
Object-Oriented Design Patterns

for Network Programming in

C++

Douglas C. Schmidt

Washington University, St. Louis

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

1

Motivation for Concurrency

� Concurrent programming is increasing rele-
vant to:

{ Leverage hardware/software advances

. e.g., multi-processors and OS thread support

{ Increase performance

. e.g., overlap computation and communication

{ Improve response-time

. e.g., GUIs and network servers

{ Simplify program structure

. e.g., synchronous vs. asynchronous network IPC

2

Motivation for Distribution

� Bene�ts of distributed computing:

{ Collaboration ! connectivity and interworking

{ Performance ! multi-processing and locality

{ Reliability and availability ! replication

{ Scalability and portability ! modularity

{ Extensibility ! dynamic con�guration and recon-

�guration

{ Cost e�ectiveness ! open systems and resource

sharing

3

Challenges and Solutions

� However, developing e�cient, robust, and
extensible concurrent networking applications
is hard

{ e.g., must address complex topics that are less

problematic or not relevant for non-concurrent,

stand-alone applications

� Object-oriented (OO) techniques and OO
language features help to enhance concur-
rent software quality factors

{ Key OO techniques include design patterns and

frameworks

{ Key OO language features include classes, inheri-

tance, dynamic binding, and parameterized types

{ Key software quality factors include modularity,

extensibility, portability, reusability, and correct-

ness

4

Caveats

� OO is not a panacea

{ However, when used properly it helps minimize

\accidental" complexity and improve software qual-

ity factors

� Advanced OS features provide additional func-
tionality and performance, e.g.,

{ Multi-threading

{ Multi-processing

{ Synchronization

{ Shared memory

{ Explicit dynamic linking

{ Communication protocols and IPC mechanisms

5

Tutorial Outline

� Outline key OO networking and concurrency
concepts and OS platform mechanisms

{ Emphasis is on practical solutions

� Examine several examples in detail

1. Concurrent WWW client/server

2. OO framework for layered active objects

� Discuss general concurrent programming strate-

gies

6

Software Development

Environment

� The topics discussed here are largely inde-
pendent of OS, network, and programming
language

{ Currently used successfully on UNIX and Windows

NT platforms, running on TCP/IP and IPX/SPX

networks, using C++

� Examples are illustrated using freely avail-
able ADAPTIVE Communication Environ-
ment (ACE) OO framework components

{ Although ACE is written in C++, the principles

covered in this tutorial apply to other OO lan-

guages

. e.g., Java, Ei�el, Smalltalk, etc.

7

De�nitions

� Concurrency

{ \Logically" simultaneous processing

{ Does not imply multiple processing elements

� Parallelism

{ \Physically" simultaneous processing

{ Involves multiple processing elements and/or inde-

pendent device operations

� Distribution

{ Partition system/application into multiple compo-

nents that can reside on di�erent hosts

{ Implies message passing as primary IPC mecha-

nism

8

Stand-alone vs. Distributed

Application Architectures

PRINTER

FILE

SYSTEM

PRINTER FILE SYSTEM

COMPUTER

(1) STAND-ALONE APPLICATION ARCHITECTURE

(2) DISTRIBUTED APPLICATION ARCHITECTURE

CD ROM

CD ROM

NETWORK

CYCLE

SERVICE

PRINT

SERVICE

FI LE

SERVICE

DISPLAY

SERVICE

NAME

SERVICE

TIME

SERVICE

9

Concurrency vs. Parallelism

CONCURRENT SERVER

maxfdp1

read_fds

WORK

REQUEST

SERVER

CLIENT

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST
CLIENT

CLIENT CLIENT

SERVER

CPU1 CPU2 CPU3 CPU4

WORK

REQUEST

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST

CLIENT

CLIENT

CLIENT CLIENT

PARALLEL SERVER

10

Sources of Complexity

� Concurrent network application development

exhibits both inherent and accidental com-

plexity

� Inherent complexity results from fundamen-
tal challenges

{ Concurrent programming

* Eliminating \race conditions"

* Deadlock avoidance

* Fair scheduling

* Performance optimization and tuning

{ Distributed programming

* Addressing the impact of latency

* Fault tolerance and high availability

* Load balancing and service partitioning

* Consistent ordering of distributed events

11

Sources of Complexity (cont'd)

� Accidental complexity results from limita-
tions with tools and techniques used to de-
velop concurrent applications, e.g.,

{ Lack of portable, reentrant, type-safe and extensi-

ble system call interfaces and component libraries

{ Inadequate debugging support and lack of concur-

rent and distributed program analysis tools

{ Widespread use of algorithmic decomposition

. Fine for explaining concurrent programming con-

cepts and algorithms but inadequate for develop-

ing large-scale concurrent network applications

{ Continuous rediscovery and reinvention of core con-

cepts and components

12

OO Contributions to Concurrent

Applications

� UNIX concurrent network programming has
traditionally been performed using low-level
OS mechanisms, e.g.,

* fork/exec

* Shared memory, mmap, and SysV semaphores

* Signals

* sockets/select

* POSIX pthreads and Solaris threads

� OO design patterns and frameworks elevate
development to focus on application con-
cerns, e.g.,

{ Service functionality and policies

{ Service con�guration

{ Concurrent event demultiplexing and event han-

dler dispatching

{ Service concurrency and synchronization

13

Design Patterns

� Design patterns represent solutions to prob-
lems that arise when developing software
within a particular context

{ i.e., \Patterns == problem/solution pairs in a con-

text"

� Patterns capture the static and dynamic struc-
ture and collaboration among key partici-
pants in software designs

{ They are particularly useful for articulating how

and why to resolve non-functional forces

� Patterns facilitate reuse of successful soft-

ware architectures and designs

14

Active Object Pattern

ClientClient
InterfaceInterface

ResultHandle m1()
ResultHandle m2()
ResultHandle m3()

ActivationActivation
QueueQueue
insert()

remove()

SchedulerScheduler

dispatch()
m1'()
m2'()
m3'()

ResourceResource
RepresentationRepresentation

MethodMethod
ObjectsObjects

loop {
 m = actQueue.remove()
 dispatch (m)
}

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

nn

11

11
11

11

11

� Intent: decouples the thread of method ex-

ecution from the thread of method invoca-

tion

15

Collaboration in the Active

Object Pattern

PRODUCER TASK

ENQUEUE MSG

put(msg)

dequeue_head(msg)

RUN SVC()
 ASYNCHRONOUSLY

PASS MSG

DEQUEUE MSG

t1 :

Task

t2 :

Task

t3 :

Task

t2msg_q :

Message_Queue

enqueue_tail(msg)

put(msg)

work()CONSUMER TASK

P
R
O
D
U
C
E
R

P
H
A
S
E

Q
U
E
U
E
IN

G

P
H
A
S
E

C
O
N
S
U
M
E
R

P
H
A
S
E

PASS MSG

work()

svc()

16

Frameworks

� A framework is:

{ \An integrated collection of components that col-

laborate to produce a reusable architecture for a

family of related applications"

� Frameworks di�er from conventional class
libraries:

1. Frameworks are \semi-complete" applications

2. Frameworks address a particular application do-

main

3. Frameworks provide \inversion of control"

� Typically, applications are developed by in-

heriting from and instantiating framework

components

17

Di�erences Between Class

Libraries and Frameworks

APPLICATION

SPECIFIC

LOGIC

USER

INTERFACE

CLASS

LIBRARIES

NETWORKING

MATH ADTS

DATA

BASE

APPLICATION

SPECIFIC

LOGIC

MATH

OBJECT-ORIENTED

FRAMEWORK

ADTS

INVOKES

CALL

BACKS

NETWORKING USER

INTERFACE

DATABASE

INVOKES

EVENT

LOOP

EVENT

LOOP

18

The ADAPTIVE Communication

Environment (ACE)

THREADTHREAD

LIBRARYLIBRARY

DYNAMICDYNAMIC

LINKINGLINKING

MEMORYMEMORY

MAPPINGMAPPING

SELECTSELECT//
POLLPOLL

SYSTEMSYSTEM

VV IPCIPC
STREAMSTREAM

PIPESPIPES

NAMEDNAMED

PIPESPIPES

C
APIS

SOCKETSSOCKETS//
TLITLI

COMMUNICATIONCOMMUNICATION

SUBSYSTEMSUBSYSTEM

VIRTUAL MEMORYVIRTUAL MEMORY

SUBSYSTEMSUBSYSTEM

GENERAL POSIX AND WIN32 SERVICES

PROCESSPROCESS//THREADTHREAD

SUBSYSTEMSUBSYSTEM

SYNCHSYNCH

WRAPPERSWRAPPERS

FRAMEWORKS

AND CLASS

CATEGORIES

ACCEPTORACCEPTOR CONNECTORCONNECTOR

DISTRIBUTED

SERVICES AND

COMPONENTS

NAMENAME

SERVERSERVER

TOKENTOKEN

SERVERSERVER

LOGGINGLOGGING

SERVERSERVER

GATEWAYGATEWAY

SERVERSERVER

SOCKSOCK__SAPSAP//
TLITLI__SAPSAP

FIFOFIFO

SAPSAP

LOGLOG

MSGMSG

SERVICESERVICE

HANDLERHANDLER

TIMETIME

SERVERSERVER

OS ADAPTATION LAYER

C++
WRAPPERS

THREADTHREAD

MANAGERMANAGER

SPIPESPIPE

SAPSAP

CORBACORBA

HANDLERHANDLER

SYSVSYSV
WRAPPERSWRAPPERS

REACTORREACTOR

SHAREDSHARED

MALLOCMALLOC

ADAPTIVE SERVICE EXECUTIVE ADAPTIVE SERVICE EXECUTIVE (ASX)(ASX)

SERVICESERVICE

CONFIGCONFIG--
URATORURATOR

MEMMEM

MAPMAP

� A set of C++ wrappers, class categories,

and frameworks based on design patterns

19

Class Categories in ACE

Stream
Framework

ServiceService
ConfiguratorConfigurator

APPLICATIONSAPPLICATIONSAPPLICATIONAPPLICATION--
SPECIFICSPECIFIC

ConcurrencyConcurrency
globalglobal

InterprocessInterprocess
CommunicationCommunication

APPLICATION-
INDEPENDENT

ServiceService
InitializationInitialization

ReactorReactor

NetworkNetwork
ServicesServices

APPLICATIONSAPPLICATIONS
APPLICATIONSAPPLICATIONS

20

Class Categories in ACE (cont'd)

� Responsibilities of each class category

{ IPC encapsulates local and/or remote IPC mech-

anisms

{ Service Initialization encapsulates active/passive
connection establishment mechanisms

{ Concurrency encapsulates and extendsmulti-threading

and synchronization mechanisms

{ Reactor performs event demultiplexing and event

handler dispatching

{ Service Configurator automates con�guration

and recon�guration by encapsulating explicit dy-

namic linking mechanisms

{ Stream Frameworkmodels and implements layers

and partitions of hierarchically-integrated commu-

nication software

{ Network Services provides distributed naming,

logging, locking, and routing services

21

Concurrency Overview

� A thread of control is a single sequence of
execution steps performed in one or more
programs

