this abstract class is based on the
interface name and version specified in the IDL specification. In the
previous figure, the IDL specifies version 1.0 of interface foo,
therefore the abstract class name isfoo_1_0_Mgr_ABS .

The remote procedures defined in the IDL specification are represented
as pure virtual member functions of this abstract class. The abstract
class is derived from a common base class calledDCEInterfaceMgr ,
which specifies a common interface for all server-side classes
generated by theidl++  compiler.

The idl++  compiler also generates a definition of a concrete class that
is derived from the abstract class. This class represents the nil or
default DCE class for the IDL specification. The name of this class is
also derived from the interface name and version, for example,
foo_1_0_Mgr  is the name of the concrete class in the preceding
example. Other concrete classes can be derived from the abstract class
that can provide different implementations for the same interface.
Objects can provide more than one interface by inheriting from either
the abstract or concrete class for each interface to be supported.

Both the abstract and concrete class definitions are emitted in a file
whose name is based on the input file name, similar to the standard
idl  compiler. The name of the emitted file is the name of the input
file, stripped of its suffix, with the suffix “S.H ” appended to it. In the
preceding example,Foo.idl  is the name of the input file, therefore
FooS.H  is the name of the file that contains the server class
definitions.



Introduction to OODCE
The OODCE Development Model

1-18

Server Entrypoint Vector

In addition to the class definitions, theidl++  compiler generates a
server entrypoint vector (EPV) for the interface. The EPV generated by
the idl++  compiler provides the mapping between the C calls made by
the server stub and theC++ method calls provided by the class library
and the developer. An incoming client request must be mapped into a
member function call on a specificC++ object instance. The EPV
locates the correctC++ object and makes the requested member
function call.

Optional security checks can be made before the member function call.
These checks call implementations of security classes that implement
the security policy for the object. The EPV also handles the translation
of server side exceptions into a network transmittable form for
communication to the client. When processing is complete, the
member function returns to the EPV, which provides any output data to
the DCE runtime for transmission back to the client-side object.

The EPV is emitted in a file whose name is also derived from that of
the input file. In this case, the suffix of the target is “E.C ”. In the
example shown in Figure 1-4, where the name of the input file is
Foo.idl , the server EPV file is namedFooE. C.

Server Stubs

The idl++  compiler generates a server stub file that contains the code
to do the following:

• Receive incoming procedure calls from remote clients

• Unmarshal the parameters for IN parameters

• Dispatch the call to the correct function to perform the operation

• Marshals any OUT parameters

• Transmits any OUT parameters or exceptions back to the client.

In OODCE, the function called from the server stub is in the server
EPV so that the correctC++ object can be located and additional
processing can be performed before the method is called.



Introduction to OODCE
The OODCE Development Model

1-19

Client-Side Class Definitions

The idl++  compiler generates a concrete class on the client side that is
used to access objects that implement the interface defined in the IDL
file. Remote procedures declared in the IDL specification are mapped
onto member functions in the generated client class. The client class is
derived from a base abstract class,DCEInterface , that forms the root
class of all client-side classes derived from IDL files. The name of the
client-side concrete class is based on the name of the interface and its
version.

In the example shown in Figure 1-4, the client-side concrete class is
foo_1_0 . The name of the file in which the class definition is emitted
is based on the name of the input file. In this case, the definitions are
placed in a file namedFooC.H .

The implementation for the client-side concrete class is also generated
by the idl++  compiler. This implementation provides functionality to
locate and bind to any remote object that implements the IDL
specification. The implementation of the member function of the
concrete class provides access to the remote procedure calls that
communicate with the server object. The implementation is emitted in
a file with the “C.C” suffix; therefore, in the example shown in Figure
1-4, the name of the file that contains the concrete class
implementation isFooC.C .

Application code that requires access to a remote DCE object simply
constructs an instance of the concrete class (supplying optional
location information if desired) and makes member function calls to
that object. All member function calls are passed by the proxy object to
the remote object to which it is bound for processing. Communication,
server-side exceptions and errors, and security failures are modelled as
exceptions and need to be caught by the application code that uses the
object. Checks made by the client object ensure type safeness between
the client and server object.



Introduction to OODCE
The OODCE Development Model

1-20

Server Functionality

The idl++  compiler generates the environment that allows the
implementation of, and access to IDL interfaces throughC++ objects.
However, these objects can only be located and accessed if there is a
server that exports them. Servers interact with the DCE sub-systems to
advertise their objects and to listen for incoming client requests.

Server functionality is embodied in aServer  class defined within the
class library. A global object calledtheServer  can be used to register
objects with the DCE environment and then to listen for client
requests. TheServer  class provides default implementations for the
basic duties of a DCE server.

Specific implementations can be provided by overriding the default
implementations of the server class throughC++ inheritance.

Typically, server code involves the registration of object
implementations with a server object, initialization of server
preferences for naming and security, and then instructing the server
object to listen for client requests.



2

The Basics



The Basics

2-2

The first step of OODCE development is to define the required
interfaces for communication between a client and a server. In
OODCE, the server exports interfaces to objects within the server,
which can be called by a client. The server exports interfaces that can
be called by a client.

An OODCE object is an entity that is manipulated by well-defined
operations. Every OODCE object has a class that specifies the type or
category of the object. The OODCE objects of a class are manipulated
using a specific set of one or more interfaces. An OODCE interface
consists of a set of related operations that can be applied to any object
of the class.

DCE interfaces are defined using the DCE Interface Definition
Language (IDL). They are then processed by a compiler calledidl,

which generates system data structures and communication stubs for
the client and server. The IDL language is described in theDCE
Application Development Guide.

OODCE uses the same IDL language, but an enhanced version of the
compiler is used to process the interface specification. The compiler
program is calledidl++.  The idl++  compiler generates the client and
server stub and header files needed for a DCE Remote Procedure Call
(RPC) interface.idl++  also generates a number ofC++ files that
provide communication between OODCE clients and servers. The
following example demonstrates these files and their purposes.

The following code defines an IDL specification for asleeper  object.
A sleeper  object can be told to sleep for a specified period of time.
To accomplish this, thesleeper  object exports a single method call
calledSleep . TheSleep  method accepts one argument, which is the
number of seconds to sleep. The caller of this method is blocked for
the requested period of time, until theSleep  method returns. The code
is as follows:



The Basics
Sleeper Interface Definition

2-3

[uuid(),

version(1.0)

] interface sleeper

{

void Sleep(

[in] handle_t h,

[in] long time);

}

Sleeper  Interface Definition
The IDL definition shown in the previous section completely specifies
the interface of thesleeper  object, defining the remote procedure
signature of the only method call,Sleep .

OODCE does not require syntax changes to IDL, but it does enforce
the following conventions:

• Each defined remote procedure call must use explicit binding
management. In explicit binding, the binding information is passed
as the first argument to remote procedures. DCE IDL also supports
the implicit and automatic binding modes; however, they must not
be used in IDL files passed to theidl++  compiler. The functionality
provided by implicit and automatic binding is supported at a higher
level in OODCE.

• An interface version number must be specified so thatidl++  can
generate class names that allow multiple versions of an interface to
be used within an application without name clashes.

• Custom binding is an IDL feature not readily supported by OODCE.
This can be supported at a higher level and should not be specified
in the IDL file.



The Basics
Manager Classes

2-4

If the preceding IDL specification resides in a file named
sleeper.idl , the idl++  compiler generates the following files.
Some of these relate to client functionality and must be linked with the
client. The others relate to server functionality and must be linked with
the server.

• sleeperS.H

• sleeperE.C

• sleeperC.H

• sleeperC.C

• sleeper_cstub.c

• sleeper_sstub.c

The following sections describe the content and purpose of each of
these files.

Manager Classes
In OODCE, the server-side functionality of an interface is provided by
implementing aC++ class generated from an IDL specification. These
class definitions are placed in a header file that uses the following
naming convention.

<IDL File Name>S.H

In the case of thesleeper  interface,sleeperS.H  contains the class
that must be implemented by the developer to provide the server-side
functionality. This is analogous to the manager routines that are written
for a DCE server.



The Basics
Manager Classes

2-5

The sleeperS.H  file contains two class definitions derived from the
sleeper.idl file. The first class issleeper_1_0_ABS  and is an
abstract class. The mapping provided byidl++  is such that the remote
procedure callSleep,  defined in the IDL file, is a pure abstract
member function in this class. The following code is the abstract
manager class for thesleeper  interface. Some details have been
removed to improve readability.

Abstract Manager Class

The following abstract class inherits fromDCEInterfaceMgr , which
is a base class that encapsulates the functionality common to all DCE
interfaces.

class sleeper_1_0_ABS : public virtual DCEObj,

public DCEInterfaceMgr {

public:

// Declare Class Constructors

sleeper_1_0_ABS(uuid_t* obj, uuid_t* type);

sleeper_1_0_ABS(uuid_t* type);

// Declare Class pure virtual member functions

// These correspond to the remote procedures

// declared in sleeper. idl

// These need to be implemented by the developer

virtual void Sleep( idl _long_int time) = 0;

};

This class also virtually inherits fromDCEObj,  which encapsulates
functionality common to all DCE objects (for example, object UUID).
Virtual inheritance is further described in “How to Develop Manager
Objects with Multiple Interfaces” in Chapter 8.



The Basics
Manager Classes

2-6

This abstract class is the root class for alternative implementations of
the sleeper  interface. Concrete classes derived from this root class
can provide for multiple implementations of an IDL interface that can
co-exist in the same program. This is analogous to the manager type
concept in DCE.

Concrete Manager Class

The sleeperS.H  file also contains a second, concrete class for the
sleeper  interface. This concrete class is derived from the
sleeper_1_0_ABS  abstract class and provides for a default
implementation class for thesleeper  interface.

Developers ofsleeper  objects can define and implement their own
sleeper  class derived fromsleeper_1_0_ABS  or can provide an
implementation for the concrete class provided byidl++ .

The following code shows the details for the default concrete class.
Some details have been removed to improve readability. No other
implementation is necessary since the implementation for the
constructors is provided by default.

class sleeper_1_0_Mgr : public sleeper_1_0_ABS {

public:

// Declare Class Constructors

sleeper_1_0_Mgr(uuid_t* obj);

sleeper_1_0_Mgr();

// Declare Class member functions

// These correspond to the remote procedures

// declared in sleeper.idl

// These need to be implemented by the developer

virtual void Sleep(idl_long_int time);

};

// Sleep member function implementation

sleeper_1_0_Mgr :: Sleep(long int time)

{

sleep((unsigned int) time);

}



The Basics
Entry Point Vector and Code

2-7

Entry Point Vector and Code
The idl++  compiler generates a server side communications stub file.
This stub file assumes that an entry point vector structure exists for an
interface. An entry point vector contains entry points for each remote
procedure call defined in an interface. In C, these entry points are
pointers to procedures that implement a particular remote procedure. In
OODCE, the remote procedures are implemented as member functions
of C++ objects rather than entry point procedures. However, an entry
point must exist for each remote procedure to allow the
communications stubs to operate correctly. Theidl++  compiler
automatically generates the entry point vector for an interface and
places it in a file with the following naming convention:

<IDL File Name>E.C

For thesleeper  example, the entry point vector support is placed in
sleeperE.C  and provides the interface from the C-based
communications stubs generated by theidl++  compiler to theC++

object that implements the interface.

A manager object is an object that implements the remote operations
defined in the IDL file. In OODCE, each instance of aC++ manager
object that implements an interface is identified by a unique identifier
called the object UUID. Each client request must be routed to a
specific instance of aC++ manager object based on the interface and
DCE object UUID carried in the Remote Procedure Call (RPC) packet.
The Entry Point Vector (EPV) code generated by theidl++  compiler
implements this routing functionality and ensures that the correctC++

manager object on the server is called for each client request. The EPV
code uses an internal table called the object map to route client
requests to the correctC++ manager object (Figure 2-1).



The Basics
Entry Point Vector and Code

2-8

Figure 2-1. Server-Side Communications — EPV Dispatch

For thesleeper  example, the code insleeperE.C  must locate (using
the Object Map) an instance of asleeper  manager object (based on
Interface and Object UUID) derived fromsleeper_1_0_ABS . Once
the manager object has been found, theSleep  member function is
called on that object. A server can have multiple instances of a
sleeper  object, and each instance would have a different DCE UUID.
Each client RPC request specifies a DCE object UUID and the EPV
code locates the correct instance of a manager object based on this
information.

C++ Implementation of
Sleeper Manager Class

Each Instance
has a DCE

object UUID

Object Map

Locates Manager
Object based on

Interface and
Object UUID

RPC Call for Sleep.

RPC Packet includes Interface and Object
UUID.

Entry Point Vector Code
sleeperE.C

Locate C++ object to
service the client

request

Local Member Function callLocal Member Function call

Server-side RPC stub code

sleeper_sstub.c

Instance BInstance A



The Basics
Client Class

2-9

The EPV code is also responsible for calling optional security checks
that can be performed before the manager object’s member functions
are invoked. This feature is further described in Chapter 6, Basic
Security.

Client Class
In OODCE, server objects are accessed via a client object. This object
is used to locate server-based manager objects and to make remote
procedure calls to member functions of those objects. The client object
class definition is derived from an interface specification and can be
found in a file that uses the following naming convention:

<IDL File Name>C.H

The idl++  compiler also generates a default implementation of this
class. This implementation can be used to locate and access
corresponding remote manager objects that implement the interface
from which the client class was defined. You can provide other
implementations of this client object class or overload member
functions that control access to the server object. This kind of
modification is discussed in Chapter 8. The default implementation for
the client class can be found in a file with the following naming
convention:

<IDL File Name>C.C

For thesleeper  example, the client class files generated are called
sleeperC.H  andsleeperC.C . Thesleeper  client class inherits
from a base class calledDCEInterface , which encapsulates basic
functionality for the client object.



The Basics
Client Class

2-10

Locating Manager Objects

One of the main functions of theDCEInterface  class is locating
objects. When the client object is constructed, location information can
be supplied to the constructor through arguments. By default, location
information is not required. In this case, any manager object found that
implements the required interface (it is not guaranteed to be found) is
used. TheDCEInterface  base class locates objects based on the
following information:

• Interface (default). Any object that implements the requested
interface is used.

• Cell Directory Service (CDS) name. This name can refer to a server,
a group or a profile entry in the CDS.

• Host address and protocol sequence.

• Object reference.

TheDCEInterface class also provides constructors that allow binding
information to be passed to the client object. This allows the location
of a manager object to be performed outside of the class and the
obtained bindings are passed to the constructor.

The member function that locates an object is a virtual function and
can be overloaded to provide for custom location policies. This is
further described in “How to Implement a Custom Naming Policy” in
Chapter 8.

The other main function of theDCEInterface  class is to specify
client side security preferences.



The Basics
Client Class

2-11

Client Class Example

The following code shows the client class specification for the
sleeper  example. Some details have been removed to improve
readability.

class sleeper: public DCEInterface {

public:

// Define Class Constructors

// Locate by DCEInterface (default)

sleeper(DCEUuid& to = NullUuid);

// Binding passed to constructor no lookup performed

sleeper(rpc_binding_handle_t bh,

DCEUuid& to = NullUuid);

// Binding passed to constructor no lookup performed

sleeper(rpc_binding_vector_t* bvec);

// Lookup by name (uses CDS)

sleeper(unsigned char* name,

unsigned32 syntax = rpc_c_ns_syntax_default,

DCEUuid& to = NullUuid);

// Lookup by host address and protocol sequence

sleeper(unsigned char* netaddr,

unsigned char* protseq, DCEUuid& to = NullUuid);

// Lookup by Object Reference

sleeper(DCEObjRefT* ref);

// Member functions for client object

void Sleep(idl_long_int time);

};



The Basics
DCE Stub Files

2-12

Notice that theSleep  function defined in the IDL file becomes a
member function of the client class. Client programs call this local
member function to invoke theSleep  operation on a server-side
sleeper  manager object.

DCE Stub Files
The idl++  compiler generates communication stubs for the client and
the server. These files perform the same function for OODCE as they
do for DCE-based applications. The generated stub files have the
following naming convention:

<IDL File Name>.h  — Common header file

<IDL File Name>_cstub.c  — Client-side communications stub

<IDL File Name>_sstub.c  — Server-side communications stub.

The stub files handle the communication between client and server and
perform marshalling and unmarshalling of data types passed across an
RPC interface. For thesleeper  example, the following files are
generated:sleeper.h , sleeper_cstub.c  andsleeper_sstub.c .

Writing the Server Program
The idl++  compiler generates the basic framework class structure for
client and server development. You must fill in the missing
functionality to develop the server and client applications. The
following sections describe the basic functionality that you must
provide to complete development of an OODCE system.



The Basics
Writing the Server Program

2-13

There are two important items that must be developed to complete the
server-side of an OODCE system.

• An implementation for the objects managed by the server. This is
done by implementing the manager classes generated by theidl++

compiler for the interfaces supported by the objects.

• A main function that initializes the server and registers information
in the DCE for the server and the objects it supports.

Implementing the Manager Object

For thesleeper  example, the first task is to implement the server
concrete class generated by theidl++  compiler from thesleeper

IDL file. You can use the generated default concrete class
(sleeper_1_0_Mgr ) and complete the implementation or derive a
new class from the generated abstract class (sleeper_1_0_ABS ).

For thesleeper  example, implementing the default concrete class
involves providing an implementation for theSleep  member function
that corresponds to the remote procedure call defined in the IDL
specification forsleeper . The semantics ofSleep  are to block for a
period of time. The time is determined by the value of a single
argument passed intoSleep .

