
Middleware Scheduling Optimization Techniques
for Distributed Real-Time and Embedded Systems�

Christopher Gill and Ron Cytron Douglas Schmidt
fcdgill, cytrong@cs.wustl.edu schmidt@uci.edu

Department of Computer Science Electrical & Computer Engineering
Washington University, St.Louis University of California, Irvine

Abstract

Developers of mission-critical distributed real-time and em-
bedded (DRE) systems face a fundamental tension between (1)
the performance gains achievable with hand-crafted optimiza-
tions to systems built largely from scratch and (2) the develop-
ment cost and cycle-time reductions offered by common off-
the-shelf (COTS) middleware. This paper describes how the
Kokyu portable middleware scheduling framework, which is
built using standards-based COTS middleware and OS primi-
tives, can be used both (1) to maintain the flexibility and re-use
offered by COTS middleware and (2) to provide opportunities
for domain-specific optimizations to meet stringent real-time
performance requirements.

Keywords: Real-Time Middleware, Quality of Service Is-
sues, Dynamic Scheduling Algorithms and Analysis, Adaptive
Resource Management, Distributed Systems.

1 Introduction

Next-generation mission-critical distributed real-time and em-
bedded (DRE) systems, such as integrated avionics mission
computing systems [1], teams of collaborating emergency res-
cue robots [2], and distributed real-time automobile manage-
ment systems [3], must adapt swiftly to changing environmen-
tal conditions. Greater coordination allows elements at all
levels to identify and respond effectively to transient oppor-
tunities and hazards. Achieving significant levels of coordi-
nation requires DRE systems with the ability to: (1) accom-
modate unplanned tasks and evolving task characteristics in
a distributed environment with rapidly changing information
and resource availability conditions; (2) trade performance
of individual elements for system-level real-time performance
objectives, and optimize real-time performance across hetero-
geneous criteria; (3) perform adaptive resource reallocations
within firmly bounded time-scales.

While solutions built using standards-based COTS middle-
ware promise greater re-use of software architectures, patterns,
frameworks, analysis techniques, and testing and certifica-
tion results across entire families of systems, next-generation

�This work was funded in part by Boeing and DARPA ITO.

DRE systems also require explicit interfaces and mechanisms
for key capabilities, such as fine-grain adaptive rescheduling,
that are not available in today’s COTS middleware solutions,
such as Real-Time CORBA 1.0 [4]. Emerging COTS mid-
dleware approaches, such as Dynamic Scheduling Real-Time
CORBA [5] and the RTSJ [6], add some elements for imple-
menting these capabilities,e.g., enhanced distributable thread-
ing models and real-time behavioral descriptors.

However, additional (andunified) higher-level approaches
and services are still required to realize the full real-time
performance benefits achievable with closer integration of
scheduling mechanisms in middleware. Middleware is
uniquely suited to address both (1) application-specific con-
straints such as whether or not operation rates are known in ad-
vance, and (2) optimized integration of common mechanisms
to support flexible trade-offs within a common reusable infras-
tructure. Neither lower layers such as operating systems and
network protocol stacks, nor higher layers such as domain-
specific libraries or applications themselves, are appropriate
contexts in which to combine these issues. Rather, middle-
ware serves to mediate the higher and lower level concerns and
can achieve improvements in both flexibility and performance
through its appropriate interactions upward and downward in
the overall system architecture.

To achieve both (1) re-use and flexibility across families
of systems and (2) optimized real-time performance in DRE
systems, this paper describes the following enhancements to
current real-time middleware scheduling approaches: (1) hy-
bridizing static and dynamic scheduling techniques to opti-
mize run-time performance and relieve requirements fora pri-
ori knowledge of exact resource allocations and the order of
transitions between allocations; (2) support for variable pe-
riod tasks, to exploit degrees of freedom in performance of
individual elements to achieve system-wide real-time proper-
ties; (3) flexible policies and integrated mechanisms for select-
ing periods and determining execution eligibility, to apply this
approach effectively across arbitrary operation characteristics,
while achieving rapid local adaptation to run-time variations
in system requirements and resource availability.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of (1) the target system for our opti-
mizations: a research DRE avionics mission computing plat-

1

form and (2) theKokyu1 scheduling framework; Section 3
describes optimizations for DRE target system performance
under steady-state and adaptive conditions, and outlines ex-
tensions to our framework to support those optimizations;
Section 4 presents qualitative and quantitative indications of
the benefits of our approach, and describes experiments cur-
rently underway to quantify the benefits and associated costs
of these optimizations; Section 5 surveys related work and de-
scribes how our work extends the state-of-the-art in middle-
ware scheduling; and Section 6 offers concluding remarks and
describes planned future work on scheduling middleware for
DRE systems.