{ One program ! standalone systems

{ More than one program ! distributed systems

� Traditional OS processes contain a single
thread of control

{ This simpli�es programming since a sequence of

execution steps is protected from unwanted inter-

ference by other execution sequences: : :

22

Traditional Approaches to OS

Concurrency

1. Device drivers and programs with signal han-
dlers utilize a limited form of concurrency

� e.g., asynchronous I/O

� Note that concurrency encompasses more than

multi-threading: : :

2. Many existing programs utilize OS processes
to provide \coarse-grained" concurrency

� e.g.,

{ Client/server database applications

{ Standard network daemons like UNIX inetd

� Multiple OS processes may share memory via mem-

ory mapping or shared memory and use semaphores

to coordinate execution

� The OS kernel scheduler dictates process behavior

23

Evaluating Traditional OS

Process-based Concurrency

� Advantages

{ Easy to keep processes from interfering

. A process combines security, protection, and ro-

bustness

� Disadvantages

1. Complicated to program, e.g.,

{ Signal handling may be tricky

{ Shared memory may be inconvenient

2. Ine�cient

{ The OS kernel is involved in synchronization and

process management

{ Di�cult to exert �ne-grained control over schedul-

ing and priorities

24

Modern OS Concurrency

� Modern OS platforms typically provide a
standard set of APIs that handle

1. Process/thread creation and destruction

2. Various types of process/thread synchronization

and mutual exclusion

3. Asynchronous facilities for interrupting long-running

processes/threads to report errors and control pro-

gram behavior

� Once the underlying concepts are mastered,
it's relatively easy to learn di�erent concur-
rency APIs

{ e.g., traditional UNIX process operations, Solaris

threads, POSIX pthreads, WIN32 threads, Java

threads, etc.

25

Lightweight Concurrency

� Modern OSs provide lightweight mechanisms
that manage and synchronize multiple threads
within a process

{ Some systems also allow threads to synchronize

across multiple processes

� Bene�ts of threads

1. Relatively simple and e�cient to create, control,

synchronize, and collaborate

{ Threads share many process resources by default

2. Improve performance by overlapping computation

and communication

{ Threads may also consume less resources than

processes

3. Improve program structure

{ e.g., compared with using asynchronous I/O

26

Single-threaded vs.

Multi-threaded RPC

CLIENT SERVERCLIENT

U
S
E

R

K
E

R
N

E
L

THREAD

BLOCKED

U
S
E

R

K
E

R
N

E
L

SERVICE

EXECUTES

REQUEST

RESPONSE

SERVER

CLIENT

U
S
E

R

K
E

R
N

E
L

U
S
E

R

K
E

R
N

E
L

SERVICE

EXECUTES

REQUEST

RESPONSE

SERVERU
S
E

R

K
E

R
N

E
L

SERVICE

EXECUTES

REQUEST

RESPONSE

SINGLE-
THREADED RPC

MULTI-
THREADED RPC

27

Hardware and OS Concurrency

Support

� Most modern OS platforms provide kernel

support for multi-threading

� e.g., SunOS multi-processing (MP) model

{ There are 4 primary abstractions

1. Processing elements (hardware)

2. Kernel threads (kernel)

3. Lightweight processes (user/kernel)

4. Application threads (user)

{ Sun MP thread semantics work for both uni-processors

and multi-processors: : :

28

Sun MP Model (cont'd)

THREAD

PE

PROCESSING

ELEMENT

LIGHTWEIGHT

PROCESS

LWP
UNIX

PROCESS

PE PE PE PEPE PE PE PE

SHARED MEMORY

K
E

R
N

E
L
-L

E
V

E
L

U
S

E
R

-L
E

V
E

L

LWP LWP LWPLWP LWP LWP LWP

� Application threads may be bound and/or

unbound

29

Application Threads

� Most process resources are equally accessi-
ble to all threads in a process, e.g.,

* Virtual memory

* User permissions and access control privileges

* Open �les

* Signal handlers

� Each thread also contains unique informa-
tion, e.g.,

* Identi�er

* Register set (e.g., PC and SP)

* Run-time stack

* Signal mask

* Priority

* Thread-speci�c data (e.g., errno)

� Note, there is generally no MMU protection

for separate threads within a single process: : :

30

Kernel-level vs. User-level

Threads

� Application and system characteristics inu-

ence the choice of user-level vs. kernel-level

threading

� A high degree of \virtual" application con-
currency implies user-level threads (i.e., un-
bound threads)

{ e.g., desktop windowing system on a uni-processor

� A high degree of \real" application paral-
lelism implies lightweight processes (LWPs)
(i.e., bound threads)

{ e.g., video-on-demand server or matrix multiplica-

tion on a multi-processor

31

Synchronization Mechanisms

� Threads share resources in a process ad-

dress space

� Therefore, they must use synchronization

mechanisms to coordinate their access to

shared data

� Traditional OS synchronization mechanisms

are very low-level, tedious to program, error-

prone, and non-portable

� ACE encapsulates these mechanisms with

higher-level patterns and classes

32

Common OS Synchronization

Mechanisms

1. Mutual exclusion locks

� Serialize access to a shared resource

2. Counting semaphores

� Synchronize execution

3. Readers/writer locks

� Serialize access to resources whose contents are

searched more than changed

4. Condition variables

� Used to block until shared data changes state

5. File locks

� System-wide readers/write locks access by �le-

name

33

Additional ACE Synchronization

Mechanism

1. Guards

� An exception-safe scoped locking mechanism

2. Barriers

� Allows threads to synchronize their completion

3. Token

� Provides absolute scheduling order and simpli�es

multi-threaded event loop integration

4. Task

� Provides higher-level \active object" semantics for

concurrent applications

5. Thread-speci�c storage

� Low-overhead, contention-free storage

34

Concurrency Mechanisms in ACE

AtomicAtomic
OpOp

LOCKLOCK
TYPETYPE

TSSTSS

TYPETYPE

globalglobal

ThreadThread

GuardGuard

ThreadThread
ManagerManager

MANAGERS

ProcessProcess
ManagerManager

ThreadThread
ControlControl

GUARDS

MutexMutex

ProcessProcess
MutexMutex

ThreadThread
MutexMutex

NullNull
MutexMutex

RWRW
MutexMutex

ProcessProcess
RWRW

MutexMutex

ThreadThread
RWRW

MutexMutex

SemaphoreSemaphore

ThreadThread
SemaphoreSemaphore

ProcessProcess
SemaphoreSemaphore

SYNCH WRAPPERS
ReadRead
GuardGuard

WriteWrite
GuardGuard

TaskTask

SYNCHSYNCH

ACTIVE OBJECTS

TokenToken

RecursiveRecursive
ThreadThread
MutexMutex

FileFile
LockLock

LOCKS

BarrierBarrier
ConditionCondition

MUTEXMUTEX

NullNull
ConditionCondition

CONDITIONS

35

Graphical Notation

PROCESS

THREAD

OBJECT

: CLASS

CLASS

CLASS

CATEGORY

CLASS

UTILITY

INHERITS

CONTAINS

INSTANTIATES

A

ABSTRACT

CLASS
USES

TEMPLATE

CLASS

36

Concurrent WWW Client/Server

Example

� The following example illustrates a concur-

rent OO architecture for a high-performance

WWW client/server

� Key system requirements are:

1. Robust implementation of HTTP 1.0 protocol

{ i.e., resilient to incorrect or malicious WWW

clients/servers

2. Extensible for use with other protocols

{ e.g., DICOM, HTTP 1.1, etc.

3. Leverage multi-processor hardware and OS soft-

ware

{ e.g., Support various concurrency models

37

WWW Client/Server Architecture

WWWWWW
SERVERSERVER

WWWWWW
CLIENTCLIENT

2: index.html2: index.html

1: GET1: GET
/www.cs.wustl.edu/www.cs.wustl.edu

HTTP/1.0HTTP/1.0

� www.w3.org/pub/WWW/Protocols/HTTP/

38

Multi-threaded WWW Server

Architecture

CPU1

: Message: Message
QueueQueue

1: select()1: select()
2: recv(msg)2: recv(msg)
3: enqueue(msg)3: enqueue(msg)

CPU2 CPU3 CPU4

workerworker

1: dequeue(msg)1: dequeue(msg)
2: process()2: process()

workerworker

1: dequeue(msg)1: dequeue(msg)
2: process()2: process()

workerworker

1: dequeue(msg)1: dequeue(msg)
2: process()2: process()

workerworker

1: dequeue(msg)1: dequeue(msg)
2: process()2: process()

mainmain

� Worker threads execute within one process

39

Pseudo-code for Concurrent

WWW Server

� Pseudo-code for master server

void master server (void)

f

initialize work queue and

listener endpoint at port 80

spawn pool of worker threads

foreach (pending work request from clients) f

receive and queue request on work queue

g

exit process

g

� Pseudo-code for thread pool workers

void worker (void)

f

foreach (work request on queue)

dequeue and process request

exit thread

g

40

OO Design Interlude

� Q: Why use a work queue to store mes-

sages, rather than directly reading from I/O

descriptors?

� A:

{ Separation of concerns

. Shield application from semantics of thread li-

brary (user-level vs. kernel-level threads)

{ Promotes more e�cient use of multiple CPUs via

load balancing

{ Enables transparent interpositioning

{ Makes it easier to shut down the system correctly

� Drawbacks

{ Using a message queue may lead to greater con-

text switching and synchronization overhead: : :

41

Thread Entry Point

� Each thread executes a function that serves
as the \entry point" into a separate thread
of control

{ Note algorithmic design: : :

typedef u_long COUNTER;

// Track the number of requests

COUNTER request_count; // At file scope.

// Entry point into the WWW HTTP 1.0 protocol.

void *worker (Message_Queue *msg_queue)

{

Message_Block *mb; // Message buffer.

while (msg_queue->dequeue_head (mb)) > 0) {

// Keep track of number of requests.

++request_count;

// Print diagnostic

cout << "got new request " << OS::thr_self ()

<< endl;

// Identify and perform WWW Server

// request processing here...

}

return 0;

}

42

Master Server Driver Function

� The master driver function in the WWW

Server might be structured as follows:

// Thread function prototype.

typedef void *(*THR_FUNC)(void *);

static const int NUM_THREADS = /* ... */;

int main (int argc, char *argv[]) {

parse_args (argc, argv);

Message_Queue msg_queue; // Queue client requests.

// Spawn off NUM_THREADS to run in parallel.

for (int i = 0; i < NUM_THREADS; i++)

thr_create (0, 0, THR_FUNC (&worker),

(void *) &msg_queue, THR_NEW_LWP, 0);

// Initialize network device and recv HTTP work requests.

thr_create (0, 0, THR_FUNC (&recv_requests),

(void *) &msg_queue, THR_NEW_LWP, 0);

// Wait for all threads to exit.

while (thr_join (0, &t_id, (void **) 0) == 0)

continue; // ...