Since this is a server-based manager object, multiple clients can call
the object concurrently. This means that the implementation ofSleep

must be threadsafe (re-entrant and non-blocking for the process).

The following implementation uses the UNIXsleep  system call to
provide the implementation of theSleep  member function of the
sleeper  object.

void sleeper_1_0_Mgr::Sleep(long int time)

{

// Call Unix sleep function

sleep(time);

}



The Basics
Writing the Server Program

2-14

This code is all that is required to provide an implementation of a basic
sleeper  object. More complex forms of asleeper  object are
described in Chapter 8, Advanced Application Development.

Implementing Server Main Function

The second step required to complete the implementation of a
sleeper  server program is to implement a main function that
initializes the server and optionally registers information in the DCE.
For the basic example ofsleeper , a server process with a single
sleeper  manager object is used. The server does not use the CDS or
security functionality.

OODCE provides a class calledDCEServer  that manages objects and
interacts with DCE. TheDCEServer  class is responsible for object
registration, protocol selection, the CDS and security preferences,
cleanup, and listening for client requests. TheDCEServer  class is
concrete and the OODCE library provides the implementation. Many
of the member functions supported by theDCEServer  class are virtual
and can be overridden in derived classes. Reasons for deriving from
the DCEServer  class are discussed in Chapter 8, Advanced
Application Development.

Only one instance of aDCEServer  object can exist per process. This is
because DCE only allows onerpc_server_listen  call per process.
For convenience, the OODCE library contains a Global Server Object
(GSO) calledtheServer  that can be used by server programs. The
implementation of theDCEServer  class is threadsafe, so the global
server object can be safely accessed from any thread within the server
process.



The Basics
Writing the Server Program

2-15

The basic steps for developing a server main function are as follows:

1. Construct manager objects that are accessed via the server.

2. Create and activate a signal handling thread to perform server
cleanup.

3. Register objects created in Step 1 with the GSO.

4. Select communication protocols (optional).

5. Set naming preferences for the GSO (optional).

6. Set security preferences for the GSO (optional).

7. Instruct the GSO to listen for client requests.

The following sections describe these steps.

Constructing Manager Objects

The functionality provided by a server in OODCE is provided byC++

objects that implement the server-based classes generated by the
idl++  compiler. Each of these objects has a different object UUID and
can be activated either when the server process starts or can be
activated later.

This step initializes the objects that are active when the server process
starts. Chapter 8, Advanced Application Development, which includes
a description of factories and activation, describes the case where
objects are activated after the server is listening.

Using thesleeper  server example, the server-side class is named
sleeper_1_0_Mgr . The implementation of this class is described in
“Implementing the Manager Object” earlier in this chapter. The
following code sample constructs an instance of this class. In this case,
the DCE object UUID is created automatically by the constructor;
however an object UUID could be passed to the constructor.

sleeper_1_0_Mgr* obj = new sleeper_1_0 _Mgr;



The Basics
Writing the Server Program

2-16

The object constructed in this code implements theSleep  member
function of thesleeper  interface. This object can be accessed by a
client to perform theSleep  operation using DCE RPC. To make this
object available to clients, it must be registered with the GSO. This is
discussed in “Complete Server Main Function Example” later in this
chapter.

The following figure shows the mainC++ objects that exist in the
server program immediately afterobj  is created.

Figure 2-2. Server Program Initial State

Creating a Signal Handling Thread

One of the biggest problems facing a server developer is performing
cleanup tasks after the receiving asynchronous signals (for example,
SIGTERM). If appropriate cleanup is not executed when such a signal
is sent to a process, stale information can be left in DCE that can cause
performance problems and sometimes failure in other system elements
(such as stale bindings being passed to clients). TheDCEServer  class
implementation provided by OODCE provides a default signal handler
that performs appropriate cleanup.

Sleeper Server Program

Global Server Object
GSO

(theServer)

Sleeper Object
(obj)



The Basics
Writing the Server Program

2-17

The following code fragment shows how to activate the default signal
handler for the GSO in thesleeper  program.

DCEPthread*cleaner =
new DCEPthread(theServer->ServerCleanup, NULL);

This code creates a thread that executes theServerCleanup  member
function on the global server object.ServerCleanup  sets up a signal
handling function that waits for signals and executes a server shutdown
if a signal is sent to the process. If an application requires more control
over signal handling,ServerCleanup  can be replaced with a different
implementation.

Registering Manager Objects With the Server Object

The GSO needs to know about the objects it is managing; therefore, it
requires that each object be registered. The act of registration places
information about the object in the private state of the GSO. This
information is used to register the server side objects with the local
DCE runtime and external services such as the CDS.

The following code fragment shows how this registration is done.

theServer->RegisterObject(*obj);

This code registers the object (obj) created in “Implementing the
Manager Object,” earlier in this chapter, with the GSO. Every manager
object must be registered with the GSO so that it can be accessed by
clients (Figure 2-3).



The Basics
Writing the Server Program

2-18

Figure 2-3. Registering the Manager Object With the GSO

Listening for Clients

A manager object within a server can only be accessed by a remote
client if the server program is listening for requests. Local client
objects can access manager objects even if the server is not listening.
Invoking theListen  member function instructs the GSO to register
manager object information (registered with GSO in the previous
section) with DCE, and then call the DCE listen loop.Listen  only
returns if a problem exists during registration or if the server stops
listening for client requests. The latter is normally the result of calling
the Shutdown  member function on the GSO. The following code
shows how to start the listen loop.

theServer->Listen();

The call toListen  registers object and interface information
associated with thesleeper  manager object with the local RPC
runtime and the Endpoint Mapper before entering a listen loop (Figure
2-4).

Sleeper Server Program

Sleeper Manager
Object
(obj)

Register Object

Global Server Object
GSO

(theServer)



The Basics
Writing the Server Program

2-19

Figure 2-4. Effect of Calling Listen

Register Interface and
Object information in

EndpointMap

GSO

(theServer)

Sleeper Manager
Object

(obj)

Endpoint Map

(RPCD)

Sleeper Server Program

Host Machine or Node



The Basics
Writing the Server Program

2-20

Complete Server Main Function Example

The following code shows the implementation of the complete main
function for thesleeper  example.

main()

{

// Create single instance of sleeper object

sleeper_1_0_Mgr* obj = new sleeper_1_0_Mgr;

// Start Signal handler

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

theServer->RegisterObject(*obj);

// Listen for client requests

theServer->Listen();

}

This code is relatively simple compared to the equivalent functionality
written in C. Much is taking place that is transparent:

• When thesleeper  object is registered with the GSO, an entry for
thesleeper  manager object is placed in the Object Map table. The
Object Map is used by the EPV code to route client requests to the
C++ manager object associated with a particular object UUID and
interface.

• By default, the GSO listens for client requests on all protocols
supported by DCE on the platform (i.e., TCP/IP and UDP/IP on
UNIX). The GSO registers information about manager objects (obj)
in the Endpoint Map for the host on which the server program is
running. The following is an example of the Endpoint Map
information for asleeper  server.



The Basics
Selecting Communication Protocols

2-21

<object> 9ca883f0-ef51-11cc-bea4-080009627155

<interface id> 7395e26e-5ba4-11cc-988b-080009253b97,1.0

<string binding> ncacn_ip_tcp:15.1.161.80[2704]

<annotation>

<object> 9ca883f0-ef51-11cc-bea4-080009627155

<interface id> 7395e26e-5ba4-11cc-988b-080009253b97,1.0

<string binding> ncadg_ip_udp:15.1.161.80[4820]

<annotation>

• Should the call tolisten  return (because the server was told to
stop listening by a management application or some internal failure
was detected), the destructor for the GSO executes when the main
function exits. This destructor cleans up and removes server
information from the Endpoint Map and local RPC runtime. The
GSO performs a similar clean up if the server process receives a
signal such as SIGTERM or if a user types ^C. Note that a
SIGKILL does not cause the cleanup handlers to be called since the
process exits immediately.

Thesleeper  main function must be linked with the implementation of
the Sleep  member function and the entry point code and server stub
code generated from thesleeper  IDL specification. The result is a
program, that when executed, produces asleeper  server process with
a single manager object that implements thesleeper  interface
specified in thesleeper.idl  file.

Selecting Communication Protocols
By default the GSO listens for client requests over all of the DCE-
supported transport protocols available on a node. OODCE allows
communication protocol preferences for the GSO to be set if fine
control is required for application purposes. This section describe the
features available for controlling the selection of communications
protocols.



The Basics
Selecting Communication Protocols

2-22

Selecting a Specific Protocol

Instead of using all available protocols, you can force the use of a
single protocol for interactions between the client and server. To do
this in OODCE, use the overloadedUseProtocol  member functions
of the GSO. There are three such member functions for specifying that
the GSO should use a particular protocol. They differ in the way that
the endpoint information is determined. Basically a communications
endpoint can be:

• Chosen by the DCE runtime

• Supplied as an argument to one of theUseProtocol  functions

• Derived from an IDL specification of an interface.

The UseProtocol  member functions may be called multiple times to
select the use of more than one protocol, but these calls must be made
before the server enters thelisten  loop. The syntax for the three
versions ofUseProtocol  is shown in the following paragraphs.

Choosing Communications DCEEndpoint by DCE Runtime

In the following code, the communications endpoint for the specified
protocol is chosen by the DCE runtime.

DCEServer::UseProtocol(char*protocol_name,

unsigned32max_requests);

This call tells the GSO to use a specific protocol for communications
between the client and the server. The second argument specifies the
maximum concurrent calls supported in this protocol.

The sleeper  example is modified to use this call, as follows:



The Basics
Selecting Communication Protocols

2-23

main()

{

// Create single instance of sleeper object

sleeper_1_0_Mgr* obj = new sleeper_1_0_Mgr;

// Start Signal handler

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

theServer->RegisterObject(obj);

// Make Server object use TCP/IP

theServer->UseProtocol(“ncacn_ip_tcp”, 5);

// Listen for client requests

theServer->Listen();

}

How To Set the Protocol Endpoint

The following call specifies a protocol for the server program to use as
well as the communications endpoint. The DCE runtime uses the
endpoint information provided in the call tolisten  for client
requests.

DCEServer::UseProtocol(char* protocol_name,

char*endpoint,

unsigned32 max_requests);

The modification to the basicsleeper  server main function is similar
to the main function listing. In the following code, the endpoint string
is specified on theUseProtocol  member function.



The Basics
Using Well Known Endpoints

2-24

main()

{

// Create single instance of sleeper object

sleeper_1_0_Mgr* obj = new sleeper_1_0_Mgr;

// Start Signal handler

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

theServer->RegisterObject(obj);

// Make Server object use TCP/IP

// Set the DCEEndpoint for TCP.IP

theServer->UseProtocol(“ncacn_ip_tcp”

“1025”, 5);

// Listen for client requests

theServer->Listen();

}

Using Well Known Endpoints
It can be useful to have server programs listen for client requests on
what is known as a well known endpoint. In this case, the endpoint
information is published and does not change for every instance of a
server program. DCE allows endpoint information to be specified and
published in the IDL specification. Clients and servers that use the IDL
specification for communication then use the endpoint information
specified in the IDL file.

The following code shows thesleeper  IDL specification modified to
support well known endpoints.



The Basics
Using Well Known Endpoints

2-25

[uuid(),

version(2.0),

endpoint (“ncacn_ip_tcp:[1025], “ncadg_ip_udp:[6677]”)

] interface sleeper

{

void Sleep(

[in] handle_t h,

[in] long time);

}

The GSO can be told to use well known ports declared in the IDL
specification by using the following member function calls.

DCEServer::UseAllProtocols(DCEInterfaceMgr& interface,

unsigned32 max_requests)

DCEServer::UseProtocol(char* protocol_name,

DCEInterfaceMgr& interface,

unisigned32 max_requests);

The first member function instructs the GSO to use all DCE-supported
protocols configured for the local platform. The endpoint information
for those protocols is obtained from the IDL specification relating to
the first parameter,interface . This parameter is of the
DCEInterfaceMgr  class, which is the base class of all server manager
classes created by theidl++  compiler.

The second function allows the specification of a specific protocol for
which the endpoint information is obtained from the IDL file relating
to the second parameter,interface .

The followingsleeper  server main example uses the first function.



The Basics
Writing the Client Program

2-26

main()

{

// Create single instance of sleeper object

sleeper_2_0_Mgr* obj = new sleeper_2_0_Mgr;

// Start Signal handler

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

theServer->RegisterObject(obj);

// Use all Protocols specified in sleeper.idl

theServer->UseAllProtocols(*obj, 5);

// Listen for client requests

theServer->Listen();

}

This example instructs the GSO to use all available protocols and to
obtain their endpoints from the IDL file related to the interface
supported byobj , which is thesleeper  IDL file.

Writing the Client Program
To create an application that accesses thesleeper  server, an instance
of the client object generated by theidl++  compiler can be created.
Since thesleeper  server does not use the CDS, some location
information must be passed to the constructor of the client class. Once
the client object is created, its member functions can be called to
access the server object.



The Basics
Writing the Client Program

2-27

In the following code sample, location information is provided in the
form of a host address and protocol sequence, but the object UUID is
not specified. The location code in the client object automatically binds
to a compatible object (i.e., an object that supports thesleeper

interface) at a server running at the provided host address.
main()

{

// Create instance of client object

sleeper_1_0 sleepObj = sleeper_1_0(“porter”, “ip”);

// Call remote sleep operation

sleepObj.Sleep(10);

}

In this example, the client object goes to the host ‘‘porter’’ and tries to
find a server program that implementssleeper  objects. Once a server
program has been located, (in this case using the DCEEndpoint Map
on “porter”) an object associated with the server is chosen to handle
the Sleep  request. If the example made a second call toSleep , the
second call would be routed to the sameC++ object at the server.

The preceding code fragment must be linked with the client class
implementation generated by theidl++  compiler and the client-side
stub files.

The following figure shows how a client object uses the DCEEndpoint
Map to locate the server-based manager object.



The Basics
Writing the Client Program

2-28

Figure 2-5. Client Location of Server-Based Manager Objects

GSO
theServer

Manager Object
(obj)

Endpoint
Map

Client
Object

1. Use Endpoint Map on host
to find object UUID and
DCEEndpoint

2. Check if Server is listening

3. Make remote sleep call on
manager object

1

3

2



3

Using the Cell Directory Service



Using the Cell Directory Service
Placing Bindings in the CDS

3-2

Setting naming preferences for the Global Server Object (GSO) is one
of the steps for implementing a server main function. This step is only
required if host independence is required for the location of server
based manager objects. (Note that in code discussed in Chapter 2, the
host name was passed to the constructor of the client object.) The
sleeper  client code does not register the server in the Cell Directory
Service (CDS), and as such cannot take advantage of certain location
mechanisms supported by OODCE.

The implementation of the OODCE GSO provides a policy for using
the CDS to locate objects. Because it is likely that specialized naming
schemes may be required for certain applications, the default policy
can be changed by deriving from theDCEServer  class and overloading
the member functions that access the CDS. This is described in “How
to Implement a Custom Naming Policy” in Chapter 8.

Placing Bindings in the CDS
Binding information can be placed in the CDS by giving the GSO a
name. Once named, the GSO creates a server entry in the CDS and
registers its binding information under that name. TheSetName

member function is used to give the GSO a name.

How to Set the CDS Name Used By a Server Program

Using thesleeper  example, the server bindings can be registered in
the CDS by adding theSetName call to the implementation of main.
The following code fragment shows this modification.



Using the Cell Directory Service
Placing Bindings in the CDS

3-3

main()

{

// Create single instance of sleeper object

sleeper_1_0_Mgr* obj = new sleeper_1_0_Mgr;

// Start Signal handler

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

theServer->RegisterObject(*obj);

// Set the name of the server object to use CDS

theServer->SetName(

“/.:/subsys/HP/sample-apps/Sleeper”);

theServer->SetProfile(“/.:/cell-profile”);

// Listen for client requests

theServer->Listen();

}

When this code fragment is linked into a program and executed, the
bindings for the GSO get registered in the CDS under the name of
/.:/subsys/HP/sample-apps/sleeper .

This binding registration allows clients to perform a server lookup by
interface on the CDS. With this mode of lookup, a client can bind to
any server in a cell that exports thesleeper  interface. The name
/.:/cell-profile  must exist in every cell. It represents a top level
CDS profile for the registration of services within a cell. See theDCE
Application Development Guide for more information on CDS profiles.

When a server has a name, the GSO cleanup code knows that it must
remove information from the CDS when the server process terminates
or the server is shutdown. Leaving stale information in the CDS can
present an administrative and performance problem in large cells.
Having the server object automatically remove information from the
CDS relieves you of this task.



Using the Cell Directory Service
Placing Bindings in the CDS

3-4

Placing binding information in the CDS allows more choices for the
client to locate manager objects at the server. In thesleeper  example
in Chapter 2, the host address is passed to the client constructor. In that
example, knowledge of the host address where asleeper  server is
running is required to locate a manager object. Using the CDS can
provide more location transparency in that the client need not know the
host on which the server is running.

By setting the server name, the client program can now findsleeper

manager objects within a cell based on that server name or by interface
using the cell profile. Using a server name allows server-managed
objects to be associated with a user friendly, location-transparent
name. If the server program moves from node to node (e.g., due to
maintenance of the node on which it was first executing), its manager
objects can still be located via the server name.