2 Overview of Target Platform and
Kokyu Framework Infrastructure

This section describes key features of the platform upon which
our work is based and the Kokyu scheduling and dispatch-
ing infrastructure within which we perform optimizations to
that platform. Section 2.1 identifies the expected number
and characteristics of schedulable tasks within the target plat-
form itself. Section 2.2 describes primitive elements of Kokyu
scheduling framework, focusing on how target platform tasks
are mapped to the dispatching elements of this framework.

2.1 An Overview of the Target Platform

Figure 1 illustrates the architecture of the OO avionics mission

OOBBJJEECCTT RREEQQUUEESSTT BBRROOKKEERR

AAiirr
FFrraammee

SSeennssoorr
pprrooxxyy

NNaavv

SSeennssoorr
pprrooxxyy

SSeennssoorr
pprrooxxyy

11::RREEGGIISSTTEERR

OOPPEERRAATTIIOONN

CCHHAARRAACCTTEERRIISSTTIICCSS

KKOOKKYYUU
SSCCHHEEDDUULLEERR

KKOOKKYYUU
DDIISSPPAATTCCHH
MMOODDUULLEE

33:: RREEGGIISSTTEERR TTOO GGEETT

PPEERRIIOODDIICC TTIIMMEEOOUUTTSS,,
SSEENNDD EEVVEENNTTSS

22::RREEGGIISSTTEERR

FFOORR EEVVEENNTTSS

44:: RREEGGIISSTTEERR

DDEEPPEENNDDEENNCCIIEESS
RRTT--AARRMM

55:: ((RREE)) AASSSSIIGGNN

RRAATTEE,, PPRRIIOO

66:: ((RREE))--
CCOONNFFIIGGUURREE

77:: PPEERRIIOODDIICC

PPUUSSHH

88:: FFIILLTTEERR,,
CCOORRRREELLAATTEE

99:: PPRRIIOO

DDIISSPPAATTCCHH

EEVVEENNTT
CCHHAANNNNEELL

KKOOKKYYUU
SSEERRVVIICCEESS

Figure 1: Avionics Example

1Kokyu is a Japanese word meaning literally breath, but also with impli-
cations of timing and coordination.

computing platform [7] targeted by the scheduling optimiza-
tions we present in this paper. This platform was developed
and deployed using OO middleware components and services
based on CORBA [8]. Key characteristics of the target plat-
form that shape our middleware-based optimization approach
are described below. These characteristics are shared by many
other DRE systems, as well.

Operations and Tasks: Some operations, such as comput-
ing the first leg of a navigation route, aremandatoryand must
finish before their deadlines. Other operations, such as com-
puting subsequent legs of the route, areoptional.

The model that underlies our target platform differs some-
what from the model in [9]. In their model each operation may
have a mandatory part followed by an optional part. A similar
effect can be achieved in our approach by making an optional
operation’s task depend on a mandatory one’s task.

Variable Periods: Each task has a (possibly unary) har-
monic set of discrete rates at which it can run, and the union of
all these sets of rates is also harmonic. In our current research,
rate reallocations are controlled by aReal-Time Adaptive Re-
source Manager(RT-ARM) [10]. RT-ARM is a middleware
service developed by Honeywell that adapts the rates of tasks
according to changing environmental conditions [11].

Dependencies: The tasks may have precedence dependen-
cies, resulting in a directed acyclic graph (DAG) over all op-
erations that is established during or before application ini-
tialization. For example, an operation with a mandatory part
and an optional part can be modeled in our approach with sep-
arate tasks, a mandatory one for the mandatory part and an
optional one for the optional part, with a dependency of the
optional operation’s task on the mandatory one’s task. Tasks
and dependencies may be enabled or disabled at run-time by
the application or a middleware resource manager, such as the
RT-ARM.