}

43

Pseudo-code for recv requests()

� e.g.,

void recv requests (Message Queue *msg queue)

f

initialize socket listener endpoint at port 80

foreach (incoming request)

f

use select to wait for new connections or data

if (connection)

establish connections using accept
else if (data) f

use sockets calls to read HTTP requests

into msg
msg queue.enqueue tail (msg);

g

g

g

� The \grand mistake:"

{ Avoid the temptation to \step-wise re�ne" this

algorithmically decomposed pseudo-code directly

into the detailed design and implementation of the

WWW Server!

44

Limitations with the WWW

Server

� The algorithmic decomposition tightly cou-
ples application-speci�c functionality with
various con�guration-related characteristics,
e.g.,

{ The HTTP 1.0 protocol

{ The number of services per process

{ The time when services are con�gured into a pro-

cess

� The solution is not portable since it hard-
codes

{ SunOS 5.x threading

{ sockets and select

� There are race conditions in the code

45

Overcoming Limitations via OO

� The algorithmic decomposition illustrated
above speci�es too many low-level details

{ Furthermore, the excessive coupling complicates

reusability, extensibility, and portability: : :

� In contrast, OO focuses on decoupling application-

speci�c behavior from reusable application-

independent mechanisms

� The OO approach described below uses reusable

object-oriented framework components and

commonly recurring design patterns

46

Eliminating Race Conditions (Part

1 of 2)

� Problem

{ The concurrent server illustrated above contains

\race conditions"

. e.g., auto-increment of global variable request count
is not serialized properly

� Forces

{ Modern shared memory multi-processors use deep

caches and weakly ordered memory models

{ Access to shared data must be protected from cor-

ruption

� Solution

{ Use synchronization mechanisms

47

Basic Synchronization

Mechanisms

� One approach to solve the serialization prob-

lem is to use OS mutual exclusion mecha-

nisms explicitly, e.g.,

// SunOS 5.x, implicitly "unlocked".

mutex_t lock;

typedef u_long COUNTER;

COUNTER request_count;

void *worker (Message_Queue *msg_queue)

{

// in function scope ...

mutex_lock (&lock);

++request_count;

mutex_unlock (&lock);

// ...

}

� However, adding these mutex * calls explic-

itly is inelegant, obtrusive, error-prone, and

non-portable

48

C++ Wrappers for

Synchronization

� To address portability problems, de�ne a

C++ wrapper:

class Thread_Mutex

{

public:

Thread_Mutex (void) {

mutex_init (&lock_, USYNCH_THREAD, 0);

}

~Thread_Mutex (void) { mutex_destroy (&lock_); }

int acquire (void) { return mutex_lock (&lock_); }

int tryacquire (void) { return mutex_trylock (&lock); }

int release (void) { return mutex_unlock (&lock_); }

private:

mutex_t lock_; // SunOS 5.x serialization mechanism.

void operator= (const Thread_Mutex &);

Thread_Mutex (const Thread_Mutex &);

};

� Note, this mutual exclusion class interface

is portable to other OS platforms

49

Porting Thread Mutex to

Windows NT

� Win32 version of Thread Mutex

class Thread_Mutex

{

public:

Thread_Mutex (void) {

InitializeCriticalSection (&lock_);

}

~Thread_Mutex (void) {

DeleteCriticalSection (&lock_);

}

int acquire (void) {

EnterCriticalSection (&lock_); return 0;

}

int tryacquire (void) {

TryEnterCriticalSection (&lock_); return 0;

}

int release (void) {

LeaveCriticalSection (&lock_); return 0;

}

private:

CRITICAL_SECTION lock_; // Win32 locking mechanism.

// ...

50

Using the C++ Thread Mutex

Wrapper

� Using the C++ wrapper helps improve porta-

bility and elegance:

Thread_Mutex lock;

typedef u_long COUNTER;

COUNTER request_count;

// ...

void *worker (Message_Queue *msg_queue)

{

lock.acquire ();

++request_count;

lock.release (); // Don't forget to call!

// ...

}

� However, it does not solve the obtrusiveness

or error-proneness problems: : :

51

Automated Mutex Acquisition and

Release

� To ensure mutexes are locked and unlocked,

we'll de�ne a template class that acquires

and releases a mutex automatically

template <class LOCK>

class Guard

{

public:

Guard (LOCK &m): lock_ (m) { lock_.acquire (); }

~Guard (void) { lock_.release (); }

// ...

private:

LOCK &lock_;

}

� Guard uses the C++ idiom whereby a con-

structor acquires a resource and the destruc-

tor releases the resource

52

Using the Guard Class

� Using the Guard class helps reduce errors:

Thread_Mutex lock;

typedef u_long COUNTER;

COUNTER request_count;

void *worker (Message_Queue *msg_queue) {

// ...

{ Guard<Thread_Mutex> monitor (lock);

++request_count;

}

// ...

}

� However, using the Thread Mutex and Guard

classes is still overly obtrusive and subtle

(e.g., beware of elided braces): : :

� A more elegant solution incorporates pa-

rameterized types, overloading, and the Dec-

orator pattern

53

OO Design Interlude

� Q: Why is Guard parameterized by the type

of LOCK?

� A: there are many locking mechanisms that
bene�t from Guard functionality, e.g.,

* Non-recursive vs recursive mutexes

* Intra-process vs inter-process mutexes

* Readers/writer mutexes

* Solaris and System V semaphores

* File locks

* Null mutex

� In ACE, all synchronization classes use the

Wrapper and Adapter patterns to provide

identical interfaces that facilitate parame-

terization

54

The Wrapper Pattern

� Intent

{ \Encapsulate low-level, stand-alone functions within

type-safe, modular, and portable class interfaces"

� This pattern resolves the following forces
that arises when using native C-level OS
APIs

1. How to avoid tedious, error-prone, and non-portable

programming of low-level IPC and locking mecha-

nisms

2. How to combine multiple related, but independent,

functions into a single cohesive abstraction

55

Structure of the Wrapper Pattern

client
Wrapper

request()

1: request ()

2: specific_request()

Wrappee

specific_request()

56

Using the Wrapper Pattern for

Locking

clientclient
MutexMutex

acquire()
release()
tryacquire()

1: acquire ()

2: mutex_lock()

SolarisSolaris

mutex_lock()
mutex_unlock()
mutex_trylock()

57

The Adapter Pattern

� Intent

{ \Convert the interface of a class into another in-

terface client expects"

. Adapter lets classes work together that couldn't

otherwise because of incompatible interfaces

� This pattern resolves the following force that
arises when using conventional OS inter-
faces

1. How to provide an interface that expresses the sim-

ilarities of seeminglying di�erent OS mechanisms

(such as locking or IPC)

58

Structure of the Adapter Pattern

clientclient
AdapterAdapter

request()

1: request ()

2: specific_request()
Adaptee1Adaptee1

specific_request()Adaptee2Adaptee2

specific_request()Adaptee3Adaptee3

specific_request()

59

Using the Adapter Pattern for

Locking

clientclient
GuardGuard

GuardGuard

Guard()
~Guard()

Guard()
~Guard()

1: Guard()

2: acquire()

LOCKLOCK

MutexMutex

3: mutex_lock()

MutexMutex

acquire()

Win32Win32
EnterCritical
Section()

SolarisSolaris

mutex_lock()

POSIXPOSIX
pthread_mutex
_lock()

60

Transparently Parameterizing

Synchonization Using C++

� The following C++ template class uses the

\Decorator" pattern to de�ne a set of atomic

operations on a type parameter:

template <class LOCK = Thread_Mutex, class TYPE = u_long>

class Atomic_Op {

public:

Atomic_Op (TYPE c = 0) { count_ = c; }

TYPE operator++ (void) {

Guard<LOCK> m (lock_); return ++count_;

}

operator TYPE () {

Guard<LOCK> m (lock_);

return count_;

}

// Other arithmetic operations omitted...

private:

LOCK lock_;

TYPE count_;

};

61

Thread-safe Version of

Concurrent Server

� Using the Atomic Op class, only one change

is made to the code

#if defined (MT_SAFE)

typedef Atomic_Op<> COUNTER; // Note default parameters...

#else

typedef Atomic_Op<Null_Mutex> COUNTER;

#endif /* MT_SAFE */

COUNTER request_count;

� request count is now serialized automatically

void *worker (Message_Queue *msg_queue)

{

//...

// Calls Atomic_Op::operator++(void)

++request_count;

//...

}

62

Eliminating Race Conditions (Part

2 of 2)

� Problem

{ A naive implementation of Message Queue will

lead to race conditions

. e.g., when messages in di�erent threads are en-

queued and dequeued concurrently

� Forces

{ Producer/consumer concurrency is common, but

requires careful attention to avoid overhead, dead-

lock, and proper control

� Solution

{ Utilize a \Condition object"

63

Condition Object Overview

� Condition objects are used to \sleep/wait"
until a particular condition involving shared
data is signaled

{ Conditions may be arbitrarily complex C++ ex-

pressions

{ Sleeping is often more e�cient than busy waiting: : :

� This allows more complex scheduling deci-
sions, compared with a mutex

{ i.e., a mutex makes other threads wait, whereas a

condition object allows a thread to make itself wait

for a particular condition involving shared data

64

Condition Object Usage

� A particular idiom is associated with acquir-
ing resources via Condition objects

// Global variables

static Thread Mutex lock; // Initially unlocked.

// Initially unlocked.

static Condition<Thread Mutex> cond (lock);

void acquire resources (void) f

// Automatically acquire the lock.

Guard<Thread Mutex> monitor (lock);

// Check condition (note the use of while)

while (condition expression is not true)

// Sleep if not expression is not true.

cond.wait ();

// Atomically modify shared information here: : :

// monitor destructor automatically releases lock.

g

65

Condition Object Usage (cont'd)

� Another idiom is associated with releasing
resources via Condition objects

void release resources (void) f

// Automatically acquire the lock.

Guard<Thread Mutex> monitor (lock);

// Atomically modify shared information here: : :

cond.signal (); // Could also use cond.broadcast()

// monitor destructor automatically releases lock.

g

� Note how the use of the Guard idiom sim-
pli�es the solution

{ e.g., now we can't forget to release the lock!

66

Condition Object Interface

� In ACE, the Condition class is a wrapper for
the native OS condition variable abstraction

{ e.g., cond t on SunOS 5.x, pthread cond t for

POSIX, and a custom implementation on Win32

template <class MUTEX>

class Condition

{

public:

// Initialize the condition variable.

Condition (const MUTEX&, int=USYNC_THREAD);

// Implicitly destroy the condition variable.

~Condition (void);

// Block on condition, or until abstime has

// passed. If abstime == 0 use blocking semantics.

int wait (Time_Value *abstime = 0) const;

// Signal one waiting thread.

int signal (void) const;

// Signal *all* waiting threads.

int broadcast (void) const;

private:

cond_t cond_; // Solaris condition variable.

const MUTEX &mutex_; // Reference to mutex lock.