How a Client Uses the CDS to Find Manager Objects

The following code fragments show changes that can be made to the
client program of thesleeper  example that can take advantage of the
server using the CDS. The following code fragment demonstrates
locating a server based on name lookup.

main()

{

// Create instance of client object

sleeper_1_0 sleepObj = sleeper_1_0(

“/.:/subsys/HP/sample-apps/Sleeper”);

// Call remote sleep operation

sleepObj.Sleep(10);

}



Using the Cell Directory Service
Placing Bindings in the CDS

3-5

In this case, the location code of the client object is directed to a
specific server entry in the CDS. The location code returns the server
bindings registered under the name/.:/subsys/HP/sample-

apps/Sleeper . The client then binds to asleeper  object on that
server. If no bindings have registered or the entry does not exist, the
constructor fails and the client object is not created. This results in an
exception being thrown by the constructor.

The second fragment demonstrates locating a server based on lookup
by interface. In this case, no information is passed to thesleeper

client constructor.

main()

{

// Create instance of client object

sleeper_1_0 sleepObj;

// Call remote sleep operation

sleepObj.Sleep(10);

}

In this code fragment, the client code attempts to find asleeper

object within the cell by doing a server lookup based on only interface
information in/.:/cell-profile . The IDL specification of
sleeper  includes a UUID that identifies that interface. The client
object location code initiates a search into the directory using the
interface UUID forsleeper  as a key. A search such as this uses CDS
profiles to navigate through the directory based on a UUID. The root
of the search can be defined by setting the RPC_DEFAULT_ENTRY
environment variable. If RPC_DEFAULT_ENTRY is not set or is set
to NULL, the search begins at/.:/cell-profile . The search
continues until a server entry is found that exports thesleeper

interface UUID.



Using the Cell Directory Service
How to Register Server Information into RPC Groups

3-6

Binding information is extracted from the server entry information and
is used to contact the host on which the server program is running.
Once the host is known, OODCE performs the same steps as the non-
CDS example to locate a manager object. The client can bind to a
manager object on any server in the cell that has exported thesleeper

interface to the CDS. The client is unaware of the name or location of
the server used.

How to Register Server Information into RPC
Groups
Thesleeper  code on page 2 shows how to register server information
into the CDS using OODCE. The CDS also supports groups, whereby
server entries can be grouped together and related under a single name.
It can be useful to group servers based on some property and use this
as a basis for location. For example, a group could be based on type or
function (e.g., printers).

In another example of user groups, allsleeper  servers in a cell are to
be registered in a single CDS group. This provides a way for
administrators to discover all of thesleeper  servers running within a
cell and provides more structure and opportunity for locating the
sleeper  servers. A server program can be added to a CDS group by
setting its group name using theSetGroup  member function on the
GSO. In the following code, thesleeper  server main function is
modified to show this.



Using the Cell Directory Service
How to Register Server Information into RPC Groups

3-7

main(int argc, char** argv)

{

// Create single instance of sleeper object

sleeper_1_0_Mgr*obj = new sleeper_1_0_Mgr;

// Start Signal handler

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

theServer->RegisterObject(*obj);

// Set the name of the server object to use CDS

theServer->SetName(argv[1]);

// Add the server name to a group of sleeper servers

theServer->SetGroup(“/.:/Sleeper_Servers”);

// Listen for client requests

theServer->Listen();

}

Executing this code fragment causes the server name to be added as a
member of the group/.:/Sleeper_Servers . In this example, the
server name is passed as the first argument to the program in theargv

argument. This is a case where allsleeper  server programs running
in a cell are registered as members of the/.:/Sleeper_Servers

group. This group expands and shrinks assleeper  servers are added
and removed from the cell.

This means that the clients are able to use a CDS group to locate an
instance of asleeper  object as shown in the following code.



Using the Cell Directory Service
How to Register Server Information in RPC Profiles

3-8

main()

{

// Create instance of client object

sleeper_1_0 sleepObj = sleeper_1_0
(“/.:/Sleeper_Servers”);

// Call remote sleep operation

sleepObj.Sleep(10);

}

The object location code of the client class uses the group name passed
in the constructor to select a server for thesleeper  object that can be
used by the client. The CDS interface to DCE automatically traverses
members of the list to retrieve server entry binding information. Once
a binding to asleeper  server is returned, the host information is used
to contact thesleeper  server program at the host to select a manager
object. The search of the CDS group continues until a manager object
is found (stale entries in the CDS are ignored and OODCE performs
checks to see if the server program is active).

How to Register Server Information in RPC
Profiles
Profiles are another CDS attribute defined to be used by RPC based
services. Profiles provide a way for navigating the directory tree using
a UUID as a key. Profiles can be chained together to allow directed
searches across large namespaces.

There can be administrative benefits to developing a profile structure
in the CDS that represent the organizational boundaries that may exist
for a cell or application domain. For example, a cell represents a
laboratory environment.



Using the Cell Directory Service
How to Register Server Information in RPC Profiles

3-9

Each laboratory has a set of departments and each department has a set
of projects. Profiles can be set up in the directory for the laboratory,
departments, and projects. Resources in the form of DCE servers can
be assigned to each organizational entity and registered in the
appropriate profile. For example, each project may have its own
compute and storage servers, but printing resources may be assigned to
a department.

An OODCE server program can be automatically registered in a CDS
profile by using theSetProfile  member function of the server
object.

N O T E SetProfile  must be used in conjunction withSetName.

The following is a modification of thesleeper  server main function
that shows the use ofSetProfile  on the server object.

main(int argc, char** argv)

{

// Create single instance of sleeper object

sleeper_1_0_Mgr* obj = new sleeper_1_0_Mgr;

// Start Signal handler

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

theServer->RegisterObject(*obj);

// Set the name of the server object to use CDS

theServer->SetName(argv[1]);

// Add the server name to a group of sleeper servers

theServer->SetGroup(“/.:/Sleeper_Servers”);

// Add the server name to department profile

theServer->SetProfile(“/.:/Department_X”);

// Listen for client requests

theServer->Listen();

}



Using the Cell Directory Service
How to Register Server Information in RPC Profiles

3-10

This code fragment adds the server name as an element of the
/.:/Department_X profile in the CDS. When the server program

exits, the cleanup code automatically removes the information from the
CDS.

Clients may pass a profile name to the client object constructor as
shown in the following code. The location code of the client object
uses the profile name and thesleeper  interface UUID to locate a
server object. Manager object location is performed in a similar
manner to that described for groups (see “How to Register Server
Information into RPC Groups” earlier in this chapter). OODCE uses
the CDS interface to search the namespace to obtain bindings to
sleeper  server programs. It then contacts thesleeper  server to
locate a manager object. The following code sets the starting search
point in the directory at the profile/.:/Department_X .

main()

{

// Create instance of client object

sleeper_1_0 sleepObj = sleeper_1_0
(“/.:/Department_X”);

// Call remote sleep operation

sleepObj.Sleep(10);

}

Profiles can be linked together to allow directed searches through the
directory. If there is nosleeper  server registered in
/.:/Department_X , the search may move on to another profile in the
chain. See theOSF DCE Application Development Guide for a more
detailed description of CDS profiles.



Using the Cell Directory Service
Using Object UUIDs in the CDS

3-11

Using Object UUIDs in the CDS
Object information is not registered in the directory by default.
OODCE registers server programs that manage objects into the CDS.
Although the CDS supports placing DCE object information in the
directory, its design does not support fast changing information. The
CDS is designed to be a globally scalable directory rather than a fine
grained object repository.

There may be classes of objects that are very public. In general, these
objects are stable and slow changing and exist for a reasonable period
of time. Such objects should be registered in the CDS to publish their
object IDs into the cell. By default, OODCE does not register object
information in the CDS. It does, however, provide a way to accomplish
this on a per object basis. TheRegisterObject  member function of
the GSO takes an optional boolean argument (default: false) that if set
to true results in the UUIDs of its manager objects being registered in
the CDS.

The main function of thesleeper  server can be modified, as in the
following code, to force the GSO to register the DCE object UUID for
the sleeper  manager object in the CDS.

main()

{

// Create single instance of sleeper object

sleeper_1_0_Mgr* obj = new sleeper_1_0_Mgr;

// Start Signal handler

DCEPthread*clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

// Force registration of object ID in CDS

theServer->RegisterObject(*obj, true);

// Set the name of the server object to use CDS

theServer->SetName(

“/.:/subsys/HP/sample-apps/Sleeper”);



Using the Cell Directory Service
Using Object UUIDs in the CDS

3-12

// Listen for client requests

theServer->Listen();

}

When this code executes, the DCE object UUID associated with the
sleeper_1_0_Mgr  object is registered in the CDS along with the
communication bindings under the name of
/.:/subsys/HP/sample-apps/Sleeper .

The DCE object UUID for the manager object is automatically created
when it is constructed.

A DCE object UUID can also be associated with client objects in
OODCE. This UUID specifies the object identifier for the manager
object that the client wishes to call. It is not required, however, that
these manager objects be registered in the CDS for location to succeed.
The location code built into the client objects uses the CDS and the
Endpoint Map information to find and bind to the specific server
manager object that has the object UUID requested by the client.

When a DCE object UUID is associated with a client object, it is
assumed that the manager object was created previously by a server
program and is already active or can be activated by the server
program. The location code may use the CDS to locate the set of server
processes in a cell that could support the required object. Then the
Endpoint Map that is local to each server in the set is consulted to
locate the actual manager object.

DCE object UUIDs can be associated with a client object using the
constructor or theSetServerObject  member function implemented
by every client object. The following client code fragments show both
forms.



Using the Cell Directory Service
Using Object UUIDs in the CDS

3-13

extern uuid_t theObject; // Identifier for manager object

main()

{

// Create instance of client object

sleeper_1_0 sleepObj = sleeper_1_0
(“/.:/Department_X”,&theObject);

// Call remote sleep operation

sleepObj.Sleep(10);

}

This code passes an object UUID to the constructor of thesleeper

client object. In this case, the location code in the client object
searches the CDS directory starting at the profile called
/.:/Department_X  for servers that support thesleeper  interface. If
no object information is registered in the CDS with the server entries
found in the search, the Endpoint Map that is local to a server program
located using the CDS is searched to obtain a match on the object
information provided to the constructor. The search continues until a
manager object that supports thatsleeper  interface that has the object
UUID requested by the client is found or the search is exhausted.

The following client code fragment operates in the same manner as the
previous one as far as object location is concerned.

extern uuid_t theObject; // Identifier for manager object

main()

{

// Create instance of client object

sleeper_1_0 sleepObj = sleeper_1_0
(“/.:/Department_X”);

// Associated server object with client

sleepObj.SetServerObject(&theObject);

// Call remote sleep operation

sleepObj.Sleep(10);

}



Using the Cell Directory Service
Using Object UUIDs in the CDS

3-14

Note that the string form of a UUID can be passed to the constructor
andSetServerObject  instead of the UUID structure form used in the
previous examples.



4

Error Handling



Error Handling
Handling Exceptions Raised by the OODCE Library

4-2

In distributed computing, parts of an application can fail at any time
and clients of a server object need to able to detect and process such
failures.

Handling Exceptions Raised by the OODCE
Library
The OODCE library usesC++ exceptions as the model for error
handling. This provides a clean and consistent model for dealing with
problems that can occur when using DCE. The caller of the OODCE
library should be prepared to handle exceptions that are raised within
the library. All OODCE calls including constructors should be
surrounded by aC++ try/catch clause.

The exceptions defined in the library accommodate the public status
codes defined in DCE. The exceptions are arranged into a class
hierarchy so that error handling can be scoped. The following figure
shows the hierarchy:

Figure 4-1. Exception Class Hierarchy

DCEException

DCEOSFException

DCEErrDCECmaErr

DCERpcErr

DCEServerErr DCEUuidErr DCELoginErr

DCECfErrDCEDirErr DCESecErr



Error Handling
Handling Exceptions Raised by the OODCE Library

4-3

The subclassesDCECmaErr, DCERpcErr , DCEDirErr , DCESecErr ,
andDCECfErr  encapsulate all of the exceptions dealing with Pthreads,
Remote Procedure Calls, directory, security, and configuration
subsystems of DCE respectively.

The exceptions defined by the library accommodate the public status
codes defined in DCE. The exceptions are arranged into a class
hierarchy so that error handling can be scoped. A class calledDCEErr

is defined as the base class for all public errors that can occur while
using DCE. The subclassesDCERpcErr , DCEDirErr , DCESecErr  and
DCECfErr  are derived fromDCEErr .

The following example shows a typical use of exceptions in server
implementation.

main()

{ // Set up try block for exceptions

try {

sleeper_1_0_Mgr* obj = new sleeper_1_0_Mgr;

// Start Signal handler

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

// Force registration of object ID in CDS

theServer->RegisterObject(obj);

// Set the name of the server object to use CDS

theServer->SetName(

“/.:/subsys/HP/sample-apps/Sleeper”);

// Listen for client requests

theServer->Listen();

}

catch(DCEErr & err) {

// Process DCE Error

cerr << “DCE Error: “ << (char*)err << endl;



Error Handling
Handling Exceptions Raised by the OODCE Library

4-4

}

catch(...) {

// Process unknown exception

cerr << “Unknown Error server failed” << endl;

}

}

The first catch block traps any DCE error that may occur during the
execution of the server main function. The action taken in this case is
to convert the exception type into a character string and print a user
message. Every public status code defined by DCE has a
corresponding exception class in OODCE. Each of these classes can be
converted back into a status code (error_status_t ) or to a character
string that describes the error and the DCE subsystem that generated it.

Since specific exception classes exist for each DCE status code,
specific DCE fault conditions can be trapped and processed. For
example, the following code catches an exception that indicates that
the user has not done a DCE login and prints out an appropriate error
message.

N O T E Using the CDS requires authentication. All processes that access the
CDS must do so within a login context. See Chapter 6, Basic Security,
for further information on authentication.

main()

{ // Set up try block for exceptions

try {

// Create single instance of sleeper object

sleeper_1_0_Mgr* obj = new sleeper_1_0_Mgr;

// Start Signal handler

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

// Force registration of object ID in CDS



Error Handling
Handling Exceptions Raised by the OODCE Library

4-5

theServer->RegisterObject(obj);

// Set the name of the server object to use CDS

theServer->SetName(

“/.:/subsys/HP/sample-apps/Sleeper”);

// Listen for client requests

theServer->Listen();

}

catch (DCEExcRpcSNoNsPermission()) {

cerr << “No Login Context for Server\n”;

cerr << “Please use dce_login command\n”;

}

catch(DCEErr & err) {

// Process DCE Error

cerr << “DCE Error: “ << (char*)err << endl;

}

catch(...) {

// Process unknown exception

cerr << “Unknown Error server failed” << endl;

}

}



Error Handling
Communicating Errors Between Your Application Server and Client

4-6

Communicating Errors Between Your
Application Server and Client
This section describes how fault conditions are transmitted between a
server and client program. You can decide whether the application uses
exceptions or status codes to communicate these error conditions.

Communicating OODCE Exceptions from Server to Client

By default, the server uses exceptions to communicate errors to the
client. There are two ways to do it, as follows:

• Propagate exceptions raised by the OODCE library directly to the
client program without translation. This happens automatically if the
server does not catch the exception. In this case, the client must
recognize and handle OODCE errors directly.

• The server program catches an OODCE library exception and
translates it into an application-specific exception that the client
program is more likely to know how to handle.

In general, the second approach is recommended, although there might
be situations where the first approach is more desirable.

Fatal Library Errors

If a library constructor fails, it is assumed to be a fatal error. A
constructor that is aware of its own failure throws an exception that
can be caught by the caller, but recovery is unlikely. Similarly, if
memory is exhausted and theC++ “new” facility fails, the
new_exception  member function is called.new_exception  throws
an insufficient memory exception, but the process of throwing the
exception is likely to fail. If your application dumps core and
new_exception  appears in the stack trace, this indicates insufficient
memory.



Error Handling
Communicating Errors Between Your Application Server and Client

4-7

Communicating Application Server Exceptions to the Client
Program

By default theidl++  compiler generates special stub code that can
catch and processC++ exceptions on the server and return them across
the network to be thrown within the client application. This allows the
client program to catch and handle exceptions that occurred during a
remote call. This gives information to that client code to determine
how to deal with a problem at a server. This level of detail is normally
useful for determining if a remote call can be replayed on the same
server program (with perhaps some modifications to the parameters) or
if a new server program should be found to service the call.

Interoperability with C Based DCE Systems

Because OODCE uses the DCE fault stream for raising server and
communication errors back to the client during a remote procedure
call, mixed C andC++ clients and servers may use the exception
handling mechanism to communicate server side errors. Exceptions
that are received by aC++ client from a C server are translated into
C++ exceptions by the default client class implementation and raised to
client application code (client class implementations provided by the
developer should also perform this action). When C clients receive
exceptions fromC++ servers, the client stub code raises the exception
to client application code as in the normal DCE case. On C-based
legacy systems (existing DCE clients or servers), new, non-DCE
exceptions that are raised by aC++ side object are caught on the C
side, but may not be recognized.

N O T E When using theidl++  compiler to generate stub code for a C-based
server, be sure to specify the-no_sepv  option to suppress generation
of an OODCE server entrypoint vector. This entrypoint vector is
specific to OODCE server objects and will not be recognized by C-
based server code.



Error Handling
Communicating Errors Between Your Application Server and Client

4-8

Using Application Status Codes Instead of Exceptions

If your application uses status codes to communicate errors from server
to client, your server must catch exceptions raised from within the
library and translate them into an application-specific status code to
pass back to the client. Even if you use application status codes, your
client must catch exceptions that are raised by the server’s EPV code,
which is executed before control reaches your application code. For
example, if you registered aRefMon  object with the server, it is
invoked by the EPV before control reaches your application code. If
the security check fails, an exception is raised. There is no opportunity
for your application to translate that exception into an application-
specific status code. Your client must be able to recognize an
authorization failure in its exception handling code.