2.2 An Overview of Kokyu

Kokyu is a portable middleware scheduling framework de-
signed to provide flexible scheduling and dispatching ser-
vices within the context of higher-level middleware, such as
The ACE ORB [13] (TAO). As shown in white in Figure 2,
Kokyu currently provides real-time scheduling and dispatch-
ing services for TAO’s real-time CORBA Event Service [7]
that mediates supplier-consumer relationships between appli-
cation operations. Figure 2 also illustrates further potential
applications of Kokyu services to TAO, including early (i.e.,
low-layer) scheduling control of request upcalls on server-side
ORB endsystems. In addition to the features described here,
Kokyu will also be used to implement the standard Real-Time
CORBA 1.0 [4] Scheduling Service specification, using the
same underlying mechanisms.

2

II //OO SSUUBBSSYYSSTTEEMM

OORRBB CCOORREE

CCLLIIEENNTT SSTTUUBB

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

RRTT
OOppeerraattiioonn

II //OO SSUUBBSSYYSSTTEEMM

OORRBB CCOORREE

OOBBJJEECCTT AADDAAPPTTEERR

EEVVEENNTT CCHHAANNNNEELL

CCLLIIEENNTT AAPPPPLLIICCAATTIIOONN

SSEERRVVEERRCCLLIIEENNTT

EEVVEENNTT CCHHAANNNNEELL

SS
CC
HH
EE
DD
UU
LL
EE
RR

Figure 2: Kokyu Services used by TAO
Scheduler

rate
tuples

WCET propagation

selected
rates

rate propagation

propagated
rates

tuple
visitor

operation
visitors Rate and priority

assignment policy

Dispatcher

Dispatching
configuration

RMS

LLF laxity

static

static

Figure 3: Kokyu Scheduling and Dispatching Infrastructure

Kokyu consists of two cooperating infrastructure segments,
illustrated in Figure 3: (1) a pluggable scheduling infrastruc-
ture with efficient support for adaptive execution of diverse
scheduling heuristics; and (2) flexible dispatching infrastruc-
ture that allows composition of primitive operating system
and middleware mechanisms to enforce arbitrary scheduling
heuristics. The combined framework provides implicit pro-
jection of scheduling heuristics into appropriate dispatching
infrastructure configurations, so that the scheduling and dis-
patching infrastructure segments can be optimized both sepa-
rately and in combination, as we describe in Section 3.

2.2.1 Kokyu’s Scheduling Infrastructure

Our earlier work on Kokyu’s scheduling infrastructure [14]
(1) introduced strategized support for hybrid static and dy-
namic scheduling heuristics, (2) decoupled scheduling heuris-
tics from application characteristics and dispatching mech-
anisms, (3) provided middleware mechanisms for dynamic
scheduling, and (4) did preliminary evaluation of infrastruc-
ture alternatives in the context of well-known scheduling
heuristics.

As illustrated on the left side of Figure 3, Kokyu’s schedul-
ing infrastructure has evolved into a light-weight common in-
terface and a set of richer pluggable strategies that encapsu-
late details of both scheduling data structures and heuristics.
Each scheduling strategy contains algorithms and data struc-

tures used to (1) select rates of operations and (2) assign oper-
ations to the dispatching priority lanes described below.

Supporting strategies with different data structures for dif-
ferent degrees of information about the operations to be sched-
uled allows use-case-specific optimizations to the timeliness of
adaptive re-scheduling. Section 3.3 considers these issues in
detail.

2.2.2 Kokyu’s Dispatching Infrastructure

The right side of Figure 3 shows the essential features of
Kokyu’s flexible task dispatching infrastructure. Key features
of the dispatching infrastructure that are essential to perform-
ing our optimizations are as follows:

Dispatching queues: Each task is assigned by our strate-
gized scheduling service [14] to a specific dispatching queue,
each of which has an associated queue number, a queueing
discipline, and a unique operating-system-specific priority for
its single associated dispatching thread.