};

67

Overview of Message Queue and

Message Block Classes

� A Message Queue is composed of one or more
Message Blocks

{ Similar to BSD mbufs or SVR4 STREAMS m blks

{ Goal is to enable e�cient manipulation of arbitrarily-

large message payloads without incurring unneces-

sary memory copying overhead

� Message Blocks are linked together by prev

and next pointers

� A Message Block may also be linked to a

chain of other Message Blocks

68

Message Queue and

Message Block Object Diagram

: Payload

: Payload

: Payload

: Message
Queue

head_
tail_

: Message
Block

next_
prev_
cont_

: Message
Block

next_
prev_
cont_

: Message
Block

next_
prev_
cont_

: Payload

: Message
Block

SYNCH

69

The Message Block Class

� The contents of a message are represented

by a Message Block

class Message_Block

{

friend class Message_Queue;

public:

Message_Block (size_t size,

Message_Type type = MB_DATA,

Message_Block *cont = 0,

char *data = 0,

Allocator *alloc = 0);

// ...

private:

char *base_;

// Pointer to beginning of payload.

Message_Block *next_;

// Pointer to next message in the queue.

Message_Block *prev_;

// Pointer to previous message in the queue.

Message_Block *cont_;

// Pointer to next fragment in this message.

// ...

};

70

OO Design Interlude

� Q: What is the Allocator object in the Mes-

sage Block constructor?

� A: It provides extensible mechanism to con-
trol how memory is allocated and deallo-
cated

{ This makes it possible to switch memory manage-

ment policieswithoutmodifying the Message Block
class

{ By default, the policy is to use new and delete,
but it's easy to use other schemes, e.g.,

* Shared memory

* Persistent memory

* Thread-speci�c memory

{ A similar technique is also used in the C++ Stan-

dard Template Library

71

OO Design Interlude

� Here's an example of the interfaces used in
ACE

{ Note the use of the Adapter pattern to integrate

third-party memory allocators

class Allocator {

// ...

virtual void *malloc (size_t nbytes) = 0;

virtual void free (void *ptr) = 0;

};

template <class ALLOCATOR>

class Allocator_Adapter : public Allocator {

// ...

virtual void *malloc (size_t nbytes) {

return allocator_.malloc (nbytes);

}

ALLOCATOR allocator_;

};

Allocator_Adapter<Shared_Alloc> sh_malloc;

Allocator_Adapter<New_Alloc> new_malloc;

Allocator_Adapter<Persist_Alloc> p_malloc;

Allocator_Adapter<TSS_Alloc> p_malloc;

72

The Message Queue Class Public

Interface

� A Message Queue is a thread-safe queueing
facility for Message Blocks

{ The bulk of the locking is performed in the public

methods

template <class SYNCH_STRATEGY>

class Message_Queue

{

public:

// Default high and low water marks.

enum { DEFAULT_LWM = 0, DEFAULT_HWM = 4096 };

// Initialize a Message_Queue.

Message_Queue (size_t hwm = DEFAULT_HWM,

size_t lwm = DEFAULT_LWM);

// Check if full or empty (hold locks)

int is_empty (void) const;

int is_full (void) const;

// Enqueue and dequeue Message_Block *'s.

int enqueue_prio (Message_Block *&, Time_Value *);

int enqueue_tail (Message_Block *, Time_Value *);

int dequeue_head (Message_Block *&, Time_Value *);

73

The Message Queue Class

Private Interface

� The bulk of the work is performed in the

private methods

private:

// Routines that actually do the enqueueing and

// dequeueing (do not hold locks).

int enqueue_prio_i (Message_Block *, Time_Value *);

int enqueue_tail_i (Message_Block *new_item);

int dequeue_head_i (Message_Block *&first_item);

// Check the boundary conditions (do not hold locks).

int is_empty_i (void) const;

int is_full_i (void) const;

// ...

// Parameterized types for synchronization

// primitives that control concurrent access.

// Note use of C++ "traits"

SYNCH_STRATEGY::MUTEX lock_;

SYNCH_STRATEGY::CONDITION not_empty_cond_;

SYNCH_STRATEGY::CONDITION not_full_cond_;

};

74

The Message Queue Class

Implementation

� Uses ACE synchronization wrappers

template <class SYNCH_STRATEGY> int

Message_Queue<SYNCH_STRATEGY>::is_empty_i (void) const {

return cur_bytes_ <= 0 && cur_count_ <= 0;

}

template <class SYNCH_STRATEGY> int

Message_Queue<SYNCH_STRATEGY>::is_full_i (void) const {

return cur_bytes_ > high_water_mark_;

}

template <class SYNCH_STRATEGY> int

Message_Queue<SYNCH_STRATEGY>::is_empty (void) const {

Guard<SYNCH_STRATEGY::MUTEX> m (lock_);

return is_empty_i ();

}

template <class SYNCH_STRATEGY> int

Message_Queue<SYNCH_STRATEGY>::is_full (void) const {

Guard<SYNCH_STRATEGY::MUTEX> m (lock_);

return is_full_i ();

}

75

OO Design Interlude

� Q: How should locking be performed in an

OO class?

� A: In general, the following general pattern
is useful:

{ \Public functions should lock, private functions

should not lock"

. This also helps to avoid inter-class method deadlock: : :

{ This is actually a variant on a common OO pat-

tern that \public functions should check, private

functions should trust"

{ Naturally, there are exceptions to this rule: : :

76

// Queue new item at the end of the list.

template <class SYNCH_STRATEGY> int

Message_Queue<SYNCH_STRATEGY>::enqueue_tail

(Message_Block *new_item, Time_Value *tv)

{

Guard<SYNCH_STRATEGY::MUTEX> monitor (lock_);

// Wait while the queue is full.

while (is_full_i ())

{

// Release the lock_ and wait for timeout, signal,

// or space becoming available in the list.

if (not_full_cond_.wait (tv) == -1)

return -1;

}

// Actually enqueue the message at the end of the list.

enqueue_tail_i (new_item);

// Tell blocked threads that list has a new item!

not_empty_cond_.signal ();

}

77

// Dequeue the front item on the list and return it

// to the caller.

template <class SYNCH_STRATEGY> int

Message_Queue<SYNCH_STRATEGY>::dequeue_head

(Message_Block *&first_item, Time_Value *tv)

{

Guard<SYNCH_STRATEGY::MUTEX> monitor (lock_);

// Wait while the queue is empty.

while (is_empty_i ())

{

// Release the lock_ and wait for timeout, signal,

// or a new message being placed in the list.

if (not_empty_cond_.wait (tv) == -1)

return -1;

}

// Actually dequeue the first message.

dequeue_head_i (first_item);

// Tell blocked threads that list is no longer full.

not_full_cond_.signal ();

}

78

Overcoming Algorithmic

Decomposition Limitations

� The previous slides illustrate low-level OO
techniques, idioms, and patterns that:

1. Reduce accidental complexity e.g.,

{ Automate synchronization acquisition and release

(C++ constructor/destructor idiom)

{ Improve consistency of synchronization interface

(Adapter and Wrapper patterns)

2. Eliminate race conditions

� The next slides describe higher-level ACE
framework components and patterns that:

1. Increase reuse and extensibility e.g.,

{ Decoupling solution from particular service, IPC

and demultiplexing mechanisms

2. Improve the exibility of concurrency control

79

A Concurrent OO WWW Server

� The following example illustrates an OO so-
lution to the concurrent WWW Server

{ The active objects are based on the ACE Task
class

� There are several ways to structure concur-
rency in an WWW Server

1. Single-threaded

2. Thread-per-request

3. Thread-per-session

4. Thread-pool

80

Single-threaded WWW Server

Architecture

: Reactor: Reactor

WWW SERVER

: HTTP
Processor

: HTTP
Acceptor

SERVER

CLIENT

CLIENT
CLIENT

1: CONNECT

2: HANDLE INPUT

3: CREATE PROCESSOR

4: ACCEPT CONNECTION

5: ACTIVATE PROCESSOR

6: PROCESS HTTP REQUEST

: HTTP
Processor

81

Thread-per-Request WWW

Server Architecture

SERVER

CLIENT

CLIENT
CLIENT

: Reactor: Reactor

WWWWWW SERVER SERVER

: HTTP
Acceptor

1: CONNECT

2: HANDLE INPUT

3: CREATE PROCESSOR

4: ACCEPT CONNECTION

5: SPAWN THREAD

: HTTP
Processor

: HTTP
Processor

: HTTP
Processor

6: PROCESS HTTP REQUEST

82

Thread-per-Session WWW Server

Architecture

SERVERSERVER
CLIENTCLIENT

CLIENTCLIENT

2:2: CREATE CREATE,, ACCEPT ACCEPT,,
 AND ACTIVATE AND ACTIVATE

 HTTP HTTP__PROCESSORPROCESSOR

WWWWWW SERVER SERVER

1:1: BIND BIND

CLIENTCLIENT

: HTTP: HTTP
ProcessorProcessor

: HTTP: HTTP
ProcessorProcessor

: HTTP: HTTP
ProcessorProcessor

4:4: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

3:3: SPAWN THREAD SPAWN THREAD

: Reactor: Reactor

: HTTP: HTTP
AcceptorAcceptor

83

Thread-Pool WWW Server

Architecture

: Reactor: Reactor

WWWWWW SERVER

1: HTTP

REQUEST

2:2: HANDLE INPUT HANDLE INPUT

3:3: ENQUEUE REQUEST ENQUEUE REQUEST

: HTTP: HTTP
HandlerHandler

6:6: PROCESS HTTP REQUEST PROCESS HTTP REQUEST

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

: HTTP: HTTP
HandlerHandler

: HTTP: HTTP
HandlerHandler

5:5: DEQUEUE DEQUEUE &&
PROCESSPROCESS

REQUESTREQUEST

workerworker
threadthread

workerworker
threadthread

workerworker
threadthread

workerworker
threadthread

: HTTP: HTTP
ProcessorProcessor

: HTTP: HTTP
AcceptorAcceptor

: Msg: Msg
QueueQueue

84

Design Patterns in the WWW

Client/Server

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

StrategyStrategy AdapterAdapterProxyProxy
TACTICAL

PATTERNS

STRATEGIC

PATTERNS
Double CheckedDouble Checked

LockingLocking

ConnectorConnector

SingletonSingleton

AcceptorAcceptor

ServiceService
ConfiguratorConfigurator

ReactorReactor

Thread-perThread-per
RequestRequest

Thread-perThread-per
SessionSession

ThreadThread
PoolPool

Active ObjectActive Object

85

Architecture of the WWW Server

: Reactor: Reactor

WWWWWW SERVER SERVER

: HTTP: HTTP
HandlerHandler

svc_runsvc_runsvc_runsvc_run

: HTTP: HTTP
HandlerHandler

: HTTP: HTTP
HandlerHandler

: HTTP: HTTP
AcceptorAcceptor

: Options: Options

svc_runsvc_run
svc_runsvc_run

: HTTP: HTTP
ProcessorProcessor

: Msg: Msg
QueueQueue

86

The Reactor Pattern

� Intent

{ \Decouples event demultiplexing and event han-

dler dispatching from the services performed in re-

sponse to events"