5

Basic Pthreads



Basic Pthreads
Creating a New Thread

5-2

This chapter provides information on the basics of using pthreads
objects. “Creating a Signal Handling Thread” in Chapter 2 describes
how to create the default signal handling thread for a graceful cleanup.

A thread is an independent flow of execution taking place within a
process. Threads are related in that they can share memory, but are
executed independently. Because they have access to the same
memory, care must be taken so that one thread doesn’t destroy the
work of another thread. This would happen if one thread overwrites a
result just written by another thread. The DCEPthread classes, based
on the X/Open Pthread standard, provide the means for creating
independent threads and coordinating their use of resources.

A Pthread is the representation of a thread of execution. A
DCEPthread  object corresponds to a single thread. TheDCEPthread

class provides limited information about a thread and limited control of
that thread. ADCEPthread  object represents the thread before, during,
and after its execution. The thread may also continue to execute after
the DCEPthread  object has been deleted.

Creating a New Thread
To create a new thread, construct aDCEPthread  object and pass to the
constructor the name of the routine to be executed and the argument to
be passed to the routine. The following is an example of creating a
checkpointing thread for a persistent database:
DCEPthread checkpoint_thread = DCEPthread(checkpoint,NULL);

checkpoint_thread  is aDCEPthread  object representing the thread
of execution that is performing checkpointing. TheDCEPthread  object
supports member functions for:

• Changing the priority of the thread

• Changing the scheduling policy

• Setting its initial stacksize

• Joining with the thread.



Basic Pthreads
Creating a Mutual Exclusion Lock

5-3

In this example,checkpoint  is the name of the routine that is
executed when the thread starts to run.checkpoint()  is passed a
NULL argument in this example.

When writing the checkpoint routine, declare the prototype as follows:

DCEPthreadResult checkpoint(DCEPthreadParam param);

The pthread attributes that had to be explicitly defined when using
DCE directly are initialized to default values. The man pages describe
the choices for the attributes, the default values, and how to override
the defaults, if necessary.

Creating a Mutual Exclusion Lock
To create a mutual exclusion lock, declare aDCEPthreadMutex

object:

// protects bank account balance from concurrent deposits

// and withdrawals

DCEPthreadMutex balance_lock;

TheLock  member function acquires the lock, andUnLock  releases the
lock:

balance_lock.Lock();

balance_lock.UnLock();

The mutex attributes that had to be explicitly defined when using DCE
directly are initialized to default values. Man pages describes choices
for the attributes, the default values, and how to override the defaults,
if necessary.



Basic Pthreads
How to Operate on Your Current Thread

5-4

How to Operate on Your Current Thread
To execute pthread operations on your current thread, you first need a
DCEPthread  object that represents your current thread. This is
obtained by constructing aPthreadSelf  object.

PthreadSelf mythread();

mythread  can be used to:

• Yield or delay the current thread

• Change cancellation policy or priority

• Test cancellation

• Exit.

For example, the following invocation causes the current thread to stop
running and allows the threads dispatcher to choose another thread to
run.

mythread.Yield();



6

Basic Security



Basic Security
How to Set Up a Login Context for Client and Server Programs

6-2

In chapters 1 through 4, thesleeper  server example has not used
security. The interactions between the client and server objects have
not been protected in any way. This section describes how to use the
basic security features offered by the OODCE library. More advanced
security support is described in Chapter 9, Advanced ACL
Management.

How to Set Up a Login Context for Client and
Server Programs
To successfully run the client and server programs for thesleeper

examples that use the CDS, the user (principal) that executes the
programs must have logged into DCE. This is also true for any
programs that are to use the DCE security features. The client and
server programs shown up to this point in the manual inherit the
security credentials of their parent process (normally a UNIX shell).
Establishing a login context is usually more important to a server
program than a client program. In general, server programs run for a
long period of time (relative to the clients that use them) and should
have their own security identity (principal name) within the DCE. This
section describes how to establish and maintain a DCE login context
with OODCE.

A login context contains the information necessary for a principal to
access distributed services. Once obtained, a login context has a finite
time during which it is valid. After that time, it cannot be used. A login
context must be refreshed to be used continuously.

Normally, client programs are run by a user that has acquired a login
context through thedce_login  command. In this case, having the
client program inherit the user’s credentials is probably desirable.
Server programs, on the other hand, should probably be given their
own principal name rather than running as a user principal. Server
programs usually run for a long period of time.



Basic Security
How to Set Up a Login Context for Client and Server Programs

6-3

This means their login context will expire and become invalid and
need to be refreshed. Therefore, server developers are faced with
writing a significant amount of code to establish and maintain a login
context for a server principal.

To help develop this code, the OODCE library provides two abstract
classes:

• DCELoginContext  — maintains and refreshes a DCE login context

• DCEPassword  — provides an abstraction for accessing password
information.

These classes are abstract because multiple implementations could
exist for maintaining a login context and accessing password data. For
example, there are several ways to obtain a login context based on the
scope of the certification required. (See theOSF DCE Application
Development Guide for more details.) There are also several ways of
accessing and storing a password (e.g., files and smart cards).
Although multiple implementations can be supported, it is expected
that an implementation may be reused by many different programs and
systems. The OODCE library provides a default implementation of the
classes that are described in the following section.

Using DCELoginContext and DCEPassword in OODCE

OODCE supplies an implementation for bothDCELoginContext  and
DCEPassword  via theDCEStdLoginContext  andDCEMemPassword

classes. These should be suitable for many application uses.

The DCEStdLoginContext  class inherits from the
DCELoginContext  abstract class. The implementation of
DCEStdLoginContext  establishes a login context on behalf of a
principal. This login context is both validated and certified with the
DCE security server. (See theOSF DCE Application Development
Guide for more details.) TheDCEStdLoginContext  implementation
automatically refreshes the login context before it expires allowing
servers to run continuously.



Basic Security
How to Set Up a Login Context for Client and Server Programs

6-4

The DCEMemPassword class inherits from theDCEPassword  abstract
class. The implementation ofDCEMemPassword provides a mechanism
by which a password can be entered, in clear text, from stdin. This
clear text password is encrypted and stored in memory. All clear text
versions of the password contained in memory buffers and files are
overwritten.

A login context can be associated with a client or a server process. The
following code fragment shows a modification to thesleeper  server
main function that sets up a login context for the server principal. The
principal name used by the server program is specified as an argument
to the server program. TheDCEMemPassword object is passed the
principal name in the constructor and then prompts the user that started
the program for a password.

void main(int argc, char** argv)

{

// Check Arguments

if (argc < 2) {

cerr << “Usage: “ << argv[0];

cerr << “ principal_name\n”;

exit(1);

}

// Construct the Sleeper Object

sleeper_1_0_Mgr sleeper;

// Construct Cleanup Thread

DCEPthread*exitThd = new DCEPthread(

DCEServer::ServerCleanup, (void*)(0));

// Construct DCEPassword object. Pass in Principal

// name. This object will prompt for password

DCEMemPassword thisPass(argv[1]);

// Construct Login DCEContext object

DCEStdLoginContext thisContext(&thisPass);

// DCEServer has established a login context at

// this point



Basic Security
How to Set Up a Login Context for Client and Server Programs

6-5

// Register Sleeper object with the server object

theServer->RegisterObject(sleeper, true);

// Register server in CDS.

theServer->SetName(

“/.:/subsys/HP/sample-apps/Sleeper”);

// Accept all other defaults and activate the server

theServer->Listen();

// Destructors are called at this point

// object take care of appropriate cleanup

// with DCE runtime

}

To execute this code, the following user interactions would occur.
Assume that a principal namesleepy has been defined for the server
program. The user would type the following command:

a.out sleepy

> Please Enter Password for Principal sleepy

>

Once the password has been entered (terminal echo is turned off for
password entry) the login context is established and the server program
initializes and enters the DCE listen loop.



Basic Security
How to Set Security Preferences

6-6

How to Set Security Preferences
The initial task in using DCE security involves setting security
preferences. These preferences are set by the client and server
programs and must be compatible for communication to occur.

The server program is responsible for setting the following
preferences:

• Security Principal name associated with the server.

• Authentication service type used by the server.

• Mechanism for retrieving security keys. By default, a file name is
expected which relates to the name of the key store.

How to Set Server Security Preferences

The server program sets these preferences by calling theSetAuthInfo

function on the GSO. This method determines the service to call the
rpc_server_register_auth_info Application Programing Interface (API).
The following code fragment shows the use of this function with the
samplesleeper  service.

void main()

{

// Create sleeper manager object

sleeper_1_0_Mgr sleeperObj;

// Create Cleanup thread

DCEPthread* exitThd = new DCEPthread

(DCEServer::ServerCleanup,

(void*)(0));

// Register manager object

theServer->RegisterObject(sleeperObj);

// Set the server authentication preferences



Basic Security
How to Set Security Preferences

6-7

// first argument is the server principal name

// the second argument is the authentication model

// required. The third argument is given to the default
// key retriever object as the name of the file in which

// the secret keys are to be stored.

theServer->SetAuthInfo((unsigned char*)”auth_sample”,

 rpc_c_authn_dce_secret,

 (void*)”authpwd”);

// Activate the server object

theServer->Listen();

}

In this code fragment, the principal name and the authentication
service type are set, but the default key retrieval mechanism is not
changed. In OODCE, theDCEKeyRetriever  abstract class (declared
in theDCEServer.H  file) is defined for security key retrieval.
Concrete classes can be derived from this base class and implemented
to provide an alternative mechanism for retrieving security keys.

How to Set Client Security Preferences

The client must set the following security properties:

• Authentication service type to be used by the client

• Protection level to be used for communication

• Authorization service type used by the client

• Server principal name.

At the client, security preferences are set by callingSetAuthInfo  on
the client class generated by theidl++  compiler (for example,
authrpc_1_0  andauthClient . The client can only communicate
with a server manager object if these security preferences are
compatible with those set at the server. A manager object is an object
that implements the remote operations defined in the IDL file. The
following code sample shows the clientSetAuthInfo  used on the
client object for thesleeper  example:



Basic Security
How to Set Security Preferences

6-8

main(int argc, char** argv)

{

 // Construct an instance of the of the Sleeper Class

 // Using the constructor that takes a Network Address

 // and a protocol sequence

 sleeper_1_0 authClient = sleeper_1_0((unsigned
char*)argv[1],

 (unsigned char*)”ip”);

// Setup client side security preferences

// The first argument is the server principal name.

// The second argument is the protection level.

// The third argument is the authentication model

// The fourth argument is the client identity which in
// this case is NULL and inherited from the parent

// process i.e. the user is assumed to be logged onto DCE.

// The Fifth argument is the authorization protocol

// which in this case is set check just the names of

// the principals involved

authClient.SetAuthInfo((unsigned_char_t *)”auth_sample”,

 rpc_c_protect_level_pkt_privacy,

 rpc_c_authn_dce_secret,

 (rpc_auth_identity_handle_t)NULL,

rpc_c_authz_name);

// Invoke remote operation on Sleeper Object

authClient.Sleep(10);

}

Notice that the client, not the server, is responsible for establishing the
protection level and authorization model. If the server program needs
to enforce certain values on these properties, it must perform its own
checking via a reference monitor.



Basic Security
How to use a Reference Monitor

6-9

How to use a Reference Monitor
By default, once security preferences have been set in the client
program, the DCE runtime automatically invokes the appropriate
security code to authenticate the server, applies appropriate encryption
to RPC calls, and provides access to authorization data. To provide
mutual authentication (that is, allow the server to check that the client
is as claimed) and to ensure that the server is willing to meet the client
preferences for protection and authorization, a reference monitor must
be used.

A reference monitor can perform basic checks before any application
code is entered. In general, these checks are as follows:

• Is the Client program authenticated (i.e., has the client principal
established a login context?)

• Does the protection level requested by the client meet the
requirements of the server program?

• Does the authorization model requested by the client meet the
requirements of the server program?

In OODCE, a reference monitor is automatically invoked from the
entry point stub code generated by theidl++  compiler (see “Entry
Point Vector and Code” in Chapter 2). OODCE defines an abstract
base class for a reference monitor object. This class is called
DCERefMon. TheDCERefMon class (declared in theDCERefMon.H file)
is an abstract class that provides an interface to reference monitor type
functionality. Multiple reference monitor implementations may be
required. These implementations can be provided through classes that
are derived fromDCERefMon and reused across a number of manager
objects and systems. OODCE supplies a default implementation of a
reference monitor with a concrete class calledDCEStdRefMon. You
can write more specialized implementations.

A DCERefMon object can be registered with an interface exported by a
manager object. A single manager object at the server may have
different reference monitors for different interfaces it implements.



Basic Security
How to use a Reference Monitor

6-10

Also, many manager objects may share the same reference monitor
object or different reference monitor policies can be supported by one
interface.

A reference monitor check is made before a member function is called
on a manager object. The following figure shows the flow of control
for an RPC call into a manager object that has a reference monitor.

Figure 6-1. Invocation of Reference Monitor Functionality

DCERefMon associated with Manager object

Object Map

Locates Manager
Object based on

Interface and
Object UUID

RPC Call for Sleep.

RPC Packet includes Interface and Object
UUID.

Entry Point Vector Code
sleeperE.C

Locate C++ object to service the
client request. Call Reference

Monitor to check security

Local Member Function callCheck Credentials

Server side RPC stub code

sleeper_sstub.c

DCERefMon
Object

Manager
 Object



Basic Security
How to use a Reference Monitor

6-11

How to use Default Reference Monitor in Server Code

The following code fragment shows theDCEStdRefMon

implementation in thesleeper  example.

void main()

{

// Construct sleeper manager object

sleeper_1_0_Mgr sleeperobj;

// Create cleanup thread

DCEPthread* exitThd = new DCEPthread(

DCEServer::ServerCleanup,

(void*)(0));

// DCEReference monitor object

DCEStdRefMon* thisRefMon;

// Create instance of the reference monitor object

// and initialize the server preferences.

thisRefMon = new DCEStdRefMon(

rpc_c_protect_level_pkt_privacy,

rpc_c_authn_dce_secret,

rpc_c_authz_name);

// Register the reference monitor with the

// sleeper manager object

sleeperobj.SetRefMon(thisRefMon);

// Register interface object with server object

theServer->RegisterObject(sleeperobj);

// Activate the server object

theServer->Listen();

}



Basic Security
How to use a Reference Monitor

6-12



7

Basic Access Control List
Management



Basic Access Control List Management

7-2

OODCE supports DCE authorization by making it easier for the server
developer to create, manage, and consult Access Control Lists (ACL)
for an authorization decision. OODCE supports the DCE standard
rdacl  interface. Theacl_edit  tool can be used to edit ACLs
managed by the OODCE ACL Management subsystem. See theDCE
Application Development Guide for a description of DCE ACL
management.

Some ACL management classes can be used directly in every
application. Others that require additional functionality can be
reimplemented and fit within the same framework. This section
describes how to use the functionality that OODCE supports directly.
Chapter 9, Advanced ACL Management, describes how to write
custom ACL management classes that extend the basic functionality.

Unlike a reference monitor, which provides a global security policy,
ACL management allows the enforcement of a policy concerning who
may perform which operations on which objects (in this context, an
object is a named piece of data or state). ACL management is usually
provided when the server manages many different named objects, each
with its own authorization policy.

N O T E Up to this point in the manual, thesleeper  application has
demonstrated the step-by-step construction of a distributed application.
The sleeper  application does not need ACL management, because it
does not manage multiple objects (or a state). However, thesleeper

example will continue to be used in order to focus on what code needs
to be added to an application to implement ACL management
functionality. For a better example of an application for which ACL
management is more appropriately used, see thedispatch  or
aclsleeper  OODCE sample application.

The general steps for including ACL management in an application are
as follows:

1. Initialize the ACL system.

2. Create a database object as an ACL repository.

3. Add and delete ACLs to and from the database.

4. Use the ACL manager to make authorization decisions.



Basic Access Control List Management
How to Initialize the ACL Management System

7-3

How to Initialize the ACL Management
System
Every server that uses the OODCE ACL management features must
have only oneDCEAclMgr  and only oneDCEAclStorageManager

C++ object. TheDCEAclStorageManager  is a global object that is
created automatically at load time. To get access to this global object,
you must includeDCEAclStorageManager.H  in one of your source
files. In theaclsleeper  example, it is included insleeper.C .

When using the current implementation of the Acl Management
objects, theDCEAclMgr  global object must be created explicitly by
your server code by using theDefineAclMgr  macro. The macro takes
a reference to aDCERefMon object as its first parameter, therefore, a
DCERefMon object must be created before the macro invocation in the
server source. The following is a sample of code from the server main
function that shows the initialization in context with the rest of
sleeper  server.

#include <DCEAclMgr.H>

#include “sleeperS.H”

// thisRefMon must be global in order to initialize the
// global variable acl_manager hidden inside the

// DefineAclMgr macro.

DCEStdRefMon* thisRefMon = new DCEStdRefMon(

rpc_c_protect_level_none,

rpc_c_authn_none,

rpc_c_authz_none);

DCEUuid obj_uuid(“34c53cfa-9b3d-11cc-adaf-080009627155”);

DefineAclMgr(*thisRefMon, obj_uuid, “sleeper server”);

void main()

{

aclsleeper_Mgr sleeper = aclsleeper_Mgr(obj_uuid);

try{

theServer->RegisterObject(sleeper, true);



Basic Access Control List Management
How to Initialize the ACL Management System

7-4

  unsigned_char_t *cds_name =

      “/.:/subsys/HP/sample-apps/aclsleeper”;

  theServer->SetName(cds_name);

  theServer->SetAuthInfo(

(unsigned char*)”auth_sample”,

rpc_c_authn_dce_secret,

(void*)”authpwd”);

 theServer->Listen();

}

In this sample, a reference monitor object is set up to allow
unauthenticated access. This allows users ofacl_edit  to access the
ACLs even if the users are unauthenticated. For general security
preferences, construct aDCERefMon accordingly. The end point
mapper uses the information in the object UUID parameter to
distinguish your ACL manager from other servers that are also
exporting therdacl  interface. The interface UUID is the same for all
servers doing ACL management. (The object UUID will distinguish
between applications that support therdacl  interface.)