Dispatching threads: Operating-system thread priorities
decrease with increasing queue number, so that the0

th queue
is served by the highest priority thread. Each dispatching
thread removes the task from the head of its queue and runs its
entry point function to completion before retrieving the next
task to dispatch. As described in Section 3.2, adapters can be
applied to operations to intercept and possibly short-circuit the
entry-point upcall. In general, however, the outermost opera-
tion entry point must complete on each dispatch.

Queueing disciplines: Dispatching thread priorities deter-
mine which queue is active at any given time: the highest pri-
ority queue with a task to dispatch is always active, preempt-
ing tasks in lower priority queues. In addition, each queue
may have a distinct discipline for determining which of its en-
queued tasks has the highest eligibility, and must ensure the
highest is at the head of the queue at the point when one is to
be dequeued.

This paper discusses three disciplines: static, deadline, and
laxity. Static tasks are ordered by a static subpriority value,
resulting in a FIFO ordering if all static subpriorities are made
the same; static queues at different priority levels can be used
to implement an RMS scheduling strategy. Deadline tasks
are ordered by time to deadline; a single deadline queue can
be used to implement the earliest deadline first [15] (EDF)
scheduling strategy. Finally, laxity tasks are ordered by slack
time, orlaxity – the time to deadline minus the execution time;
a single laxity queue can be used to implement the minimum
laxity first [16] (MLF) scheduling strategy; laxity queues at
different priority levels can be used to implement the maxi-
mum urgency first [16] (MUF) scheduling strategy.

Any discipline for which a maximal eligibility may be se-
lected can be employed to manage a given dispatching queue

3

in this approach. Scheduling strategies can be constructed
from one or more queues of each discipline alone, or com-
binations of queues with different disciplines can be used, as
in [9].

3 Scheduling Optimizations

Careful optimization of middleware is needed to meet the
goals of mission-critical DRE systems described in Section 1.
In this section we present several key optimizations that we
have applied to realistic avionics mission computing appli-
cations in the target platform environment described in Sec-
tion 2.1.

3.1 Overview of System Modes

A modeis a Boolean function on the states of a system’s con-
stituent configuration items. For example, “the aircraft is en-
gaged with ground threats” is a mode, and “all sensors are in
their operational states” is a mode.

The value of a mode can change abruptly. For example,
the failure of a component can affect modes. In DRE sys-
tems the time allotted to respond to mode changes may be
very short. In fact, this requirement is one of the key techni-
cal differences between mission-critical DRE applications and
mainstream commercial business applications.

For this paper, we define amode partitionas an equivalence
partition over the set of possible states of the system. Our
middleware scheduling optimizations focus on two high-level
mode partitions–steady-stateandadaptive–of the target avion-
ics mission computing platform described in Section 2. As il-
lustrated in Figure 4, the steady-state mode partition contains
any steady behavioral state, with a particular rate and priority
assigned to each operation while in that state.

AADDAAPPTTIIVVEE PPAARRTTIITTIIOONN

SS11

SS22
SS33

SS44 SS55

TT11
TT22

TT33

TT44

SSTTEEAADDYY SSTTAATTEE PPAARRTTIITTIIOONN

SSTTEEAADDYY SSTTAATTEESS

TTRRAANNSSIITTIIOONNSS

Figure 4: System Mode Partitions

The adaptive mode partition consists of the sequence of
transitions between steady behavioral states, in which a new

round of rate selection and priority assignment must be per-
formed. Section 3.2 describes optimizations to the steady-state
mode partition, and Section 3.3 describes optimizations to the
adaptive mode partition. In our current research, the RT-ARM
described in Section 2 is invoked from the steady state mode
partition, but may transition the system into the adaptive mode
partition during its execution.

3.2 Steady-State Optimizations

Existing research [9, 17] on adaptive scheduling of manda-
tory and optional operations has largely focused on properties
that can be specifieda priori, such as the computational com-
plexity of the scheduling algorithm, the error function for op-
tional tasks during overload, and the value to the application
of completing various stages of task execution. While these
approaches are valuable for establishing the essential theory
of building adaptive DRE systems, we believe an empirical
approach is also useful to guide design decisions and reveal
opportunities for application-specific and domain-specific op-
timizations in middleware.