� This pattern resolves the following forces
for event-driven software:

{ How to demultiplex multiple types of events from

multiple sources of events e�ciently within a single

thread of control

{ How to extend application behavior without requir-

ing changes to the event dispatching framework

87

Structure of the Reactor Pattern

ReactorReactor
handle_events()
register_handler(h)
remove_handler(h)
expire_timers()

11

11

11

Event_HandlerEvent_Handler

handle_input()
handle_output()
handle_signal()
handle_timeout()
get_handle()

A

11

nn

nn

ConcreteConcrete
Event_HandlerEvent_Handler

Timer_QueueTimer_Queue

schedule_timer(h)
cancel_timer(h)
expire_timer(h)

11

11

select (handles);select (handles);
foreach h in handles {foreach h in handles {
 if (h is output handler) if (h is output handler)
 table[h]->handle_output () ; table[h]->handle_output () ;
 if (h is input handler) if (h is input handler)
 table[h]->handle_input (); table[h]->handle_input ();
 if (h is signal handler) if (h is signal handler)
 table[h]->handle_signal (); table[h]->handle_signal ();
}}
this->expire_timers ();this->expire_timers ();

nn
HandlesHandles

11

APPLICATION

APPLICATION--

DEPENDENT

DEPENDENT
APPLICATION-

INDEPENDENT
n

� Participants in the Reactor pattern

88

Collaboration in the Reactor

Pattern

mainmain
programprogram

INITIALIZEINITIALIZE

REGISTER HANDLERREGISTER HANDLER

callback :callback :
ConcreteConcrete

Event_HandlerEvent_Handler

START EVENT LOOPSTART EVENT LOOP

DATA ARRIVESDATA ARRIVES

OK TO SENDOK TO SEND

reactorreactor
: Reactor: Reactor

handle_events()

FOREACH EVENT DOFOREACH EVENT DO

handle_input()

select()

Reactor()

register_handler(callback)

handle_output()

SIGNAL ARRIVESSIGNAL ARRIVES

TIMER EXPIRESTIMER EXPIRES

handle_signal()

handle_timeout()

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

REMOVE HANDLERREMOVE HANDLER
remove_handler(callback)

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

M
O

D
E

M
O

D
E

E
V

E
N

T

H
A

N
D

L
IN

G
E

V
E

N
T

H

A
N

D
L

IN
G

M
O

D
E

M
O

D
E

handle_close()
CLEANUPCLEANUP

89

Using the Reactor in the WWW

Server

:: Reactor Reactor

REGISTEREDREGISTERED

OBJECTSOBJECTS

: Handle: Handle
TableTable

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

OS EVENT DEMULTIPLEXING INTERFACEOS EVENT DEMULTIPLEXING INTERFACE

1: handle_input()1: handle_input()

svc_runsvc_run
svc_runsvc_run

svc_runsvc_run

: HTTP: HTTP
ProcessorProcessor

: Message: Message

QueueQueue

4: getq(msg)4: getq(msg)
5:svc(msg)5:svc(msg)

: Event: Event
HandlerHandler

: HTTP
Handler

: Event
Handler

: HTTP
Handler

: Event
Handler

: HTTP
Handler

2: recv_request(msg)
3: putq(msg)

90

The HTTP Handler Public

Interface

� The HTTP Handler is the Proxy for commu-
nicating with clients (e.g., WWW browsers
like Netscape or IE)

{ Together with Reactor, it implements the asyn-

chronous portion of Half-Sync/Half-Async pattern

// Reusable base class.

template <class PEER_ACCEPTOR>

class HTTP_Handler :

public Svc_Handler<PEER_ACCEPTOR::PEER_STREAM,

NULL_SYNCH> {

public:

// Entry point into HTTP_Handler, called by

// HTTP_Acceptor.

virtual int open (void *) {

// Register with Reactor to handle client input.

Service_Config::reactor ()->register_handler

(this, READ_MASK);

// Register timeout in case client doesn't

// send any HTTP requests.

Service_Config::reactor ()->schedule_timer

(this, 0, Time_Value (HTTP_CLIENT_TIMEOUT));

}

91

The HTTP Handler Protected

Interface

� The following methods are invoked by call-

backs from the Reactor

protected:

// Reactor notifies when client's timeout.

virtual int handle_timeout (const Time_Value &,

const void *)

{

// Remove from the Reactor.

Service_Config::reactor ()->remove_handler

(this, READ_MASK);

}

// Reactor notifies when client HTTP requests arrive.

virtual int handle_input (HANDLE);

// Receive/frame client HTTP requests (e.g., GET).

int recv_request (Message_Block &*);

};

92

The Active Object Pattern

� Intent

{ \Decouples method execution from method invo-

cation and simpli�es synchronized access to shared

resources by concurrent threads"

� This pattern resolves the following forces
for concurrent communication software:

{ How to allow blocking operations (such as read

and write) to execute concurrently

{ How to serialize concurrent access to shared object

state

{ How to simplify composition of independent ser-

vices

93

Structure of the Active Object

Pattern

ClientClient
InterfaceInterface

ResultHandle m1()
ResultHandle m2()
ResultHandle m3()

ActivationActivation
QueueQueue
insert()

remove()

SchedulerScheduler

dispatch()
m1'()
m2'()
m3'()

ResourceResource
RepresentationRepresentation

MethodMethod
ObjectsObjects

loop {
 m = actQueue.remove()
 dispatch (m)
}

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

nn

11

11
11

11

11

� Intent: decouples the thread of method ex-

ecution from the thread of method invoca-

tion

94

Using the Active Object Pattern

in the WWW Server

:: Reactor Reactor

: Handle: Handle
TableTable

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

1: handle_input()1: handle_input()

REGISTEREDREGISTERED

OBJECTSOBJECTS

: Event: Event
HandlerHandler

: HTTP: HTTP
HandlerHandler

svc_runsvc_run svc_runsvc_run

svc_runsvc_run

4: getq(msg)4: getq(msg)
5:svc(msg)5:svc(msg)

: Event: Event
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Event: Event
HandlerHandler

: HTTP: HTTP
HandlerHandler

2: recv_request(msg)2: recv_request(msg)
3: putq(msg)3: putq(msg)

: HTTP: HTTP
ProcessorProcessor

: Message: Message

QueueQueue

OS EVENT DEMULTIPLEXING INTERFACEOS EVENT DEMULTIPLEXING INTERFACE

95

Implementing the Active Object

Pattern in ACE

EventEvent
HandlerHandler

handle_input()
handle_output()
handle_exception()
handle_signal()
handle_timeout ()
handle_close()
get_handle()=0

A

SharedShared
ObjectObject

init()=0
fini ()=0
info()=0

A

ServiceService

ServiceService
ObjectObject

A

A
P
P
L
IC
A
T
IO
N
-

SP
E
C
IF
IC A

P
P
L
IC
A
T
IO
N
-

IN
D
E
P
E
N
D
E
N
T

TaskTask

A

SYNCHSYNCH

MessageMessage
QueueQueue

SYNCHSYNCH

SYNCHSYNCH

suspend()=0
resume()=0

open()=0
close()=0
put()=0
svc()=0

96

Collaboration in ACE Active

Objects

ACTIVEACTIVE

:: MessageMessage
QueueQueue

tt22 : Task : Task

2: enqueue (msg)2: enqueue (msg)

1: put (msg)1: put (msg)

ACTIVEACTIVE

:: MessageMessage
QueueQueue

tt11 : Task : Task

ACTIVEACTIVE

:: MessageMessage
QueueQueue

tt33 : Task : Task

6: put (msg)6: put (msg)

3: svc ()3: svc ()
4: dequeue (msg)4: dequeue (msg)
5: do_work(msg)5: do_work(msg)

97

ACE Task Class Public Interface

� C++ interface for message processing

* Tasks can register with a Reactor

* They can be dynamically linked

* They can queue data

* They can run as \active objects"

template <class SYNCH>

class Task : public Service_Object

{

public:

Task (Thread_Manager * = 0, Message_Queue<SYNCH> * = 0);

// Initialization/termination routines.

virtual int open (void *args = 0) = 0;

virtual int close (u_long flags = 0) = 0;

// Transfer msg to queue for immediate processing.

virtual int put (Message_Block *, Time_Value * = 0) = 0;

// Run by a daemon thread for deferred processing.

virtual int svc (void) = 0;

// Turn the task into an active object.

int activate (long flags, int n_threads = 1);

98

Task Class Public Interface

(cont'd)

� The following methods are mostly used within

the put and svc hooks

// Accessors to internal queue.

Message_Queue<SYNCH> *msg_queue (void);

void msg_queue (Message_Queue<SYNCH> *);

// Accessors to thread manager.

Thread_Manager *thr_mgr (void);

void thr_mgr (Thread_Manager *);

// Insert message into the message list.

int putq (Message_Block *, Time_Value *tv = 0);

// Extract the first message from the list (blocking).

int getq (Message_Block *&mb, Time_Value *tv = 0);

// Hook into the underlying thread library.

static void *svc_run (Task<SYNCH> *);

99

OO Design Interlude

� Q: What is the svc run() function and why

is it a static method?

� A: OS thread spawn APIs require a C-style

function as the entry point into a thread

� The Stream class category encapsulates the

svc run function within the Task::activate

method:

template <class SYNCH> int

Task<SYNCH>::activate (long flags, int n_threads)

{

if (thr_mgr () == NULL)

thr_mgr (Service_Config::thr_mgr ());

thr_mgr ()->spawn_n

(n_threads, &Task<SYNCH>::svc_run,

(void *) this, flags);

}

100

OO Design Interlude (cont'd)

� Task::svc run is static method used as the

entry point to execute an instance of a ser-

vice concurrently in its own thread

template <class SYNCH> void *

Task<SYNCH>::svc_run (Task<SYNCH> *t)

{

Thread_Control tc (t->thr_mgr ()); // Record thread ID.

// Run service handler and record return value.

void *status = (void *) t->svc ();

tc.status (status);

t->close (u_long (status));

// Status becomes `return' value of thread...

return status;

// Thread removed from thr_mgr() automatically

// on return...

}

101

OO Design Interlude

� Q: \How can groups of collaborating threads

be managed atomically?"

� A: Develop a \thread manager" class

{ Thread Manager is a collection class

. It provides mechanisms for suspending and re-

suming groups of threads atomically

. It implements barrier synchronization on thread

exits

{ Thread Manager also shields applications from in-

compabitilities between di�erent OS thread libraries

. It is integrated into ACE via the Task::activate
method

102

The HTTP Processor Class

� Processes HTTP requests using the \Thread-

Pool" concurrency model to implement the

synchronous task portion of the Half-Sync/Half-

Async pattern

class HTTP_Processor : Task<MT_SYNCH> {

public:

// Singleton access point.

static HTTP_Processor *instance (void);

// Pass a request to the thread pool.

virtual put (Message_Block *, Time_Value *);

// Entry point into a pool thread.

virtual int svc (int)

{

Message_Block *mb = 0; // Message buffer.