It is needed because the same interface UUID is exported by all such
servers. The object UUID is also registered with CDS (to enable
acl_edit  to contact the right server) using the
DCEServer::SetName  function.



Basic Access Control List Management
Creating a New Constructor

7-5

Creating a New Constructor
A constructor is a convenient place to put code that must be executed
only once. When using ACL management, a manager object needs
access to anDCEAclSchema and anDCEAclDb object. If your
application only uses one manager object or if theDCEAclSchema and
DCEAclDb objects are allocated locally to each of several manager
objects, the manager’s constructor is a convenient place to create and
initialize these objects.

In all of the previoussleeper  examples, the Sleeper_1_0_Mgr

generated manager class was used, because it was sufficient. However,
the Sleeper_1_0_Mgr  defines a NULL body for the manager
constructor. For this ACL management example, it is more convenient
to define asleeper  manager class that inherits from the generated
sleeper  abstract class, but uses the private state to store the schema
and database pointers and initializes these pointers in the constructor.
The new class,aclsleeper_Mgr , is defined as follows:

#ifndef sleeper_H_defined

#define sleeper_H_defined

#include <InterfaceMgr.H> // DCEInterface Manager Base
Class

#include <sleeperS.H> // needed for ABS definition

#include <DCEObj.H> // DCEInterface Manager Base Class

#include “sleeper.h” // IDL Generated header file

class DCEAclSchema;

class DCEAclDb;

extern sleeper_1_0_epv_t sleeper_1_0_mgr;

extern rpc_if_handle_t sleeper_1_0_s_ifspec;

class aclsleeper_Mgr : public sleeper_1_0_ABS {

public:

// Declare Class Constructors

 aclsleeper_Mgr(uuid_t* obj);



Basic Access Control List Management
Creating a New Constructor

7-6

 aclsleeper_Mgr();

// Declare Class member functions

// These correspond to the remote procedures

// declared in sleeper.idl

// These need to be implemented by the developer

virtual void Sleep(

 /* [in] */ idl_long_int time

);

private:

 DCEAclSchema *_schema;

 DCEAclDb *_database;

 void CreateAclSchema();

 void CreateAclDatabase();

 void CreateAcl();

};

#endif

The constructor implementation is as follows:

 aclsleeper_Mgr::aclsleeper_Mgr(uuid_t* obj):

DCEObj(obj),

sleeper_1_0_ABS(obj, (uuid_t*)(0))

{

  CreateAclSchema();

  CreateAclDatabase();

  CreateAcl();

}



Basic Access Control List Management
How to Create a New ACL Schema

7-7

How to Create a New ACL Schema
An ACL schema specifies a set of permissions that are valid and
meaningful within an ACL. A permission is represented by three data
items:

• A user friendly way of referring to the permission. This is called the
printstring. For example: the token “r” represents read permission.

• A description of the permission semantics. This is called the
helpstring. The standard helpstring for the read permission is
“read.”

• A specification of the bit in a permission bitmap that represents the
permission. The permission bits defined by DCE can be found in
<dce/aclbase.h >.

The ACL schema allows both the application andacl_edit  to use
symbolic permission names rather than bitstrings.

There are two ways to create a new schema:

• Pass a static table of permissions to theDCEAclSchema constructor.

• Create an emptyDCEAclSchema and add permissions to it.

Passing a Static Table of Permissions to theDCEAclSchema

Constructor

Using this static table approach creates a non-expandable schema. New
permissions cannot be added after the schema is constructed. The
following code fragment is taken fromSleeper.C  and is the
implementation of a private method called from thesleeper  manager
constructor. It shows the use of a static table in defining an
DCEAclSchema.



Basic Access Control List Management
How to Create a New ACL Schema

7-8

#include <DCEAclDb.H>

#include <DCEAclSchema.H>

#include <DCEModifyableAcl.H>

#include <DCEAclStorageManager.H>

void aclsleeper_Mgr::CreateAclSchema()

{

  const int NUM_PRINTSTRINGS = 2;

  const sec_acl_permset_t sec_acl_perm_sleep =

         sec_acl_perm_unused_00000800;

  static sec_acl_printstring_t sleeper_printstrings[] = {

      { “s”, “sleep”, sec_acl_perm_sleep},

      { “c”, “control”, sec_acl_perm_control}

   };

_schema = new DCEAclSchema(1,  // number of slices

                                  NUM_PRINTSTRINGS,

                                  sleeper_printstrings);

_schema->SetControlPermissions(sec_acl_perm_control);

}

Creating an Empty DCEAclSchema and Adding Permissions

You can create an emptyDCEAclSchema and add permissions to it.
This creates an expandable schema, although schemas should not be
changed without careful consideration once data is stored in a database
using that schema. If an expandable table is needed, the following code
could replace theDCEAclSchema constructor invocation:

 _schema = new DCEAclSchema;

 _schema->AddPrintstring(

“s”,

“sleep”,

sec_acl_perm_sleep);

 _schema->AddPrintstring(

“c”,

“control”,

sec_acl_perm_control);



Basic Access Control List Management
How to Create a New Database

7-9

The DCEAclSchema should include a permission specification for
governing write access to the ACLs. DCE uses
sec_acl_perm_control  for this purpose, but OODCE has not hard
coded this policy. Therefore, you must invoke
SetControlPermissions  to specify which permission is to be used
for this purpose.

sec_acl_perm_sleep  is not defined in the standard DCE header file,
<dce/aclbase.h >. It must be defined using one of the available
permission bits.

How to Create a New Database
This section describes how to instantiate a new ACL database. The
DCEAclDb implementation does not support persistence. It maintains a
binary tree of ACLs in memory, which is destroyed when the server is
shut down. To create a new database, use the ACL schema described in
the section “How to Create a New ACL Schema,” earlier in this
chapter. The database can be created by calling the following function
from your server main function, your factory constructor, or from a
manager member function.

// from Sleeper.C

void aclsleeper_Mgr::CreateAclDatabase()

{

   _database = acl_storage_mgr.CreateNewDatabase(

      “Sleeperdb”,

      _schema);

 }

In this example, the database object pointer is kept local to the
manager object because it need not be shared across multiple objects.
If the pointer needs to be global, it cannot be initialized until after
main starts to execute.CreateNewDatabase  may not be invoked to
initialize a global pointer in its definition.



Basic Access Control List Management
How to Create a New ACL

7-10

This is becauseCreateNewDatabase  cannot be successfully called
until the global acl_storage_manager pointer is initialized. There is no
way to tell the loader which of these global objects should be
constructed first. If the loader tries to create a global database object
before it creates the acl_storage_manager,CreateNewDatabase  fails.

How to Create a New ACL
The rdacl  interface does not provide a way to create a new ACL. It
can only edit existing ACLs. Your application must add ACLs into the
database programmatically using the ACL management object
interfaces, as shown in the following code.

// Sleeper.C

void aclsleeper_Mgr::CreateAcl()

{

DCEModifyableAcl *macl = database-
>CreateAcl(“sleeperobj”);

// user:cell_admin:c

macl->AddAclEntry(_schema->MakeBitmap(“c”),

                     sec_acl_e_type_user,

                     new DCESecId(“cell_admin”,

                               secDomainPerson));

// group:nsa:sc

macl->AddAclEntry(_schema->MakeBitmap(“sc”),

                     sec_acl_e_type_group,

                     new DCESecId(“cssi”, secDomainGroup));

// any_other:s

macl->AddAclEntry(_schema->MakeBitmap(“s”),

                     sec_acl_e_type_any_other);

macl->CommitAcl();

}



Basic Access Control List Management
How to Check Authorization Privileges.

7-11

“sleeperobj ” is the key that finds this ACL once it is in the database.
In an application that manages multiple objects, you can choose to
name each ACL with the name of the object it protects. This code,
which is implemented as a private member function of thesleeper

manager object, is called by the constructor. It creates an ACL that is
consulted when asleep  request is received.

N O T E The ACL named “sleeperobj ” could be edited using the following
acl_edit  command:
acl_edit /.:/subsys/HP/sample-apps/aclsleeper/sleeperobj

See thedispatch  sample application’s create_queue_acl routine for a
more complete example of creating different kinds of ACL entry types.

When all ACL entries have been inserted, commit the ACL to the
database usingCommitAcl . When this call completes, the ACL can be
consulted in authorization decisions, and the modifiable ACL pointer,
macl, may no longer be referenced.

How to Check Authorization Privileges.
The most important facility provided by the ACL management library
is making authorization decisions following the standard DCE ACL
checking algorithm. This section describes how application managers
can use OODCE to make an authorization decision.

In most cases, your manager will find it convenient to use theIsAuth

function in the database object. Using the database pointer, invoke
IsAuth  as follows:



Basic Access Control List Management
How to Check Authorization Privileges.

7-12

// from Sleeper.C

void aclsleeper_Mgr::Sleep(long int time)

{

   if (_database->IsAuth(“sleeperobj”,

                         _schema->MakeBitmap(“s”))){

     sleep((unsigned int)time);

   }

   else

     traceobj << “Not authorized to sleep\n”;

}

The first argument is the name of the ACL. In this example, if the
requesting client has permission to sleep,IsAuth  returns TRUE,
otherwise it returns FALSE.

IsAuth  is also a member function of theDCEAcl  object. If you have
already looked up anDCEAcl  object,IsAuth  can be invoked directly
through theDCEAcl  object without suppling the object name.



8

Advanced Application Development



Advanced Application Development
How to Implement a Custom Naming Policy

8-2

This chapter describes some of the advanced features of OODCE for
developing object-based systems on DCE. This chapter uses advanced
C++ concepts. A working knowledge of theC++ language is required to
fully understand the information that follows.

How to Implement a Custom Naming Policy
Some applications may have specialized naming requirements that
cannot be supported by the implementation of the OODCE library
defaults. In some cases, an alternative naming system may be required
(e.g., shared files) to achieve performance or functional requirements
of a system. OODCE supports custom naming policies through
overloading of the member functions that deal with the Cell Directory
Service (CDS) in the default case.

Modifying Server Export and UnExport Functions

To support a custom naming policy within a server program, a new
class should be created that is derived from the basicDCEServer  class.
The implementation of this new class should reimplement theExport

andUnExport  member functions. TheExport  member function
exports or publishes server binding information into the naming
system.UnExport  removes that information when it is no longer valid
or required. The following is an example of such a class definition:

class NewServer: public DCEServer {

public:

NewServer(): DCEServer() {} // Must call base class

void Export(); // overload Export from base

void UnExport(); // overload UnExport from base

};



Advanced Application Development
How to Implement a Custom Naming Policy

8-3

Notice that the constructor for the NewServer  class calls the
constructor for the base classDCEServer . This must be done so that
the global object pointer calledtheServer  (the Global Server Object)
gets set to point to aNewServer  object when aNewServer  class is
constructed.

The following code fragment shows theNewServer  class used in the
sleeper  server main program.

main()

{

// Create an instance of NewServer

NewServer* newServer = new NewServer;

// Above constructor sets theServer to point

// to newServer.

// Create single instance of sleeper object

sleeper_1_0_Mgr* obj = new sleeper_1_0_Mgr;

// Start cleanup thread

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with DCEServer

theServer->RegisterObject(obj);

// Set the name of the server object to use CDS

theServer->SetName(

“/.:/subsys/HP/sample-apps/Sleeper”);

// Listen for client requests

theServer->Listen();

}

The constructor for theNewServer  class creates the Global Server
Object (GSO) and assigns its pointer to the global variable
theServer . After construction,newServer becomes the GSO but can
still be accessed via thetheServer  variable.



Advanced Application Development
How to Implement a Custom Naming Policy

8-4

When theListen  member function call is made on the GSO, it calls
the overridden version ofExport . The implementation ofExport  is
expected to register location information into the naming system.
When the program exits, or when the cleanup code executes, the
overridden version ofUnExport  is called to remove location
information from the naming system.

Two protected member functions are provided with theDCEServer

class definition to support the development of custom naming policies.
These protected member functions are available to the derived classes.
They are as follows:

• _GetObjectList — returns a pointer to a list ofObject_Set_t

structures (defined inServer.H ), which contains object and export
information for every object registered with the server object.

• _GetInterfaceList — returns a pointer to a list of each unique
interface provided by the objects.

The information provided by these functions and binding information
that can be obtained from the RPC runtime using the
rpc_server_inq_bindings call can be used to implement the
overridden versions ofExport  andUnExport .

How to Support Custom Naming for the Client

If a custom naming policy is used, the client object needs to be able to
locate server objects based on this policy. To achieve this, the default
location code of the client object must be overridden. The client class
generated by theidl++  compiler defines a number of virtual functions
that can be overridden. The client class includes protected member
variables that can be used and initialized by the location code (defined
in Interface.H ).

To change the semantics of the default location code of client objects,
you must reimplement theBindInterface  member function defined
in theDCEInterface  class. This member function can be used to
locate server manager objects using a suitable scheme for the
application.BindInterface  may use any protected member variable
defined in theDCEInterface  class to accomplish this location.



Advanced Application Development
How to Implement a Custom Naming Policy

8-5

The overriddenBindInterface  must, as part of its implementation,
initialize the following protected state variables:

• _handle — Holds the DCE binding handle to the manager object at
the server.

• _service_bound — Boolean flag that indicates that binding has
occurred. This should be set to TRUE on return from
BindInterface .

• _object — Contains the UUID of the server object to which the
instance refers. Setting this member variable is optional and depends
on whether or not object information was specified prior to
BindInterface  being called.

Creating a New Client Class to Support Custom Naming

The following class definition shows how to provide a new client class
that overrides theBindInterface .

class NewSleeper : public Sleeper_1_0 {

public:

NewSleeper(unsigned char* name);//Must call base class

 sleeper_1_0(name)) {};

void BindInterface(); // Override base class
 // BindInterface

};

The client code that uses this new version ofsleeper  is similar to
other clients that have been described and is as follows.

main()

{

// Create instance of client object

NewSleeper sleepObj;

// Call remote sleep operation

sleepObj.Sleep(10);

}



Advanced Application Development
How to Develop Manager Objects with Multiple Interfaces

8-6

This code calls the overridden version ofBindInterface  to locate a
server object to perform the sleep operation. The actual call to
BindInterface  is performed automatically by the constructor and
hidden from the application code.

How to Develop Manager Objects with
Multiple Interfaces
The current DCE IDL does not support the concept of inheritance; for
example, each DCE interface is self-contained and there is no
subclassing or inheritance at the interface level. This means that an
IDL interface definition cannot be derived from another one. OODCE
does not change this, and IDL syntax and interface semantics remain as
they are. In OODCE, however,C++ inheritance can be used to produce
complex objects that support multiple DCE interfaces. This allows you
to create general purpose IDL specifications and then useidl++  to
generate server sideC++ classes. These server side classes can then be
combined usingC++ inheritance into a composite class that can support
the Remote Procedure Calls (RPC) of all of the IDL interfaces
supported by the composite class.

How to useC++ Inheritance for Server Development

In the originalsleeper  server, the DCE object supports a single
interface specified insleeper.idl . Now an extra requirement will be
added to thesleeper  object. It will maintain statistical information on
its use. Thesleeper  object will maintain a value indicating the
maximum, minimum, and mean sleep times since it was created.



Advanced Application Development
How to Develop Manager Objects with Multiple Interfaces

8-7

This support could be developed by simply creating a new version of
sleeper.idl  and adding additional Remote Method Calls (RMC)
calls to retrieve these values. Since the original specification of the
Sleep  RPC is not being changed, this can be called a minor version
change. This means that existingsleeper  clients can still call the new
version of the interface.

However, an interface that exports statistical information such as
maximum, minimum, and mean could have a more general purpose use
with other remote objects. For the new version of thesleeper  server,
a new interface calledstat , defined instat.idl , can be created. The
new sleeper  manager object on the server will implement both the
sleeper  and thestat  interfaces.

The IDL specification forstat  is as follows:

[uuid(8cf8f504-b5cf-11cc-b95f-080009627155),

version(1.0),

interface stat

{

[idempotent] long Max([in] handle_t h);

[idempotent] long Min([in] handle_t h);

[idempotent] long Mean([in] handle_t h);

}

Both sleeper.idl  andstat.idl  are passed through theidl++

compiler to generate the client- and server-side classes for the IDL
files. The server-side manager classes can then be combined usingC++

inheritance to produce a new class that includes the member functions
for the RPCs defined insleeper.idl  andstat.idl . The following
is an example of such a class:

class SleeperStat:public virtual DCEObj,

public sleeper_1_0_ABS,

public stat_1_0_ABS {

private:

unsigned32 max; // max sleep time

unsigned32 min; // min sleep time

unsigned32 calls; // Number of times called

unsigned32 total; // total time slept



Advanced Application Development
How to Develop Manager Objects with Multiple Interfaces

8-8

public:

SleeperStat(uuid_t* obj):

DCEObj(obj),

sleeper_1_0_ABS(obj, (uuid_t*)(0)),

stat_1_0_ABS(obj, (uuid_t*)(0)) {

max = 0;

min = 0;

calls = 0;

mean = 0;

}

virtual void Sleep(idl_long_int time);

virtual idl_long_int Max();

virtual idl_long_int Min();

virtual idl_long_int Mean();

};

SleeperStat  combines the functionality of thesleeper  andstat

interfaces. It is derived from the abstract classes generated byidl++ ,
namelysleeper_1_0_ABS  andstat_1_0_ABS . TheSleeperStat

class is also inherited from theDCEObj class. In this case, virtual
inheritance is used instead of regular inheritance. The
sleeper_1_0_ABS  andstat_1_0_ABS  classes are also derived from
DCEObj using virtual inheritance. This is important since it forces a
single copy of aDCEObj in an instance of theSleeperStat  class. The
DCEObj class stores information about the DCE interfaces
implemented by a particular class. This is used by the GSO to register
interface and object information with DCE.