For example, hybridization of the rate monotonic schedul-
ing (RMS), earliest deadline first (EDF), and minimum lax-
ity first (MLF) scheduling techniques has been proposed to
isolate mandatory tasks from optional tasks, and optimize the
execution behavior of those tasks [9, 16]. Clearly, a variety of
scheduling approaches and hybrid combinations of approaches
are possible–and often desirable–for scheduling various types
of DRE applications.

However, choosing the approach that is best suited to a
particular application or application domain requires attention
not only to the characteristics and requirements of the appli-
cation, but of the platforms and middleware on which it is
hosted. Here, we focus primarily on the empirically measured
low-level characteristics of the dispatching infrastructure on
which the scheduling policies will be enforced in our flexible
scheduling framework. Since the RT-ARM described in Sec-
tions 2 and 3.3 must manage adaptive transitions whenever a
change in application state requires a reallocation of rates, it
must operate at a higher priority than the optional operations.
However, if its operations cannot be feasibly scheduled with
the mandatory operations, at least some of them must be as-
signed to an intermediate priority partition between the op-
tional and mandatory operations. To meet the three system
objectives described in Section 1, we describe four types of
performance optimizations for this scenario, illustrated in Fig-
ure 5:

A. Dynamic scheduling: If we cannot feasibly schedule all
of the RT-ARM operations with the mandatory operations, or
the combination produces a barely feasible schedule and we
lack confidence in the precision of the advertised execution

4

LLLLFF

MMAANNDDAATTOORRYY RRTT--AARRMM OOPPTTIIOONNAALL

LLLLFF

RRMMSS

AA.. DDYYNNAAMMIICC SSCCHHEEDDUULLIINNGG

LLLLFF

LLLLFF

RRMMSS

BB.. DDYYNNAAMMIICC CCAANNCCEELLLLAATTIIOONN

LLLLFF

RRMMSS

CC.. MMEERRGGEEDD SSCCHHEEDDUULLIINNGG

LLLLFF

RRMMSS

DD.. DDIIVVIIDDEEDD SSCCHHEEDDUULLIINNGG

Figure 5: Steady State Optimizations

times, we might trade some measure of overhead for stricter
partitioning between the mandatory and RT-ARM operations,
and schedule the RT-ARM operations in an intermediate prior-
ity queue using a deadline- or laxity-based discipline. This op-
timization allows the target system some flexibility to meet our
goal to accommodate unplanned tasks and unexpected varia-
tions in operation characteristics (i.e., some jitter in the execu-
tion times), especially of the RT-ARM or optional operations.

0

20

40

60

80

100

120

140

160

180

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

sample

S
R

T
 d

ea
d

lin
es

 m
ad

e
[H

R
T

 d
ea

d
lin

es
 m

is
se

d
 =

 0
]

MUF

MUF©

RMS+LLF

RMS+LLF©

RMS

RMS©

Figure 6: Effects of Pessimistic Cancellation

B. Dynamic cancellation: If we cannot feasibly schedule all
of the operations within a priority partition, we must consider
whether to allow futile dispatches of operations, even though
we know they will miss their deadlines. Reducing the number
of futile dispatches and wasted CPU time may improve the
performance of other operations and increase either the num-
ber of made deadlines, the amount of work completed before
deadlines, or both. This optimization can help meet our goal
to trade performance of individual elements for overall perfor-
mance objectives,e.g., maximizing the availability of the CPU
for operations thatcanmeet their deadlines.

Cancellation adds overhead, however, so it should not be
applied to mandatory partitions that are known to be feasible,
especially when the benefits of optimizations, such as static
dispatching, are desired. Moreover, a balance between opti-

mism and pessimism must be achieved for cancellation to be
effective. As shown in Figure 6, our initial measurements of
this technique using a rather pessimistic cancellation strategy
actuallyreducedthe number of optional operations that made
their deadlines. With a more accurate cancellation threshold,
however, we believe the technique will give the target sys-
tem more exact control over individual operation dispatches,
thereby allowing more deadlines to be met overall.