// Wait for messages to arrive.

for (;;)

{

getq (mb); // Inherited from class Task;

// Identify and perform HTTP Server

// request processing here...

103

Using the Singleton

� The HTTP Processor is implemented as a Sin-

gleton that is created \on demand"

// Singleton access point.

HTTP_Processor *

HTTP_Processor::instance (void)

{

// Beware of race conditions!

if (instance_ == 0) {

instance_ = new HTTP_Processor;

}

return instance_;

}

// Constructor creates the thread pool.

HTTP_Processor::HTTP_Processor (void)

{

// Inherited from class Task.

activate (THR_NEW_LWP, num_threads);

}

104

The Double-Checked Locking

Optimization Pattern

� Intent

{ \Ensures atomic initialization of objects and elim-

inates unnecessary locking overhead on each ac-

cess"

� This pattern resolves the following forces:

1. Ensures atomic initialization or access to objects,

regardless of thread scheduling order

2. Keeps locking overhead to a minimum

{ e.g., only lock on �rst access

� Note, this pattern assumes atomic memory

access: : :

105

Using the Double-Checked

Locking Optimization Pattern for

the WWW Server

HTTPHTTP
ProcessorProcessor

static instance()static instance()
static instance_static instance_

if (instance_ == NULL) {if (instance_ == NULL) {
 mutex_.acquire (); mutex_.acquire ();
 if (instance_ == NULL) if (instance_ == NULL)
 instance_ = new HTTP_Processor; instance_ = new HTTP_Processor;
 mutex_.release (); mutex_.release ();
}}
return instance_;return instance_;

MutexMutex

106

Half-Sync/Half-Async Pattern

� Intent

{ \An architectural pattern that decouples synchronous

I/O from asynchronous I/O in a system to simplify

programming e�ort without degrading execution

e�ciency"

� This pattern resolves the following forces
for concurrent communication systems:

{ How to simplify programming for higher-level com-

munication tasks

. These are performed synchronously (via Active

Objects)

{ How to ensure e�cient lower-level I/O communi-

cation tasks

. These are performed asynchronously (via the Re-

actor)

107

Structure of the

Half-Sync/Half-Async Pattern

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
A

Y
E

R
L

A
Y

E
R

A
S

Y
N

C
H

R
O

N
O

U
S

A
S

Y
N

C
H

R
O

N
O

U
S

T

A
S

K

L
A

Y
E

R

T
A

S
K

L

A
Y

E
R

S
Y

N
C

H
R

O
N

O
U

S
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

L

A
Y

E
R

 T
A

S
K

L

A
Y

E
R SSYNCYNC

TASK TASK 11

SSYNCYNC

TASK TASK 33

SSYNCYNC

TASK TASK 22

1, 4: read(data)1, 4: read(data)

3: enqueue(data)3: enqueue(data)

2: interrupt2: interrupt

ASYNCASYNC

TASKTASK

EXTERNALEXTERNAL

EVENT SOURCESEVENT SOURCES

MESSAGE QUEUESMESSAGE QUEUES

108

Collaboration in the

Half-Sync/Half-Async Pattern

EXTERNAL EVENTEXTERNAL EVENT

PROCESS MSGPROCESS MSG

read(msg)

EXECUTE TASKEXECUTE TASK

ENQUEUE MSGENQUEUE MSG

ExternalExternal
Event SourceEvent Source

AsyncAsync
TaskTask

SyncSync
TaskTask

MessageMessage
QueueQueue

work()

DEQUEUE MSGDEQUEUE MSG

A
S
Y

N
C

A
S
Y

N
C

P
H

A
S

E
P

H
A

S
E

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

P
H

A
S

E
P

H
A

S
E

S
Y

N
C

S
Y

N
C

P
H

A
S

E
P

H
A

S
E

RECV MSGRECV MSG

notification()

read(msg)

work()

enqueue(msg)

� This illustrates input processing (output pro-

cessing is similar)

109

Using the Half-Sync/Half-Async

Pattern in the WWW Server

A
S

Y
N

C

T

A
S

K

L
E

V
E

L

S
Y

N
C

H

T

A
S

K

L
E

V
E

L

1: handle_input() : Reactor

Q
U

E
U

E
IN

G

L
E

V
E

L

svc_run svc_run svc_runsvc_run

: HTTP: HTTP
ProcessorProcessor

: Message: Message
QueueQueue

4: getq(msg)4: getq(msg)
5:svc(msg)5:svc(msg)

: HTTP: HTTP
HandlerHandler

: Event: Event
HandlerHandler

: Event: Event
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Event: Event
HandlerHandler

: HTTP: HTTP
HandlerHandler

2: recv_request(msg)
3: putq(msg)

110

Joining Async and Sync Tasks in

the WWW Server

� The following methods form the boundary

between the Async and Sync layers

template <class PEER_ACCEPTOR> int

HTTP_Handler<PEER_ACCEPTOR>::handle_input (HANDLE h)

{

Message_Block *mb = 0;

// Try to receive and frame message.

if (recv_request (mb) == HTTP_REQUEST_COMPLETE) {

Service_Config::reactor ()->remove_handler

(this, READ_MASK);

Service_Config::reactor ()->cancel_timer (this);

// Insert message into the Queue.

HTTP_Processor<PA>::instance ()->put (mb);

}

}

HTTP_Processor::put (Message_Block *msg,

Time_Value *timeout) {

// Insert the message on the Message_Queue

// (inherited from class Task).

putq (msg, timeout);

}

111

The Acceptor Pattern

� Intent

{ \Decouple the passive initialization of a service

from the tasks performed once the service is ini-

tialized"

� This pattern resolves the following forces
for network servers using interfaces like sock-
ets or TLI:

1. How to reuse passive connection establishment code

for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to enable exible policies for creation, con-

nection establishment, and concurrency

4. How to ensure that a passive-mode descriptor is

not accidentally used to read or write data

112

Structure of the Acceptor Pattern

ReactorReactor11

AcceptorAcceptor

SVC_HANDLERSVC_HANDLER

PEER_ACCEPTORPEER_ACCEPTOR

ConcreteConcrete
AcceptorAcceptor

Concrete_Svc_HandlerConcrete_Svc_Handler

SOCK_AcceptorSOCK_Acceptor11
ConcreteConcrete

Svc HandlerSvc Handler

SOCK_StreamSOCK_Stream

open()

nn

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

INITS

SvcSvc
HandlerHandler

PEER_STREAMPEER_STREAM

open()

AA

sh = make_svc_handler();sh = make_svc_handler();

accept_svc_handler (sh);accept_svc_handler (sh);

activate_svc_handler (sh);activate_svc_handler (sh);

nn

EventEvent
HandlerHandler

handle_input()

AA

make_svc_handler()
accept_svc_handler()
activate_svc_handler()
open()
handle_input()

113

Collaboration in the Acceptor

Pattern

ServerServer

REGISTER HANDLERREGISTER HANDLER

START EVENT LOOPSTART EVENT LOOP

CONNECTION EVENTCONNECTION EVENT

REGISTER HANDLERREGISTER HANDLER

FOR CLIENT FOR CLIENT I/OI/O

FOREACH EVENT DOFOREACH EVENT DO

EXTRACT HANDLEEXTRACT HANDLE

INITIALIZE PASSIVEINITIALIZE PASSIVE

ENDPOINTENDPOINT

acc :acc :
AcceptorAcceptor

handle_input()

handle_close()

reactor :reactor :
ReactorReactor

select()

sh:sh:
Svc_HandlerSvc_Handler

handle_input()

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

DATA EVENTDATA EVENT

CLIENT SHUTDOWNCLIENT SHUTDOWN

svc()
PROCESS MSGPROCESS MSG

open()

CREATECREATE,, ACCEPT ACCEPT,,
AND ACTIVATE OBJECTAND ACTIVATE OBJECT

SERVER SHUTDOWNSERVER SHUTDOWN
handle_close()

E
N

D
P

O
IN

T

IN
IT

IA
L

IZ
A

T
IO

N

 P
H

A
S

E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N

P
H

A
S

E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G

P
H

A
S

E

peer_acceptor_peer_acceptor_
: SOCK: SOCK
AcceptorAcceptor

handle_events()

get_handle()

register_handler(acc)

sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

open()

register_handler(sh)

� Acceptor factory creates, connects, and ac-

tivates a Svc Handler

114

Using the Acceptor Pattern in the

WWW Server

PASSIVE LISTENERPASSIVE LISTENER

ACTIVEACTIVE

CONNECTIONSCONNECTIONS

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Acceptor: Acceptor

:: Reactor Reactor

: HTTP: HTTP
AcceptorAcceptor

1: handle_input()1: handle_input()
2: sh = make_svc_handler()2: sh = make_svc_handler()
3: accept_svc_handler(sh)3: accept_svc_handler(sh)
4: activate_svc_handler(sh)4: activate_svc_handler(sh)

115

The HTTP Acceptor Class

Interface

� The HTTP Acceptor class implements the Ac-
ceptor pattern

{ i.e., it accepts connections and initializes HTTP Handlers

template <class PEER_ACCEPTOR>

class HTTP_Acceptor : public

// This is a ``trait.''

Acceptor<HTTP_Handler<PEER_ACCEPTOR::PEER_STREAM>,

PEER_ACCEPTOR>

{

public:

// Called when HTTP_Acceptor is dynamically linked.

virtual int init (int argc, char *argv[]);

// Called when HTTP_Acceptor is dynamically unlinked.

virtual int fini (void);

// ...

};

116

The HTTP Acceptor Class

Implementation

// Initialize service when dynamically linked.

template <class PA> int

HTTP_Acceptor<PA>::init (int argc, char *argv[])

{

Options::instance ()->parse_args (argc, argv);

// Initialize the communication endpoint.

peer_acceptor ().open

(PA::PEER_ADDR (Options::instance ()->port ()));

// Register to accept connections.

Service_Config::reactor ()->register_handler

(this, READ_MASK);

}

// Terminate service when dynamically unlinked.

template <class PA> int

HTTP_Acceptor<PA>::fini (void)

{

// Shutdown threads in the pool.

HTTP_Processor<PA>::instance ()->

msg_queue ()->deactivate ();

// Wait for all threads to exit.