If virtual inheritance was not used, aSleeperStat  object would have
three copies of aDCEObj and the GSO would not know which one to
use.

The other important part of theSleeperStat  class is the constructor.
Notice that each class is initialized from theSleeperStat

constructor. BasicallyDCEObj is initialized first and then passed to the
constructor forsleeper  andstat  classes.



Advanced Application Development
How to Develop Manager Objects with Multiple Interfaces

8-9

The SleeperStat  class description can be inherited by other classes.
The virtual inheritance of theDCEObj class allows it to be included
with other classes generated by theidl++  compiler and still forces a
singleDCEObj copy in the resulting class. This allows interface
composition to continue as long as a single copy ofDCEObj exists.

To implement thesleeper  andstat  IDL interfaces, you must
implement the following member functions.

//corresponds to Sleep remote procedure call in
//sleeper.idl

SleeperStat::Sleep(_idl_longtime);

//corresponds to max remote procedure call in stat.idl

_idl_long SleeperStat::Max();

//corresponds to min remote procedure call in stat.idl

_idl_long SleeperStat::Min();

//corresponds to mean remote procedure call in stat.idl

_idl_long SleeperStat::Mean();

The main function for a server program that implements a
SleeperStat  object is almost identical to that of the simplesleeper

server example. The only change is the construction of a
SleeperStat  object rather than asleeper  object. The result is a
single instance of a manager object that implements both thesleeper

andstat  interfaces. The code for the new server main function is as
follows.

main()

{

// Create single instance of SleeperStat object

SleeperStat*obj = new SleeperStat((uuid_t*)(0));

// Start Signal handler to do cleanup

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

theServer->RegisterObject(obj);

// Listen for client requests

theServer->Listen();

}



Advanced Application Development
How to Develop Manager Objects with Multiple Interfaces

8-10

Execution of this code results in a server process that exports a single
manager object that implements two DCE interfaces.

Client programs that use the originalSleeper  client proxy objects
access theSleeperStat  object via itssleeper  interface. Client
programs that use astat  client proxy object call thestat  member
functions of theSleeperStat  object via itsstat  interface. The client
proxy objects can be in either the same or in different programs. For
example, both of the following client programs could be used to access
the SleeperStat  manager object (obj ) created in the server code.

main()

{

// Create instance of client object

sleeper_1_0 sleepObj;

// Call remote sleep operation

sleepObj.Sleep(10);

}

This code calls thesleeper  interface member function of
SleeperStat .

The following code calls thestat  interface member functions of
SleeperStat .

main()

{

// Create instance of client object

long meanVal;

stat_1_0 statObj;

// Call remote sleep operation

meanVal = statobj.Mean();

}



Advanced Application Development
How to Develop Manager Objects with Multiple Interfaces

8-11

UsingC++ Inheritance for Client Access

The client proxy classes generated by theidl++  compiler can be
combined into a single class usingC++ inheritance. The following
composite client class accessesSleeperStat  objects.

class SleeperStatClient: public sleeper_1_0,

public stat_1_0 {};

This class inherits theSleep  member function from thesleeper_1_0

class and theMin , Max andMean member functions fromstat_1_0 .
The client program is now as follows.

main()

{

long meanVal;

// Create instance of client object

SleeperStatClient sleepStatObj;

// Call remote sleep operation

sleepStatObj.Sleep(10);

// Call remote mean operation

mean = sleepStatObj.Mean();

}

This client program locates aSleeperStat  object within a server and
makes calls on both of the interfaces it supports. Since each class
inherited by theSleeperStatClient  class maintains its own binding
information for the manager object, you need only keep the bindings
synchronized between the two client classes. This can be enforced in
the constructor forSleeperStatClient  by initializing one class first
and then using the binding information for that class in the second
class.



Advanced Application Development
Dynamic Object Management

8-12

Dynamic Object Management
The examples so far involve objects that are declared before the call to
server listen. These types of objects are static and are available when
the server program executes. OODCE allows objects to be created or
activated dynamically (that is, while the server program is listening for
client requests) on behalf of a client. The following sections discuss
object creation and activation.

Dynamic Object Creation

This section describes how to use OODCE to create objects within a
server process. Creation is different than activation in that activation
assumes that an object has already been created.

How To Use a Factory to Dynamically Create Manager Objects

A factory is often associated with the creation of objects. OODCE can
support a factory by specifying an IDL interface for a factory object.
The factory object on the server is then responsible for creating other
objects to be managed by the server. The following is an example of an
IDL specification for a factory object:

[uuid(6bf99034-97f7-11cc-9cb1-080009627155),

 version(1.0)]

interface Factory

{

import “ObjRef.idl”;

DCEObjRefT* Create(

 [in] handle_t h,

 );

void Delete (

 [in] handle_t h,

 [in] uuid_t theobject

);

}



Advanced Application Development
Dynamic Object Management

8-13

This interface provides remote procedure call specifications for
creating and deleting objects at a server. This example uses object
references that are described in the section Creating and Using Object
References later in this chapter. These object references are alternative
names for the objects to which they point.

To show how factory objects work, a simple design change can be
made to thesleeper  application. In this new version, the server
program can create and deletesleeper  objects on behalf of clients.
The newsleeper  client now creates asleeper  manager object
within the server program when the client object is constructed. It
deletes thatsleeper  manager object when the client object’s
destructor is run.

Example Main Function for Sleeper Program With Dynamic Objects

The following is the code segment for the new server main function.
This version does not createsleeper  manager objects. Note that when
this code is executed, nosleeper  objects are created. Instead, only a
factory object that can createsleeper  objects is constructed and
registered with the GSO.

// Define extern for string form of the

// UUID for the sleeper interface.

extern char* sleeper_interface_uuid_str;

main()

{

// Create single instance of Factory Object

// Use sleeper interface UUID for Factory

// object UUID.

Factory_1_0_Mgr*factory = new Factory_1_0_Mgr(

sleeper_interface_uuid_str);

// Start Cleanup Thread

DCEPthread* clean = new DCEPthread(

theServer->ServerCleanup, NULL);

// Register sleeper object with Server

theServer->RegisterObject(factory);

// Listen for client requests

theServer->Listen();

}



Advanced Application Development
Dynamic Object Management

8-14

In the creation of the factory object, it was specified that the factory
object UUID be the same as the interface UUID for thesleeper  so
that it is easier for clients to associate this factory object with the
sleeper  class. The following figure shows the initial state for a
sleeper  server with a factory.

Figure 8-1. Initial State for Sleeper Server with Factory

Example Implementation of a Factory Object

The client proxy classes for the factory interface are generated by the
idl++  compiler. The concrete manager class must be implemented to
provide the required functionality for the operations defined in the IDL
specification (Create  andDelete ). The following code fragment
shows the implementation of the factory manager class.

Register Interface
and Object infor-
mation in End-

pointMap

GSO

(theServer)

Factory Manager
Object

(factory)

EndpointMap

(RPCD)

Sleeper Server Program



Advanced Application Development
Dynamic Object Management

8-15

DCEObjRefT* Factory_1_0_Mgr::Create()

{

sleeper_1_0_Mgr* newObject;

// Create new instance of sleeper object

newObject = new sleeper_1_0_Mgr;

// Register sleeper object with Server Object

theServer->RegisterObject(*newObject);

// Return object reference to new sleeper object

return(newObject->GetObjectReference());

}

This code creates a newsleeper  manager object and then registers
the manager object with the GSO before returning a reference to the
newly created object.

void Factory_1_0_Mgr::Delete(uuid_t id)

{

// Remove object represented by id

// from server object

theServer->UnregisterObject(&id);

}

This code deletes asleeper  manager object from the GSO and
prevents it from being used further by clients. The DCE object UUID
for thesleeper  manager object is passed as the only parameter to this
function.

The server main function and the factory implementation can now be
used to dynamically createsleeper  objects for clients.

Creating Server Manager Objects from a Client Program

This section discusses the client side of the newsleeper  example.
The policy specified earlier is to have asleeper  manager object
created on the server when the proxy constructor is invoked, and then
have thatsleeper  manager object deleted when the client object’s
destructor is invoked. To do this, a new class on the client is created as
follows:



Advanced Application Development
Dynamic Object Management

8-16

class Sleeper_Fac: public sleeper_1_0 {

private:

Factory_1_0* _factory;

public:

Sleeper_Fac(char*, char*);

~Sleeper_Fac();

};

This class inherits from thesleeper  client object and includes a
private pointer to the factory client object. A constructor and destructor
have been declared and deal with the initialization of the factory client
object and in turn the creation of the server-basedsleeper  manager
object via the factory client. The following is the code fragment for the
constructor.

// Declare String form of UUID for the

// sleeper interface

char* sleeper_interface_uuid_str =

“7395E26E-5BA4-11CC-988B-080009253B97”;

Sleeper_Fac::Sleeper_Fac(char* hostaddr, char* protocol)

{

// Create a factory client object that is used to

// access a factory manager object at a server.

// Sleeper manager objects are created via this

// client object.

// Note that the DCE object UUID for the

// factory is equivalent to the interface UUID

// declared in sleeper.idl

_factory = new Factory_1_0(

(unsigned char*)netaddr,

(unsigned char*)protseq,

sleeper_interface_uuid_str);

// Create the sleeper manager object at the server

// use the Create member function of the factory



Advanced Application Development
Dynamic Object Management

8-17

// client object to perform creation
DCEObjRefT* ref = _factory->Create(object);

//Initialize the binding for this client object

//from the object reference returned by create

SetBinding(

(rpc_binding_handle_t)GetBindingHandle(ref));

}

This code fragment locates and initializes the factory client object that
can be used to createsleeper  manager objects on a server. The
factory manager object (that actually creates thesleeper  manager
objects) is located based on an object identifier. This is the same as the
interface UUID specified insleeper.idl . In this case, it is not
important which instance of a factory is located as long as it is one that
can createsleeper  manager objects.

The server main code for this example of asleeper  server program
hardcodes the object UUID of the factory to be that of thesleeper

interface UUID. Once asleeper  factory manager object is located, its
Create  member function is called (via the factory client object) to
create asleeper  manager object at the server.Create  returns an
object reference that is used to set the binding handle for the
Sleeper_Fac  client class using theSetBinding  member function.
The call toSetBinding  callssleeper_1_0::SetBinding  and
initializes the binding information for the client object to refer to the
sleeper  manager object just created by theCreate  factory call. The
following figure shows the objects in the server program after the
client constructor is called.



Advanced Application Development
Dynamic Object Management

8-18

Figure 8-2. Objects In Server Program After Client Constructor Is
Called

The following code is the destructor forSleeper_Fac.

Sleeper_Fac::~Sleeper_Fac()

{

if(_factory){

_factory->Delete(_object);

delete _factory;

}

}

Register Interface
and Object infor-
mation in End-

pointMap

GSO

(theServer)

Factory manager object

(factory)

EndpointMap

(RPCD)

Sleeper Server Program

Sleeper Manager
object



Advanced Application Development
Dynamic Object Management

8-19

This destructor checks that the factory client object has been initialized
and then calls the localDelete  member function to delete the
sleeper  manager object at the server. The work is done by the
Delete  member function of the factory manager object using the
implementation shown in the section Example Implementation of a
Factory Object earlier in this chapter. The object UUID passed to
Delete  is stored in the protected state of theDCEInterface  class,
from whichSleeper_Fac  is derived. The following figure shows the
objects in the server program after the destructor is called.

Figure 8-3. Objects In Server Program After Destructor Is Called.

Example Client Program that Dynamically Creates Manager Objects

The client object, when constructed, creates asleeper  object on a
remote server and when destructed deletes that object. The following is
a client application that uses this code.

Register Interface
and Object infor-
mation in End-

pointMap

GSO

(theServer)

Factory manager object

(factory)

EndpointMap

(RPCD)

Sleeper Server Program



Advanced Application Development
Dynamic Object Management

8-20

main(int argc, char** argv)

{

// Construct Sleeper_Fac object.

// This causes a sleeper object to be created on a

// server. The constructor takes a host address and

// protocol sequence.

Sleeper_Fac objectClient = Sleeper_Fac(argv[1],
“ip”);

// Call Sleep member function on sleeper object

// that was created

objectClient.Sleep(10);

// objectClient destructor will be called when function

// exits. This will delete the sleeper manager object on

// the server.

}

Running this code creates asleeper  manager object at a server using
a factory to create the object.Sleep  is then called on the newly
created manager object. When the client exits, thesleeper  manager
object is deleted using the factory object.

Object Activation

If a server program manages a large number of DCE objects, it can be
impractical to have all of its objects active at the same time. Activation
is different from creation because it assumes that the object has already
been created and initialized but is not currently active or available for
clients to use (that is, the object is in a passive state). Object activation
allows a server designer to choose when it is appropriate to activate an
object (normally when a client needs to use it) and do this independent
of when a server program is started.



Advanced Application Development
Dynamic Object Management

8-21

Activation is normally associated with persistent storage. When an
object is passive, it usually means that its state has been saved in long
term storage (e.g., a file system or a database). OODCE does not
provide support for persistent storage of an object’s state, but can work
with persistent store implementations (such as object databases) to
achieve the semantics of object activation.

For an object to be activated, information is required that identifies the
object to be activated. In OODCE, this information is represented by
the DCE object UUID. Since the semantics of object activation are
closely tied to the object’s implementation, there is no way for
OODCE to provide a general activation mechanism. OODCE does,
however, allow you to support activation.

OODCE defines an abstract class calledActivation  that provides an
abstraction onto the activation of manager objects. You need to derive
a concrete class from theActivation  class and provide an
implementation that performs the activation for a specific object class
or set of classes. Typically, this implementation performs the following
steps.

1. Locate the object state based on the DCE Object UUID.

2. Create new manager object for the class associated with the Object
UUID.

3. Initialize the new manager object with the state.

4. Register the manager object with the GSO.

To demonstrate activation, a few design changes to theSleeperStat

server example can be made. TheSleeperStat  server program will
now have the following characteristics. A singleSleeperStat

manager object, which supports both thesleeper  and thestat

interfaces, is created by the server program and registered with the
GSO.



Advanced Application Development
Dynamic Object Management

8-22

This manager object continuously checkpoints itself after a set period
of time. If there have been no client requests on the manager object
between two checkpoints, its state (in this case statistical information)
is stored in the UNIX file system and the manager object is
unregistered from the server program. If a client request is made on
this manager object, it is reactivated from the stored state on the file
system.

The SleeperStat  client program is modified such that it calls the
Sleep  member function of aSleeperStat  manager object. It then
waits for a period that exceeds twice the checkpoint period of the
manager object before making a second sleep call. The second sleep
call requires that the manager object be reactivated at the server before
the call can complete.

Modifications to SleeperStat Manager Object to Support Activation

The originalSleeperStat  manager object did not support
persistence. It must be modified to save and restore its state from the
UNIX file system. The modification to support persistence is done in
the SleeperStat  object constructor and through an additional
member function that supports checkpointing. These modifications are
shown in the following code fragments.

sleeper_stat::sleeper_stat(uuid_t* obj):

 DCEObj(obj),

 sleeper_1_0_ABS(obj, (uuid_t*)(0)),

 stat_1_0_ABS(obj, (uuid_t*)(0))

{

struct stat tmp;

////

// Check to see if this is a persistent object

////

if(stat((char*)(this->GetId()), &tmp) == -1) {

////

// Initialize state to Zero

////

max = 0;

min = 0;



Advanced Application Development
Dynamic Object Management

8-23

calls = 0;

total = 0;

state = fopen((char*)(this->GetId()), “w”);

fprintf(state,

“%d %d %d %d”, max, min, calls, total);

fclose(state);

} else {

////

// Read in the state from file

////

state = fopen((char*)(this->GetId()), “r”);

fscanf(state,

“%d %d %d %d”, &max, &min, &calls, &total);

fclose(state);

}

////

// Start the checkpoint thread

////

checkpoint = new DCEPthread(checkpointhandler,

 (void*)this);

}

The SleeperStat  constructor is passed an object UUID. This UUID
is used to check if this object has been created previously. This is
achieved by using the string form of the object UUID as the UNIX file
name for where the object state is stored. If the file exists, the state of
the object is read in from the file, otherwise, theSleeperStat

object’s state is initialized to zero. Before the constructor exits, it
creates a checkpoint thread that is used to checkpoint the objects state
every five minutes.



Advanced Application Development
Dynamic Object Management

8-24

The following code fragment shows the implementation of the
checkpoint member function declared for theSleeperStat  class. This
member function is called by the checkpoint thread created by the
constructor. When it is called, it writes the object’s state to the UNIX
file system. If there has been no change in the state since the last
checkpoint call, the member function returns a boolean indicating that
the SleeperStat  object can be deactivated or deleted from the GSO
of the server program.

boolean32 sleeper_stat::CheckpointAndRemove(

unsigned32* numcalls)

{

////

// Check if the object has been accessed

// since last checkpoint

////

if(*numcalls == calls) {

////

// No change since last checkpoint.