C. Merged scheduling: If we can feasibly and confidently
schedule the RT-ARM operations and mandatory operations
together using RMS, then merging the RT-ARM operations
upward into the mandatory partition serves to reduce (1) the
number of threads needed to dispatch operations and (2) the
expected queueing overhead for RT-ARM operations. This op-
timization can help with our goal of improving real-time per-
formance (i.e., reducing overhead) across heterogeneous crite-
ria (i.e., criticality and rate).

D. Divided scheduling: If we can partition the RT-ARM
operations themselves into mandatory and optional segments
(e.g., to consider different ranges of available rates) and the
RT-ARM mandatory segment is feasible with the other manda-
tory operations, then we can merge it upward into the RMS
partition, reducing overhead for at least the mandatory part of
RT-ARM.

By ensuring that the critical status assessment portion of the
RT-ARM is feasibly scheduled, and thus avoiding consistency
recovery costs, this optimization can help meet our goal of per-
forming adaptive resource reallocations within firmly bounded
time-scales. This optimization can also help meet our goal to
improve real-time performance across heterogeneous criteria,
i.e., criticality and rate or laxity, by maximizing the number of
operations assigned to more efficient dispatching queues.

3.3 Adaptive Optimizations

In our prior adaptive scheduling research [11], a previous-
generation real-time adaptive resource manager (RT-
ARM) [10] interacted with a previous-generation instance
of our scheduler via itssensitivity interface. This interface
allowed the RT-ARM to (1) propose a specific assignment of
rates to operations, (2) obtain a boolean feasibility assessment
for that assignment, and (3) obtain a number representing the
sensitivity of that feasibility result to increases or decreases in
the rates assigned to the operations. The RT-ARM performed
these steps whenever a transition between steady states was
needed.

To perform its assignment algorithm, the RT-ARM itera-
tively extended a set of rate-to-operation bindings, adding new
bindings and updating existing ones based on responses from
the scheduler to feasibility and sensitivity queries. The indi-
vidual performances of the RT-ARM and the scheduler sensi-

5

tivity implementation were reasonable, as shown in Figures 8
and 9 in Section 4. Both (1) the number of calls to the sen-
sitivity interface, and (2) the amount of time spent assessing
feasibility and sensitivity within each operation, were roughly
proportional to the number of operations in the schedule.

The combined behavior of the RT-ARM and scheduler was
not as good as we might hope, however, since the product of
the number of calls and the time per call produces an overall
performance curve that is quadratic in the number of opera-
tions. Therefore, we apply the following refinements to opti-
mize the combined behavior, illustrated in Figure 7:

MMAANNDDAATTOORRYY OOPPTTIIOONNAALL

AA.. DDEENNOORRMMAALLIIZZEEDD

DDEESSCCRRIIPPTTOORRSS BB.. RRAATTEE//PPRRIIOORRIITTYY SSOORRTTIINNGG

CC.. AASSSSIIGGNNMMEENNTT PPOOLLIICCIIEESS DD.. RRAATTEE SSEELLEECCTTIIOONN

OOPP,, {{55,, 1100}}

NNAAMM EE
OOPP,, 55

OOPP,, 1100

RRAATTEESS
TTUUPPLLEESS

CCBB--FFAAIIRR FFAAIIRR

OORRDDEERREEDD

TTUUPPLLEESS

TTUUPPLLEESS

RRAADDIIXX

CCOOMMPPAARRIISSOONN

AADDMMIITTTTEEDD

 TTUUPPLLEESS

TTHHRREESSHHOOLLDD

Figure 7: Adaptive Optimizations
A. De-normalized operation descriptors: We de-
normalize the available rate set and fixed characteristics
for each operation into a sequence of flat tuples of characteris-
tics (containinge.g., the operation handle, a particular rate, the
execution time at that rate). We then derive information that
facilitates sorting for and utilization bounds checking. For
example, we specify the index of a tuple within an operation’s
ordered set of rates, and the utilization difference for an
operation between each pair of its consecutively indexed
tuples. This optimization can help meet our goal to trade
performance of individual elements (i.e., rate of execution) for
overall performance objectives (i.e., maximizing the number
of feasible operations).