HTTP_Processor<PA>::instance ()->thr_mgr ()->wait ();

}

117

The Service Con�gurator Pattern

� Intent

{ \Decouples the behavior of network services from

the point in time at which these services are con-

�gured into an application"

� This pattern resolves the following forces
for network daemons:

{ How to defer the selection of a particular type, or

a particular implementation, of a service until very

late in the design cycle

. i.e., at installation-time or run-time

{ How to build complete applications by composing

multiple independently developed services

{ How to recon�gure and control the behavior of the

service at run-time

118

Structure of the Service

Con�gurator Pattern

ReactorReactor11nn

EventEvent
HandlerHandler

ConcreteConcrete
Service ObjectService Object

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
F

IG
U

R
A

T
IO

N
C

O
N

F
IG

U
R

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

11

11

ServiceService
ConfigConfig

nn

ServiceService
ObjectObject

A

suspend()suspend()
resume()resume()
init()init()
fini()fini()
info()info()

11
ServiceService

RepositoryRepository

11

119

Collaboration in the Service

Con�gurator Pattern

: Service: Service
ConfigConfig

main()main()

REGISTER SERVICEREGISTER SERVICE

START EVENT LOOPSTART EVENT LOOP

INCOMING EVENTINCOMING EVENT

FOREACH EVENT DOFOREACH EVENT DO

STORE IN REPOSITORYSTORE IN REPOSITORY

CONFIGURECONFIGURE

FOREACH SVC ENTRY DOFOREACH SVC ENTRY DO

svc :svc :
Service_ObjectService_Object

: Reactor: Reactor

run_event_loop()

handle_events()

handle_input()

Service_Config()

: Service: Service
RepositoryRepository

insert()
EXTRACT HANDLEEXTRACT HANDLE

INITIALIZE SERVICEINITIALIZE SERVICE
init(argc, argv)

fini()

DYNAMICALLY LINKDYNAMICALLY LINK
SERVICESERVICE

link_service()

unlink_service()

SHUTDOWN EVENTSHUTDOWN EVENT handle_close()

UNLINK SERVICEUNLINK SERVICE
remove()

register_handler(svc)

get_handle()

remove_handler(svc)

C
O

N
F

IG
U

R
A

T
IO

N
C

O
N

F
IG

U
R

A
T

IO
N

M
O

D
E

M
O

D
E

E
V

E
N

T

H
A

N
D

L
IN

G

M
O

D
E

process_directives()

CLOSE SERVICECLOSE SERVICE

120

Using the Service Con�gurator

Pattern in the WWW Server

: Service: Service
ConfigConfig

SERVICE

CONFIGURATOR

RUNTIME

: Service
Repository

: Reactor

: Service
Object

: TP
WWW Server

: Service
Object

: TPR
WWW Server

SHARED

OBJECTS

: Service
Object

: Reactive
WWW Server

� Existing service is based on Half-Sync/Half-

Async \`Thread pool"' pattern

� Other versions could be single-threaded, could

use other concurrency strategies, and other

protocols

121

Service Con�gurator

Implementation in C++

� The concurrent WWW Server is con�gured

and initialized via a con�guration script

% cat ./svc.conf

dynamic TP_WWW_Server Service_Object *

www_server.dll:make_TP_WWW_Server()

"-p $PORT -t $THREADS"

� Factory function that dynamically allocates

a Half-Sync/Half-Async WWW Server ob-

ject

extern "C" Service_Object *make_TP_WWW_Server (void);

Service_Object *make_TP_WWW_Server (void)

{

return new HTTP_Acceptor<SOCK_Acceptor>;

// ACE dynamically unlinks and deallocates this object.

}

122

Parameterizing IPC Mechanisms

with C++ Templates

� To switch between a socket-based service

and a TLI-based service, simply instantiate

with a di�erent C++ wrapper

// Determine the communication mechanisms.

#if defined (USE_SOCKETS)

typedef SOCK_Acceptor PEER_ACCEPTOR;

#elif defined (USE_TLI)

typedef TLI_Acceptor PEER_ACCEPTOR;

#endif

Service_Object *make_TP_WWW_Server (void)

{

return new HTTP_Acceptor<PEER_ACCEPTOR>;

}

123

Main Program for WWW Server

� Dynamically con�gure and execute the WWW
Server

{ Note that this is totally generic!

int main (int argc, char *argv[])

{

Service_Config daemon;

// Initialize the daemon and dynamically

// configure the service.

daemon.open (argc, argv);

// Loop forever, running services and handling

// reconfigurations.

daemon.run_reactor_event_loop ();

/* NOTREACHED */

}

124

The Connector Pattern

� Intent

{ \Decouple the active initialization of a service from

the task performed once a service is initialized"

� This pattern resolves the following forces
for network clients that use interfaces like
sockets or TLI:

1. How to reuse active connection establishment code

for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to enable exible policies for creation, con-

nection establishment, and concurrency

4. How to e�ciently establish connections with large

number of peers or over a long delay path

125

Structure of the Connector

Pattern

ReactorReactor11nn

EventEvent
HandlerHandler

ConnectorConnector
connect_svc_handler()
activate_svc_handler()
handle_output()
connect(sh, addr)

SVC_HANDLERSVC_HANDLER

PEER_CONNECTORPEER_CONNECTOR

ConcreteConcrete
ConnectorConnector

Concrete_Svc_HandlerConcrete_Svc_Handler

SOCK_ConnectorSOCK_Connector11

ConcreteConcrete
Svc HandlerSvc Handler

SOCK_StreamSOCK_Stream

open()

nn

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

handle_output()

AA

connect_svc_handlerconnect_svc_handler

 (sh, addr); (sh, addr);1:1:

Svc HandlerSvc Handler

PEER_STREAMPEER_STREAM

open() AA

INITS

activate_svc_handler

 (sh);2:

n

126

Collaboration in the Connector

Pattern

ClientClient

FOREACH CONNECTIONFOREACH CONNECTION

 INITIATE CONNECTION INITIATE CONNECTION

 SYNC CONNECT SYNC CONNECT

INSERT IN REACTORINSERT IN REACTOR

con :con :
ConnectorConnector

handle_input()

reactor :reactor :
ReactorReactor

register_handler(sh)

get_handle()EXTRACT HANDLEEXTRACT HANDLE

DATA ARRIVESDATA ARRIVES

svc()PROCESS DATAPROCESS DATA

connect(sh, addr)

connect()

ACTIVATE OBJECTACTIVATE OBJECT

peer_stream_peer_stream_
: SOCK: SOCK

ConnectorConnector

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

activate_svc_handler(sh)

connect_svc_handler(sh, addr)

C
O

N
N

E
C

T
IO

N
 I

N
IT

IA
T

IO
N

/
S

E
V

IC
E

 I
N

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E

START EVENT LOOPSTART EVENT LOOP

FOREACH EVENT DOFOREACH EVENT DO

handle_events()

select()

open()

sh:sh:
Svc_HandlerSvc_Handler

� Synchronous mode

127

Collaboration in the Connector

Pattern

ClientClient

FOREACH CONNECTIONFOREACH CONNECTION

 INITIATE CONNECTION INITIATE CONNECTION

 ASYNC CONNECT ASYNC CONNECT

 INSERT IN REACTOR INSERT IN REACTOR

START EVENT LOOPSTART EVENT LOOP

FOREACH EVENT DOFOREACH EVENT DO

handle_events()

select()

CONNECTION COMPLETECONNECTION COMPLETE

INSERT IN REACTORINSERT IN REACTOR

con :con :
ConnectorConnector

handle_input()

reactor :reactor :
ReactorReactor

sh:sh:
Svc_HandlerSvc_Handler

handle_output()

register_handler(sh)

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

DATA ARRIVESDATA ARRIVES

svc()PROCESS DATAPROCESS DATA

connect(sh, addr)

connect()

ACTIVATE OBJECTACTIVATE OBJECT

register_handler(con)

peer_stream_peer_stream_
: SOCK: SOCK

ConnectorConnector

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

IN
IT

IA
T

IO
N

IN
IT

IA
T

IO
N

 P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

R
O

C
E

S
S

IN
G

P
H

A
S

E
P

H
A

S
E

activate_svc_handler(sh)

connect_svc_handler(sh, addr)

open()

� Asynchronous mode

128

Using the Connector Pattern in a

WWW Client

: Connector: Connector

:: Reactor Reactor
PENDINGPENDING

CONNECTIONSCONNECTIONS

ACTIVEACTIVE

CONNECTIONSCONNECTIONS

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

: Svc: Svc
HandlerHandler

: HTTP: HTTP
HandlerHandler

� e.g., in the Netscape HTML parser

129

ACE Stream Example: Parallel

I/O Copy

� Illustrates an implementation of the classic
\bounded bu�er" problem

{ The program copies stdin to stdout via the use of

a multi-threaded Stream

� A Stream is an implementation of the \Layer
Service Composition" pattern

{ The intent is to allow exible con�guration of lay-

ered processing modules

130

Implementing a Stream in ACE

� A Stream contains a stack of Modules

� Each Module contains two Tasks

{ In this example, the \read" Task is always ignored

since the data ow is uni-directional

� Each Task contains a Message Queue and a

pointer to a Thread Manager

131

Producer and Consumer Object

Interactions

Consumer
Module

active 2: svc()

3: put()

active

Producer
Module

1: read()

4: svc()

5: write()

132

Producer Interface

� e.g.,

// typedef short-hands for the templates.

typedef Stream<MT_SYNCH> MT_Stream;

typedef Module<MT_SYNCH> MT_Module;

typedef Task<MT_SYNCH> MT_Task;

// Define the Producer interface.

class Producer : public MT_Task

{

public:

// Initialize Producer.

virtual int open (void *)

{

// activate() is inherited from class Task.

activate (THR_NEW_LWP);

}

// Read data from stdin and pass to consumer.

virtual int svc (void);

// ...

};

133

// Run in a separate thread.

int

Producer::svc (void)

{

for (int n; ;) {

// Allocate a new message.

Message_Block *mb = new Message_Block (BUFSIZ);

// Keep reading stdin, until we reach EOF.

if ((n = read (0, mb->rd_ptr (), mb->size ())) <= 0)

{

// Send a shutdown message to other thread and exit.

mb->length (0);

this->put_next (mb);

break;

}

else

{

mb->wr_ptr (n); // Adjust write pointer.

// Send the message to the other thread.

this->put_next (mb);

}

}

return 0;

}

134

Consumer Class Interface

� e.g.,

// Define the Consumer interface.

class Consumer : public MT_Task

{

public:

// Initialize Consumer.

virtual int open (void *)

{

// activate() is inherited from class Task.

activate (THR_NEW_LWP);

}

// Enqueue the message on the Message_Queue for

// subsequent processing in svc().

virtual int put (Message_Block*, Time_Value* = 0)

{

// putq() is inherited from class Task.

return putq (mb, tv);

}

// Receive message from producer and print to stdout.

virtual int svc (void);

};

135

// The consumer dequeues a message from the Message_Queue,

// writes the message to the stderr stream, and deletes

// the message. The Consumer sends a 0-sized message to

// inform the consumer to stop reading and exit.

int

Consumer::svc (void)

{

Message_Block *mb = 0;

// Keep looping, reading a message out of the queue,

// until we get a message with a length == 0,

// which informs us to quit.

for (;;)

{

int result = getq (mb);

if (result == -1) break;

int length = mb->length ();

if (length > 0)

write (1, mb->rd_ptr (), length);

delete mb;

if (length == 0) break;

}

return 0;

}

136

Main Driver Function

� e.g.,

int main (int argc, char *argv[])

{

// Control hierachically-related active objects.