// Save the current state and exit

////

state = fopen((char*)(this->GetId()), “w”);

fprintf(state,

“%d %d %d %d”, max, min, calls, total);

fclose(state);

return true; // Caller can delete

} else{

////

// Save current state

///

*numcalls = calls;

state = fopen((char*)(this->GetId()), “w”);

fprintf(state,

“%d %d %d %d”, max, min, calls, total);

fclose(state);

return false;

}

}



Advanced Application Development
Dynamic Object Management

8-25

Example Implementation of Activation Code forSleeperStat

A new class needs to be derived from the baseDCEActivation

abstract class. This new class must be implemented to support the
activation ofSleeperStat  objects. The following is the activation
class for theSleeperStat  example:

class SleepStatActivator: public DCEActivation {

public:

 DCEActivationResultT *ActivateObject(DCEUuid& object);

};

In general, a single member function needs to be implemented called
ActivateObject . TheActivateObject  member function takes a
UUID as the single parameter and returns a pointer to a
DCEActivationResultT  structure, as follows.

DCEActivationResultT

*SleepStatActivator::ActivateObject(DCEUuid& object)

{

DCEActivationResultT* ret_act = 0;

struct stattmp;

sleeper_stat* obj;

////

// Check and see if object state is stored

// in the file system

////

if(stat((char*)(object), &tmp) == -1)

// Object never existed return NULL

return ret_act;

////

// Initialize activation result

////

ret_act = new DCEActivationResultT;

ret_act->referral = 0;

ret_act->object_active = false;

////



Advanced Application Development
Dynamic Object Management

8-26

// Create new sleeper manager object pass

// object UUID to constructor.

// Constructor will initialize state from

// file system.

////

obj = new sleeper_stat(object);

////

// Registered sleeper manager object with GSO

////

theServer->RegisterObject(*obj);

ret_act->object_active = true;

////

// Return activation result

////

return ret_act;

}



Advanced Application Development
Dynamic Object Management

8-27

Registering An Activation Object

To support activation, a server program must register an activation
object implementation with the GSO. This is done in the server
program’s main function, as follows.

void main()

{

// Create instance of sleeper_stat manager object

sleeper_stat* sleeperStat = new sleeper_stat(0);

// Activate cleanup thread

DCEPthread*exit = new DCEPthread(

DCEServer::ServerCleanup, (void *)(0));

// Create activator object for sleeper_stat

SleepStatActivator activator;

// Create a UUID object for the sleeper interface

// UUID. see sleeper.idl

DCEUuidsleeper_if(

“7395E26E-5BA4-11CC-988B-080009253B97”);

// Register manager object

theServer->RegisterObject((DCEObj&)(*sleeperStat));

// Set activation object. sleeper_if indicates

// that activation is done through sleeper

// interface of the sleeper stat object

theServer->SetActivationObject(&activator,

sleeper_if);

// Call listen on the DCEServer

theServer->Listen();

}



Advanced Application Development
Dynamic Object Management

8-28

When this code executes, it creates aSleeperStat  server with a
single manager object. An activation object is registered with the GSO
using theSetActivationObject  member function. This member
function is called with the activation object and an interface UUID.
Activation is done when a client makes a call on an interface. The
GSO needs to know which interfaces support activation. In this
example, activation only occurs when a client object makes a call to
the server program using thesleeper  interface. No activation is done
for thestat  interface.

N O T E SetActivationObject  can be called more than once for different
interfaces or a vector of interface UUIDs can be passed to the member
function instead of a single UUID used in the example.

The manager object checkpoints itself by storing its statistical state in
the UNIX file system. If there has been no activity on the manager
object between two checkpoints, the object is unregistered and deleted
from the server program (that is, the server will have no manager
objects). Subsequent calls by clients to the server program activate the
object.

Example Client That Activates a Manager Object at the Server.

Once the server program has been started and the initial manager
object has been registered in the endpoint map, anysleeper  client
program described so far will activate that manger object if necessary.
The following example creates asleeper  client object and calls its
Sleep  member function. The client program then waits ten minutes
before making a call toSleep  on the same object again. The second
call to Sleep  requires that the server program activate the object.



Advanced Application Development
Creating and Using Object References

8-29

main()

{

// Create instance of sleeper client object

sleeper_1_0 sleepObj;

// Call remote sleep operation

// of sleeper_stat manager object

sleepObj.Sleep(10);

// wait for object to checkpoint

sleep(600);

// Call remote sleep operation

// of sleeper_stat manager object

// This will cause the object to

// get activated

sleepObj.Sleep(10)

}

Creating and Using Object References
It is often convenient to pass a reference to a manager object within a
server to another program in a distributed system. This allows multiple
programs to collaborate with a single manager object. An object
reference uniquely refers to a specific DCE object. It can be passed as
an RPC parameter and then converted into a client object reference that
can be used to access the server manager object it refers to.

An example of object references is shown in the factory example in the
section “Example Implementation of a Factory Object” earlier in this
chapter. In this case, a manager object is created in a server program
and a reference to that object is passed back to the client. The client
used this reference to create a client object to access the newly created
manager object.



Advanced Application Development
Creating and Using Object References

8-30

OODCE ensures that object references are type safe. You can only
create a client object from an object reference that is of a class that is
compatible with the manager class of the manager object associated
with the reference. Checks are made at the server to verify that the
referenced object supports the requested interface of the client object.

A reference to a manager object can be obtained by calling the
GetObjectReference  member function as shown in the
implementation of the factory example in the section “Example
Implementation of a Factory Object” earlier in this chapter.

There is an OODCE data type calledDCEObjRefT . This data type has
been declared using IDL. It can be used as parameter type in other IDL
specifications by using the IDLimport statement in the IDL file. The
following code shows the IDL specification for theFactory  interface.
The data type specification can be found in theObjRef.idl  file in the
OODCE include directory.

[uuid(6bf99034-97f7-11cc-9cb1-080009627155),

 version(1.0)]

interface Factory

{

import “ObjRef.idl”;

DCEObjRefT* Create(

 [in] handle_th,

 );

void Delete (

 [in] handle_th,

 [in] uuid_t theobject

);

}



9

Advanced ACL Management



Advanced ACL Management
How to Write Your Own Database Implementation

9-2

How to Write Your Own Database
Implementation
Writing your own ACL database implementation involves creating an
implementation class that inherits from theDCEAclDb abstract class.
You must implement all of the functions in the abstract class, but you
can add more. For example, to create an ACL database with
persistence, you would write the constructor to find the persistent data
and do the necessary conversions needed to make it accessible to the
program. If you keep an in-memory copy of the database that is
distinct from its persistent representation, you must design a strategy to
keep these data stores in synchronization and to minimize the loss of
data if a program exits or a system crashes. One way to do this is to
have the constructor create a checkpoint thread that periodically
ensures that the data stores contain the same information. Another way
to do this is to have all manager routines that write the database write
both the in-memory and persistent copies.

DCEAclDb, DCEAcl , andDCEModifyableAcl  work closely together to
manage the ACL storage and retrieval. Therefore, when
reimplementing one of these, the design of the others must also be
considered. Where to store locks, where to store owner information,
and how and when to free resources needs to be agreed upon among all
three.



Advanced ACL Management
How to Instantiate an Existing (Persistent) Database

9-3

How to Instantiate an Existing (Persistent)
Database
The library does not support persistence directly, but it does let you
provide your own persistent implementation ofDCEAclDb. If an
implementation calledAclDbPersist  inherits from theDCEAclDb

abstract class, you must create the database by invoking the constructor
and registering theAclDbPersist  object with the
DCEAclStorageManager  object.

An existing data store must have some record of the database schema
such that anDCEAclSchema object can be created as a result of
constructing anAclDbPersist . The following is an example of the
code that is needed to create the database:

DCEAclDb *the_database; // assume sharing across all
objects

the_database = AclDbPersist(database_name,

                             persistent_file_name...)

 num_slices = the_database->GetSchema()->Num_Slices();

 acl_storage_manager.Register(the_database, num_slices);

Multiple Refmon’s
You might want to create application management operations within
the application interface that manipulates the ACLs instead of the
application objects. A client of such an interface would be required to
pass the general security check provided by theDCERefMon object
registered with this application interface. However, there might be a
different security check imposed onrdacl  interface requests.



Advanced ACL Management
Implementing ACL Management for a Factory Object

9-4

If your application manager that implements one of these ACL
management operations wants the client also to pass the security check
imposed on therdacl  interface, the ACL manager version ofIsAuth

should be used, as follows:

acl_manager.IsAuth(the_database,

                    object_name,

                    desired_perms);

The other versions ofIsAuth  do not invoke therdacl DCERefMon

security check because it is assumed that the appropriate DCERefMon
has been invoked prior to callingIsAuth . The ACL manager version
of IsAuth  is special because it calls theDCERefMon object before
getting an authorization decision. You may not need to use this version
of IsAuth  very often.

One way to get around needing it is to separate management operations
into a different application interface, and register the sameDCERefMon

object with it as you pass to theDefineAclMgr  macro.

Implementing ACL Management for a
Factory Object
Normally a server would only use ACL management when there is
state to which it wants to restrict access on a per user and per operation
basis. A factory does not maintain state, but might want to use ACL
management to implement a multi-tiered authorization policy that
would be cumbersome to implement using a reference monitor. For
example, you might want to allow the owner and certain special users
of the factory to create and delete objects and all members of a group
to create new objects. The application server implementing both the
factory and the objects created by the factory must decide how to
manage the ACL(s) for both the factory and the objects.



Advanced ACL Management
Implementing ACL Management for a Factory Object

9-5

One option is to develop a schema that includes both the factory
permissions (create and delete) as well as the permission relevant to
the objects created by the factory. If the factory creates work order
lists, the permissions might be add, flush, and dispatch. If one schema
is used for both, the factory ACL can reside in the work list ACL
database provided it is given a name that is guaranteed not to not to be
the same as the name of a real work list.

Another option is to develop a separate schema and database for the
factory ACL. The factory schema would define create and delete
permissions, and a separate work order schema would define add,
flush, and dispatch. Using different databases allows the factory ACL
name to be anything. However, both the factory and the set of
application objects would need to registerDCEAclMgr  bindings into
the namespace in order foracl_edit  to be able to bind to the
appropriate database.



Advanced ACL Management
Implementing ACL Management for a Factory Object

9-6



10

Advanced Threads Programming



Advanced Threads Programming

10-2

Using DCEPthread Attributes

A Pthread has a number of attributes that determine how it behaves.
The most important of these is its scheduling priority. A thread’s
priority may be set at a higher or lower level. Maximum and minimum
levels are available but should only be used by preemptive or idle
threads respectively.

Pthreads also have a scheduling policy that controls time slicing policy
and the interpretation of low-priority. With the foreground (fg)
(default) policy and background (bg) policy, low priority threads
eventually get CPU time. Pthread_fg has a medium priority range, and
while giving preference to high-priority threads, sees that all threads
eventually get some processing time. Pthread_bg has the lowest
priority, but is otherwise similar to Pthread_fg. Pthread_fifo (first-in-
first-out) and Pthread_rr (round robin) have priority ranges higher than
the other algorithms, and equal to each other. Pthread_fifo does not do
time slicing among threads with equal priority; consequently it can
starve low priority threads. Pthread_rr does time slicing; consequently,
low-priority threads cannot starve. The stack size attribute establishes
the size of the stack available for the thread.

TheDCEPthread  class represents a thread, but it is not itself a thread.
A Pthread may be created without actually starting a thread execution,
and it may be deleted either before or after the thread terminates. The
DCEPthread  class contains attribute values before the thread is
started, and provides for control communications with other threads. In
the following sections, it is important to recognize the difference
between a Pthread and the thread that it represents.

The termination attribute determines the behavior of the Pthread when
it is deleted, either by exiting the block in which it is declared or by
issuing an explicit call to theC++ delete  function. The default action
deletes the block and eliminates the possibility of communicating with
the thread. The thread may continue to run. The option
Pthread_join_on_delete  waits for the thread to complete before
terminating. This can be important if the process terminates or the next
program step assumes that the work being done by the thread has
already completed.



Advanced Threads Programming

10-3

Setting the Attributes

Attributes may be set and interrogated through DCEPthread operations.
Instead of starting the thread when the DCEPthread is created, a
separate start operation is performed, as follows:

{ DCEPthread checkpoint_thread;

checkpoint_thread.Scheduling(Pthread_fifo);

checkpoint_thread.Priority(Pthread_pri_hi);

checkpoint_thread.Termination(Pthread_join_on_delete);

// checkpoint_thread will now execute at a high priority

// using fifo scheduling (higher precedence than the

// default fg), and on termination will wait for the
// thread itself to complete.

checkpoint_thread.Start(checkpoint, NULL);

} // This deletes checkpoint_thread, waiting for the

// checkpoint itself to complete.

A thread may return a result when it exits. If that result is required, an
explicit Join  must be performed on the thread:

DCEPthreadResult res = checkpoint_thread.Join();

The value can only be returned after the thread terminates. If this is not
yet the case, this operation waits for thread termination.

If priority is the only attribute that needs to be specified, there is a
shorter way to specify it:

DCEPthread checkpoint_thread(Pthread_pri_hi, checkpoint,

 NULL);



Advanced Threads Programming

10-4

Attributes for Multiple Threads

When a number of threads are to be created that have the same
attribute settings, aDCEPthreadAttr  can be used, as follows:

{ DCEPthreadAttr ckpt_attr;

ckpt_attr.Scheduling(Pthread_fifo);

ckpt_attr.Priority(Pthread_pri_hi);

ckpt_attr.Termination(Pthread_join_on_delete);

DCEPthread checkpoint_1(ckpt_attr, checkpoint, NULL);

DCEPthread checkpoint_2(ckpt_attr, checkpoint, NULL);

DCEPthread checkpoint_3(ckpt_attr, checkpoint, NULL);

DCEPthread checkpoint_4(ckpt_attr, checkpoint, NULL);

} // This deletes checkpoint_thread, waiting for all

// checkpoint threads to complete.

Changing and Interrogating Thread Attributes

All attributes of a DCEPthread can be changed until the thread is
started. After that time, all attributes other than the stack size can be
changed.

checkpoint_thread.Priority(Pthread_pri_hi);

If the thread has not started, this changes an attribute value within the
DCEPthread  object. Once the thread starts, the priority change
happens within the pthread software, locating the pthread and changing
its priority.

Attributes can also be interrogated. The same operation name, but
without a parameter, is used to access the attribute:

DCEPthreadPrio x = checkpoint_thread.Priority();

Before the thread starts, this command removes the intended attribute
value. After theStart  command, it accesses the process and returns
its priority.



Advanced Threads Programming

10-5

When aDCEPthread ’s constructor specifies aDCEPthreadAttr , the
values set in that attribute determine those used for the thread after it is
started. Once the thread starts,DCEPthreadAttr  has no effect on the
running thread.

{ DCEPthreadAttr ckpt_attr;

ckpt_attr.Scheduling(Pthread_fifo);

ckpt_attr.Priority(Pthread_pri_hi);

ckpt_attr.Termination(Pthread_join_on_delete);

DCEPthread checkpoint_1(ckpt_attr);

DCEPthread checkpoint_2(ckpt_attr);

DCEPthread checkpoint_3(ckpt_attr);

DCEPthread checkpoint_4(ckpt_attr);

checkpoint_thread_1.Start(checkpoint, NULL);

checkpoint_thread_3.Priority(Pthread_pri_min);

ckpt_attr.Priority(Pthread_pri_mid); //statement A

checkpoint_thread_2.Start(checkpoint, NULL);

checkpoint_thread_4.Scheduling(Pthread_rr); //statement B

ckpt_attr.Priority(Pthread_pri_low); //statement C

checkpoint_thread_3.Start(checkpoint, NULL);

checkpoint_thread_4.Start(checkpoint, NULL);

} // This deletes checkpoint_thread, waiting for all

// checkpoint threads to complete.

This codes executes as follows:

1. checkpoint_thread_1 is started with hi priority. The next statement
changes its priority to min, but does not affect other threads or
ckpt_attr.



Advanced Threads Programming
Using Thread-Specific Storage

10-6

2. Statement A changes the priority of ckpt_attr. The next statement
starts checkpoint_thread_2 with a mid priority.

3. Statement C changes the priority of ckpt_attr, so
checkpoint_thread_3 is started with low priority. Statement B has no
effect on checkpoint_thread_3 since it was directed at a single
process.

4. checkpoint_thread_4 is started at priority mid since statement B
isolates it from ckpt_attr. As soon as an attribute of a process
changes, the values of the parameter attribute are captured and all
linkage with that attribute is broken.

Using Thread-Specific Storage
Often, a thread wants to maintain a state of its own that is not shared
with other threads. While this storage may be located in a heap, there
needs to be an access to the pointer to the data. This is similar to
having state data in a class. TheDCEThreadSpecific  class provides a
way of doing this.

A DCEThreadSpecific  data element is generally declared as a state
variable to a Manager class, although it can also be declared globally.
DCEThreadSpecific  is a template, so a type name must be specified
to provide proper type checking. For most cases, the
DCEThreadSpecificPtr  template should be used. This calls a
destructor to delete your allocated memory when the thread terminates.
DCEThreadSpecific  may be used for managing your own memory or
for storing a single integer data item (up to 32 bits).

Suppose the thread-specific information is represented as a class
MyClass . The thread-specific data is created by the following
declaration:

DCEThreadSpecificPtr <MyClass> data;



Advanced Threads Programming
Using Condition Variables

10-7

Inside a thread procedure, establish the value for this thread. For
example, thecheckpoint  procedure could begin with a statement:

void * checkpoint (void *)

{

data.Set(new MyClass);

}

Elsewhere in the thread, perhaps after receiving a new work request,
the thread may retrieve the data in the following way:

MyClass * foo = data.Get();

When the thread terminates, the destructor forMyClass  is called.

Using Condition Variables
Some applications use threads as servers. Threads receive requests to
perform work, and wait for new requests when all have been serviced.
This is a typical use of condition variables.

A condition variable always has an associated mutex. These are
declared as follows:

DCEPthreadMutex cond_mutex;

DCEPthreadCond cond(cond_mutex);

N O T E When aDCEPthreadCond  is declared as a data member of a class, the
initialization parameter must be placed in the constructor.

In addition to these declarations, there is normally a data structure that
receives the requests. The data structure may be aC++ template queue
that maintains a list of requests, allowing a new request to be added to
the end, and allowing requests to be removed from the front of the
queue.

Queue<Request> request_list;

unsigned32 accepting_requests = 1;



Advanced Threads Programming
Using Condition Variables

10-8

The request list is the protected data guarded bycond_mutex . It must
only be touched by a thread that has acquired a lock on the mutex. The
accepting_requests  flag indicates that no additional requests can
be placed on the list. It is initially TRUE.

The server procedure monitors therequest_list  for work to be done
as shown in the following code.

cond_mutex.Lock();

while(request_list.Empty() && accepting_requests)

cond.Wait();

Request * current_request = request_list.Pop();

cond_mutex.Unlock();

If there are no messages waiting in the request list, this routine waits
on the condition variable cond. It is important to recheck the condition
upon return from the Wait operation to be certain that the condition has
really become true.

Work requests are placed on the queue in the following manner,
assuming that theaccepting_requests  flag is true, and that there is
a request calledreq :

cond_mutex.Lock();

request_list.Add(req);

cond.Signal();

cond_mutex.Unlock();

The Signal  operation wakes up any thread waiting on the condition
variable. If there are none, the next available thread discovers the
request before waiting on condition.



A

OODCE Glossary of Terms



OODCE Glossary of Terms

A-2

base class
The class from which another class is derived.

client object
An object that locates and accesses manager objects implemented by server
programs.

DCE interface
A set of related operations that can be applied to any object of the class. See
also DCE object.

DCE object
An entity that is manipulated by well-defined operations. Every DCE object
has a class, which specifies the type or category of the object. All DCE objects
of a class are manipulated using a specific set of one or more interfaces. See
also DCE interface.

derived class
A class that inherits its members from another class.

endpoint vector
A vector that contains endpoints, which are addresses of specific server
instances on a host system.

entrypoint vector
The idl++  generated server entrypoint vector (EPV) is used to interface
OODCE with the DCE server stubs generated by the idl compiler. The server-
side EVP implements a generic DCE EPV for a DCE interface. The entrypoint
vector is different for each interface specified in an IDL file. The entrypoint
vector handles object location and activation within the server and provides
the first level security check.



OODCE Glossary of Terms

A-3

exception
A value defined in IDL that is returned by a request whose execution
encounters abnormal conditions, such as invalid input parameters. An
exception can also occur if an abnormal condition occurs during the
performance of a request, in which case the OODCE returns an exception to the
client. Exception handling provides a language-level facility for the uniform
handling of program anomalies.

extension classes
Highest level of the OODCE class library structure. They provide default
implementations of abstract classes that exist in the framework and provide an
implementation of the ACL manager subsystem. See also framework classes.

factory
Executable code that creates objects upon request. Factories have detailed
knowledge of the objects they create.

framework classes
OODCE class library classes that represent abstractions onto the DCE C-based
API. They are used to implement the DCE object model. They use the Utility
classes to manage and manipulate DCE location and identification information.

generated classes
Application specific classes of the OODCE class library. They are generated by
the idl++  compiler.

global server object
DCE allows only a single rpc_server_listen  call per process. Therefore, a
process can have only one instance of a server object. For convenience, the
OODCE library contains a Global Server Object (GSO) called theServer  that
can be used by server programs. The implementation of the DCEServer  class
is thread safe; therefore, the global server object can be safely accessed from
any thread within the server process.



OODCE Glossary of Terms

A-4

idl++
An instrumented compiler that processes the RPC interface definition specified
in the Interface Definition Language (IDL). The idl++  compiler generates the
client and server stub files, and the files that specify the abstract and concrete
manager classes, the entrypoint vector, and the server and client functionality.

manager object
An object that implements remote operations defined in the IDL file.

marshalling
RPC: The process by which a stub converts local arguments into network data
and packages the network data for transmission.

OODCE class
Specifies the type or category of a DCE object and the set of operations that can
be applied to the object. See also DCE object.

OODCE Class Library
A C++ class library for the Open Software Foundations’s Distributed
Computing Environment (DCE).

Pthread
An API (application programming interface) standard for threads functionality,
specified by POSIX in 1003.4a, Draft 4.

reference monitor
Code that controls access to an object. Servers control access to the objects they
maintain; and for a given object, the ACL Manager associated with that object
makes authorization decisions concerning the object.

server object
An object that provides a response to a request for a service. An object can be a
client for some requests and a server for other requests.



OODCE Glossary of Terms

A-5

stub
RPC: A code module specific to an RPC interface that is generated by the DCE
idl++  compiler to support remote procedure calls for the interface. RPC stubs
are linked with client and server applications and hide the intricacies of remote
procedure calls from the application code.

surrogate object
A language-mapping-specific object created by the idl++  compiler that
corresponds to a single interface operation. A client issues a static request by
calling the surrogate object, which transmits the request to the corresponding
method.



OODCE Glossary of Terms

A-6



B

Basic Application Development
Summary



Basic Application Development Summary

B-2

This appendix presents s a step-by-step guide to application
development. This appendix refers to previously described details.

Use the following steps to develop an application:

1. Define the client server interface using the DCE Interface
Definition Language (IDL). Specify remote procedures that must
be implemented to provide the required functionality.

2. Compile the IDL file with the OODCEidl++  compiler, which
generates the following files:

<IDL File Name >S.H — ContainsC++ manager class
definitions. These are described further in “Manager Classes” in
Chapter 2.

<IDL File Name >E.C — Implements entry point manager code
for the interface. This is described further in “Entry Point Vector
and Code” in Chapter 2.

<IDL File Name >C.H and <IDL File Name >C.C — Contain
the class declaration and implementation of the client object for the
interface. This is described further in “Client Class” in Chapter 2.

<IDL File Name>_sstub.c  and <IDL File Name >_cstub.c —
Contain the RPC communication stub code generated by theidl

compiler. These files are described further in “DCE Stub Files” in
Chapter 2.

3. Implement member functions of the manager class called
<InterfaceName >_<Major Version >_<Minor

Version >_Mgr  declared in the <IDL File Name >S.H  file.
“Implementing Manager Objects” in Chapter 2 contains an
example of this manager class.



Basic Application Development Summary

B-3

4. Implement the server main function for the server program. This
includes the following:

• Construct manager objects implemented in Step 3 and accessed
by the server program. The section “Construction of Manager
Objects” in Chapter 2 shows an example of this.

• Create and activate signal handling thread to perform cleanup
if the server program is sent a signal. The section “Creating a
Signal Handling Thread” in Chapter 2 shows an example of
this.

• Register manager objects with the Global Server Object
(GSO). The section “Registering Manager Objects With the
Server Object” in Chapter 2 shows an example of this.

• Select communications protocols for the server program to use
when listening for client requests. Chapter 6, Basic Security,
describes this further. (Optional.)

• Set the CDS naming preferences for the server program
allowing clients to locate server manager objects via the CDS.
Chapter 3, Using the Cell Directory Service, describes this
further. (Optional.)

• Set security preferences for the server program. Chapter 5,
Basic Pthreads, describes this further. (Optional.)

• Call theListen  member function on the GSO to register
manager object information in the CDS and the endpoint map.
The section “Listening for Clients” in Chapter 2 shows an
example of this.

5. Compile and link source files for the server program. These
include the source files containing the server main function and the
implementation of the manager class as well as the following:

6. <IDL File Name >E.C

<IDL File Name >_sstub.c

These files must be linked with the OODCE library.



Basic Application Development Summary

B-4

7. Implement the client main function to access manager objects at
the server program. This includes the following:

• Set up exception handling to catch remote errors. The section
Communicating OODCE Exceptions from Server to Client in
Chapter 4 describes this further. (Optional.)

• Create a local client class object to locate and access the server
manager object. The section “Client Class Example” in
Chapter 2 shows an example of this activity.

• Set client security preferences. The section “How to Set Client
Security Preferences” in Chapter 6 describes this further.
(Optional.)

• Make member function calls on the local client class. The
section “Client Class Example” in Chapter 2 shows an example
of this activity.

8. Compile and link source files for the client program. These files
include the client main function written in step 6 and the following
files:

<IDL File Name >C.C

<IDL File Name >_cstub.c

These files must be linked with the OODCE library.



Index



Index

index-2

A
Abstract manager class 2-5
accepting_requests flag 10-8
Access control list 1-14

advanced management 7-2, 9-2
basic management 7-2
create new 7-10
create new database 7-10
initializing management

system 7-3
management for a factory

object 9-4
ACL

See Access control list
Activation

class 8-21
object 8-12, 8-20
registering object 8-27

Advanced ACL management 9-2
application development 8-2
threads programming 10-2

Application development
advanced 8-2
summary B-2

Asy 2-16
Attributes for multiple threads 10-4
Authorization privileges

checking 7-11

B
Basic ACL management 7-2

Pthreads 5-2
security 6-2

Bindings
placing in CDS 3-2

BindInterface member function 8-4

C
C++

inheritance and client access 8-11
language 1-4

Catch clause 4-2

CDS
name used by server program

3-2
placing bindings in 3-2
using object UUIDs 3-11

Class
DCEClientInfo 2-9
DCEErr 4-2
DCEInterface 2-10
DCEInterfaceMgr 2-5
DCEMemPassword 6-3
DCEPthread 5-2
DCERefMon 6-9
DCEServer 2-14
DCEStdLoginContext 6-3
DCEStdRefMon 6-9

Class definitions 2-4
client 1-19
server side 1-17

Classes
interface 2-10
server 2-14
sleeper_1_0_ABS 2-5
sleeper_1_0_Mgr 2-6

Client access and C++ inheritance
8-11

class definitions 1-19
security preferences 6-7
writing program 2-26

Communications
endpoint 2-22
selecting protocols 2-21

Complete DCEServer main function
example 2-20

Concrete manager class 2-6
Condition variables 10-7
Construction of Manager Objects

2-15
Constructor

creating new 7-5
CreateNewDatabase 7-9



Index

index-3

Creating
and using object references 8-29
mutual exclusion lock 5-3
new constructor 7-5
new thread 5-2
signal handling thread 2-16

Creation
object 8-12

Custom naming for the client 8-4

D
Database implementation

how to write 9-2
DCE 1-2

manager 1-7
objects, types, interfaces 1-6
programming model 1-6
services 1-3
stub files 2-12

DCEAclDb
abstract class 9-2
object 7-5

DCEAclMgr 7-3
DCEAclSchema 7-5

creating an empty 7-8
DCEAclStorageManager 7-3
DCEAclStorageManager.H 7-3
DCEClientInfo

class 2-9, 2-11
writing program 2-21

DCECmaErr subclass 4-2
DCEDirErr subclass 4-2
DCE endpoint mapper 2-18
DCEErr clause 4-2
DCEInterface

class 2-10
definition language 2-2

DCEInterfaceMgr class 2-5
DCELoginContext class 6-3
DCEMemPassword class 6-3
DCEObjRefT data type 8-30
DCEPassword class 6-3

DCEPthread 5-2
class 5-2, 10-2

DCEPthreadMutex 5-3
DCERefMon class 6-9
DCERpcErr subclass 4-2
DCESecErr subclass 4-2
DCEServer

class 2-14
main function 2-14
program 2-12

DCEStdLoginContext class 6-3
DCEStdRefMon class 6-9
Development model

OODCE 1-15
Directory service 1-3
Distributed

file system 1-4
time service 1-4

Dynamic
object creation 8-12
object management 8-12

E
Endpoint

communications 2-22
map 3-12

Endpoints
well known 2-24

Entry point vector
and code 2-7
server 1-18

Error handling 4-2
Error model

DCE 1-12
OODCE 1-12

Errors
fatal library 4-6

error_status_t status code 4-4
EVP 1-18
Exceptions 1-12, 4-6

raised by the OODCE library 4-2
Export member function 8-2



Index

index-4

F
Factory

creating manager objects 8-12
Factory object

implementation example 8-14
implementing ACL

management 9-4
Fatal library errors 4-6
File system 1-4
Foreign identities 1-14

G
_GetInterfaceList protected member

function 8-4
_GetObjectList protected member

function 8-4
Global server object 1-20, 2-14, 2-17
Groups

Sleeper_Servers 3-7
GSO

See Global server object

H
Handling exceptions 4-2
_handle protected state variable 8-5
How to

create a new ACL schema 7-7
implement a custom naming

policy 8-2
instantiate an existing persistent

database 9-3

I
IDL 1-7, 2-2

compilation and results 1-15
C++ mapping 1-16

idl++ 2-2
compiler 2-2
files 2-4

Implementing manager object 2-13
Inheritance

virtual 2-5

Initializing ACL management
system 7-3

Interface definition language 1-7
Interoperability with C based DCE

systems 4-7

L
Library errors

fatal 4-6
Listen member function 2-18
Listening for clients 2-18
Lock member function 5-3
Login context for client and server

programs 6-2
management 1-14

M
Manager

classes 2-4
DCE 1-7

Manager object 6-7
create with factory 8-12
implementing 2-13

Mapping C++ onto the DCE
programming model 1-9

Marshalling of data types 2-12
Member functions

_GetInterfaceList 8-4
_GetObjectList 8-4
Export 8-2
Listen 2-18
Lock 5-3
RegisterObject 3-11
ServerCleanup 2-17
SetActivationObject 8-28
SetGroup 3-6
SetName 3-2
SetProfile 3-9
SetServerObject 3-12
Shutdown 2-18
Sleep 2-8
Unlock 5-3



Index

index-5

Multiple refmons 9-3
Mutual exclusion lock

creating 5-3

N
Naming service interface 1-14
new_exception member function 4-6
NSI 1-14

O
Object

activation 8-12, 8-20
creation 8-12
dynamic management 8-12
map 2-7, 2-8
map table 2-20
OODCE 1-6, 2-2
oriented DCE 1-2
protected state variable 8-5
UUIDs in the CDS 3-11

OODCE
client side programming

model 1-11
development model 1-15
object 1-6, 2-2
server side programming

model 1-10
Overload member function 2-9

P
Packet

RPC 2-7
Placing bindings in CDS 3-2
POSIX threads 1-15
Profiles

RPC 3-8
Programming model 1-6

client side 1-11
server side 1-10

Protection level and authorization
model 6-8

Protocol endpoint
how to set 2-23

Pthreads 1-15, 5-2

R
rdacl interface 7-4
Reference monitor 1-13, 6-9

default in server code 6-11
Refmon

multiple 9-3
See also Reference monitor

Registering
activation object 8-27
objects with server objects 2-17
server info. into RPC groups 3-6
server info. in RPC profiles 3-8

RegisterObject member function 3-11
Remote

method calls 8-7
procedure call 1-3
procedure call packet 2-7

RMC 8-7
Root class 2-6
RPC 1-3

groups 3-6
profiles 3-8

rpc_server_listen call 2-14
rpc_server_register_auth_info

API 6-6

S
Schema

creating a new ACL 7-7
Security 6-2

client preferences 6-7
key retrieval 6-7
model 1-13
server preferences 6-6
service 1-3

Selecting communications
protocols 2-21



Index

index-6

Server
entrypoint vector 1-18
functionality 1-20
security preferences 6-6
side class definitions 1-17
stubs 1-18

Server manager objects
creating from client program

8-15
ServerCleanup member function 2-

17
_service_bound protected state

variable 8-5
SetActivationObject member

function 8-28
SetAuthInfo function 6-6
SetGroup member function 3-6
SetName member function 3-2
SetProfile member function 3-9
SetServerObject member function

3-12
Shutdown member function 2-18
Signal handling thread

creating 2-16
SIGTERM 2-16
Sleep

member function 2-8
method 2-2

sleeper_1_0_ABS
abstract class 2-6
class 2-5

sleeper_1_0_Mgr class 2-6
sleeperE.C file 2-7
Sleeper_Fac client class 8-17
Sleeper interface 8-7

definition 2-3
Sleeper_Servers group 3-7
sleeperS.H file 2-5
stat interface 8-7
Static table of permissions

passing to DCEAcl Schema
constructor 7-7

Status codes 1-12
using instead of exceptions 4-8

Storage
thread-specific 10-6

Stub
files 2-12
server 1-18

Subclass
DCECmaErr 4-2
DCEDirErr 4-2
DCERpcErr 4-2
DCESecErr 4-2

Summary
basic application

development B-2

T
theServer 1-20, 2-14
Threads 1-15

advanced programming 10-2
condition variables 10-7
creating new 5-2

Thread-specific storage 10-6
Time service 1-4
Try/catch clause 4-2

U
UnExport member function 8-2
Universally unique identifier 1-6
UnLock member function 5-3
Use of the cell directory service 3-2
UseProtocol member function 2-22
UUID 1-6

V
Virtual inheritance 2-5

W
Writing

client program 2-21, 2-26
DCEServer Program 2-12