MT_Stream stream;

// Create Producer and Consumer Modules and push

// them onto the Stream. All processing is then

// performed in the Stream.

stream.push (new MT_Module ("Consumer",

new Consumer);

stream.push (new MT_Module ("Producer",

new Producer));

// Barrier synchronization: wait for the threads,

// to exit, then exit ourselves.

Service_Config::thr_mgr ()->wait ();

return 0;

}

137

Evaluation of the Stream Class

Category

� Structuring active objects via a Stream al-
lows \interpositioning"

{ Similar to adding a �lter in a UNIX pipeline

� New functionality may be added by \push-

ing" a new processing Module onto a Stream,

e.g.,

stream.push (new MT_Module ("Consumer",

new Consumer))

stream.push (new MT_Module ("Filter",

new Filter));

stream.push (new MT_Module ("Producer",

new Producer));

138

Call Center Manager Example

EVENT
SERVER

SUPER
VISOR

CCM
Stream

ASX
RUN-TIME

TELECOM
SWITCHES

Session Router
Module

Event Filter
Module

Switch Adapter
Module

Event Analyzer
Module

SUPER
VISOR SUPER

VISOR

139

Concurrency Strategies

� Developing correct, e�cient, and robust con-

current applications is challenging

� Below, we examine a number of strategies
that addresses challenges related to the fol-
lowing:

{ Concurrency control

{ Library design

{ Thread creation

{ Deadlock and starvation avoidance

140

General Threading Guidelines

� A threaded program should not arbitrarily

enter non-threaded (i.e., \unsafe") code

� Threaded code may refer to unsafe code
only from the main thread

{ e.g., beware of errno problems

� Use reentrant OS library routines (\ r") rather

than non-reentrant routines

� Beware of thread global process operations

{ e.g., �le I/O

� Make sure that main terminates via thr exit(3T)

rather than exit(2) or \falling o� the end"

141

Thread Creation Strategies

� Use threads for independent jobs that must

maintain state for the life of the job

� Don't spawn new threads for very short jobs

� Use threads to take advantage of CPU con-

currency

� Only use \bound" threads when absolutely

necessary

� If possible, tell the threads library how many
threads are expected to be active simulta-
neously

{ e.g., use thr setconcurrency

142

General Locking Guidelines

� Don't hold locks across long duration oper-
ations (e.g., I/O) that can impact perfor-
mance

{ Use \Tokens" instead: : :

� Beware of holding non-recursive mutexes when
calling a method outside a class

{ The method may reenter the module and deadlock

� Don't lock at too small of a level of granu-

larity

� Make sure that threads obey the global lock
hierarchy

{ But this is easier said than done: : :

143

Locking Alternatives

� Code locking

{ Associate locks with body of functions

. Typically performed using bracketed mutex locks

{ Often called a monitor

� Data locking

{ Associate locks with data structures and/or ob-

jects

{ Permits a more �ne-grained style of locking

� Data locking allows more concurrency than

code locking, but may incur higher overhead

144

Single-lock Strategy

� One way to simplify locking is use a single,

application-wide mutex lock

� Each thread must acquire the lock before

running and release it upon completion

� The advantage is that most legacy code

doesn't require changes

� The disadvantage is that parallelism is elim-
inated

{ Moreover, interactive response time may degrade

if the lock isn't released periodically

145

Passive Object Strategy

� A more OO locking strategy is to use a
\Passive Object"

{ Also known as a \monitor"

� A passive object contains synchonization mech-
anisms that allow multiple method invoca-
tions to execute concurrently

{ Either eliminate access to shared data or use syn-

chronization objects

{ Hide locking mechanisms behind method interfaces

. Therefore, modules should not export data di-

rectly

� Advantage is transparency

� Disadvantages are increased overhead from

excessive locking and lack of control over

method invocation order

146

Active Object Strategy

� Each task is modeled as an active object

that maintains its own thread of control

� Messages sent to an object are queued up
and processed asynchronously with respect
to the caller

{ i.e., the order of execution may di�er from the

order of invocation

� This approach is more suitable to message

passing-based concurrency

� The ACE Task class implements this ap-

proach

147

Invariants

� In general, an invariant is a condition that

is always true

� For concurrent programs, an invariant is a
condition that is always true when an asso-
ciated lock is not held

{ However, when the lock is held the invariant may

be false

{ When the code releases the lock, the invariant

must be re-established

� e.g., enqueueing and dequeueing messages

in the Message Queue class

148

Run-time Stack Problems

� Most threads libraries contain restrictions
on stack usage

{ The initial thread gets the \real" process stack,

whose size is only limited by the stacksize limit

{ All other threads get a �xed-size stack

. Each thread stack is allocated o� the heap and

its size is �xed at startup time

� Therefore, be aware of \stack smashes" when
debugging multi-threaded code

{ Overly small stacks lead to bizarre bugs, e.g.,

* Functions that weren't called appear in backtraces

* Functions have strange arguments

149

Deadlock

� Permanent blocking by a set of threads that

are competing for a set of resources

� Caused by \circular waiting," e.g.,

{ A thread trying to reacquire a lock it already holds

{ Two threads trying to acquire resources held by

the other

. e.g., T1 and T2 acquire locks L1 and L2 in op-

posite order

� One solution is to establish a global ordering
of lock acquisition (i.e., a lock hierarchy)

{ May be at odds with encapsulation: : :

150

Avoiding Deadlock in OO

Frameworks

� Deadlock can occur due to properties of
OO frameworks, e.g.,

{ Callbacks

{ Intra-class method calls

� There are several solutions

{ Release locks before performing callbacks

. Every time locks are reacquired it may be nec-

essary to reevaluate the state of the object

{ Make private \helper" methods that assume locks

are held when called by methods at higher levels

{ Use a Token or a Recursive Mutex

151

Recursive Mutex

� Not all thread libraries support recursive mu-
texes

{ Here is portable implementation available in ACE:

class Recursive_Thread_Mutex

{

public:

// Initialize a recursive mutex.

Recursive_Thread_Mutex (void);

// Implicitly release a recursive mutex.

~Recursive_Thread_Mutex (void);

// Acquire a recursive mutex.

int acquire (void) const;

// Conditionally acquire a recursive mutex.

int tryacquire (void) const;

// Releases a recursive mutex.

int release (void) const;

private:

Thread_Mutex nesting_mutex_;

Condition<Thread_Mutex> mutex_available_;

thread_t owner_id_;

int nesting_level_;

};

152

// Acquire a recursive mutex (increments the nesting

// level and don't deadlock if owner of the mutex calls

// this method more than once).

Recursive_Thread_Mutex::acquire (void) const

{

thread_t t_id = Thread::self ();

Guard<Thread_Mutex> mon (nesting_mutex_);

// If there's no contention, grab mutex.

if (nesting_level_ == 0) {

owner_id_ = t_id;

nesting_level_ = 1;

} else if (t_id == owner_id_)

// If we already own the mutex, then

// increment nesting level and proceed.

nesting_level_++;

else {

// Wait until nesting level drops

// to zero, then acquire the mutex.

while (nesting_level_ > 0)

mutex_available_.wait ();

// Note that at this point

// the nesting_mutex_ is held...

owner_id_ = t_id;

nesting_level_ = 1;

}

return 0;

153

// Releases a recursive mutex.

Recursive_Thread_Mutex::release (void) const

{

thread_t t_id = Thread::self ();

// Automatically acquire mutex.

Guard<Thread_Mutex> mon (nesting_mutex_);

nesting_level_--;

if (nesting_level_ == 0) {

// This may not be strictly necessary, but

// it does put the mutex into a known state...

owner_id_ = OS::NULL_thread;

// Inform waiters that the mutex is free.

mutex_available_.signal ();

}

return 0;

}

Recursive_Thread_Mutex::Recursive_Thread_Mutex (void)

: nesting_level_ (0),

owner_id_ (OS::NULL_thread),

mutex_available_ (nesting_mutex_)

{

}

154

Avoiding Starvation

� Starvation occurs when a thread never ac-

quires a mutex even though another thread

periodically releases it

� The order of scheduling is often unde�ned

� This problem may be solved via:

{ Use of \voluntary pre-emption" mechanisms

. e.g., thr yield() or Sleep()

{ Using a \Token" that strictly orders acquisition

and release

155

Drawbacks to Multi-threading

� Performance overhead

{ Some applications do not bene�t directly from

threads

{ Synchronization is not free

{ Threads should be created for processing that lasts

at least several 1,000 instructions

� Correctness

{ Threads are not well protected against interference

from other threads

{ Concurrency control issues are often tricky

{ Many legacy libraries are not thread-safe

� Development e�ort

{ Developers often lack experience

{ Debugging is complicated (lack of tools)

156

Lessons Learned using OO

Design Patterns

� Bene�ts of patterns

{ Enable large-scale reuse of software architectures

{ Improve development team communication

{ Help transcend language-centric viewpoints

� Drawbacks of patterns

{ Do not lead to direct code reuse

{ Can be deceptively simple

{ Teams may su�er from pattern overload

157

Lessons Learned using OO

Frameworks

� Bene�ts of frameworks

{ Enable direct reuse of code (cf patterns)

{ Facilitate larger amounts of reuse than stand-alone

functions or individual classes

� Drawbacks of frameworks

{ High initial learning curve

. Many classes, many levels of abstraction

{ The ow of control for reactive dispatching is non-

intuitive

{ Veri�cation and validation of generic components

is hard

158

Lessons Learned using C++

� Bene�ts of C++

{ Classes and namespaces modularize the system ar-

chitecture

{ Inheritance and dynamic binding decouple applica-

tion policies from reusable mechanisms

{ Parameterized types decouple the reliance on par-

ticular types of synchronization methods or net-

work IPC interfaces

� Drawbacks of C++

{ Many language features are not widely implemented

{ Development environments are primitive

{ Language has many dark corners and sharp edges

159

Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit designed ac-

cording to key network programming pat-

terns

� All source code for ACE is freely available

{ Anonymously ftp to wuarchive.wustl.edu

{ Transfer the �les /languages/c++/ACE/*.gz

� Mailing lists

* ace-users@cs.wustl.edu
* ace-users-request@cs.wustl.edu
* ace-announce@cs.wustl.edu
* ace-announce-request@cs.wustl.edu

� WWW URL

{ http://www.cs.wustl.edu/~schmidt/ACE.html

160

Patterns Literature

� Books

{ Gamma et al., \Design Patterns: Elements of

Reusable Object-Oriented Software" Addison-Wesley,

1994

{ Pattern Languages of Program Design series by

Addison-Wesley, 1995 and 1996

{ Siemens, Pattern-Oriented Software Architecture,

Wiley and Sons, 1996

� Special Issues in Journals

{ Dec. '96 \Theory and Practice of Object Sys-

tems" (guest editor: Stephen P. Berczuk)

{ October '96 \Communications of the ACM" (guest

editors: Douglas C. Schmidt, Ralph Johnson, and

Mohamed Fayad)

� Magazines

{ C++ Report and Journal of Object-Oriented Pro-

gramming, columns by Coplien, Vlissides, and Mar-

tin

161