B. Rate and priority sorting: We recast rate and priority
assignment as a sorting problem over operation characteris-
tics, with at worst anO(nlog(n)) bound on worst-case per-
formance, and anO(n) bound on worst-case performance in
certain special instances of the more general problem. Since
our scheduling approach applies to arbitrary collections of op-
eration characteristics, for some combinations of operations
and scheduling strategies anO(nlog(n)) comparison sort may
be needed. For our target avionics application, however, all
operations are known in advance and the value spaces of the
characteristics of interest (e.g., whether an operation is manda-
tory, its available periods) are small, so the more efficientO(n)

radix sorts are applicable in many cases.
This optimization can help meet our system goal to per-

form adaptive resource reallocations within firmly bounded

time-scales. For example, consider a realistic application with
64 schedulable operations, each of which has (1) one of a
fixed small set of criticality values, and (2) an associated
set of available invocation periods chosen from a fixed simi-
larly small set of period values. If we applied the previous-
generation sensitivity-based approach, we would expect adap-
tive rescheduling to occur in time bounded byC0 + 64C1 +

4096C2. If we instead applied a comparison sorting strategy
for combined rate and priority assignment, we would expect a
tighter bound ofC3 + 384C4. Finally, if we instead applied
radix sorting for combined rate and priority assignment, we
would expect a still tighter bound ofC5 +C6n = C5 +64C6.

As we discuss in Section 4.2, the constant overheads for the
sensitivity, comparison sorting, and radix sorting approaches
are expected to be similar. Therefore, we anticipate that exper-
iments currently in progress to measure these factors precisely
in all three cases, using a realistic application with around 64
schedulable operations on the target platform, will show adap-
tive rescheduling overhead reductions on the order of:

� 90%, i.e., a ten-fold reduction – going from the sensitiv-
ity approach to the comparison sorting approach.

� 98%, i.e., a fifty-fold reduction – going from the sensi-
tivity approach to the radix sorting approach.

C. Assignment policies: We encapsulate specific sort order-
ing strategies as policies for rate assignment, much as we have
done previously for scheduling policies [14]. We present two
canonical strategies for rate selection, based on two different
views of fairness:

� FAIR Strategy: In the first strategy, calledFair Assign-
ment by Indexed Rate(FAIR), we emphasize fairness across all
operations, ordering tuples by ascending rate index, then de-
scending criticality, then mean rate, and finally by descriptor
handle. This strategy selects the lowest rate for each opera-
tion, for mandatory first operations and then optional opera-
tions, then the next rate for each mandatory operation and the
each optional operation, and so forth.

� CB-FAIR Strategy: In the second strategy, called
Criticality-Biased FAIR(CB-FAIR), we emphasize criticality
partitioning, and order tuples first by descending criticality,
then by ascending rate index index, then mean rate, and finally
descriptor handle. This optimization adds flexibility to meet
our goal to improve real-time performance across heteroge-
neous criteria,i.e., rate and criticality.

D. Rate Selection: Once the tuples are sorted, we perform
a singleO(n) traversal of the tuples to select the rate of each
operation and determine expected utilization values based on
the rates selected and the advertised execution times. As we
iterate through the sorted tuples, we maintain variables for (1)

6

the total utilization by mandatory operations, and (2) the total
utilization by all operations, based on the tuples selected so
far. A tuple is selected if and only if the additional utilization,
compared to the utilization for the previously admitted tuple
for that operation, will still fit within the utilization thresh-
old associated with that tuple. The highest rate of any tuple
selected for an operation becomes the assigned rate for that
operation. This optimization can help meet our goals to trade
performance of individual elements for overall real-time ob-
jectives, and to perform adaptive resource reallocations within
firmly bounded time-scales.

4 Empirical Studies

4.1 Motivation for Empirical Studies

This section presents an empirical study consisting of the fol-
lowing experiments that quantify the effects of our optimiza-
tions and their overall benefit to the avionics mission comput-
ing platform we are targeting: (1) measure overhead factors for
the original sensitivity-based adaptive rescheduling approach
described in Section 3.3 and (2) quantify and demonstrate the
trade-offs when choosing between two alternative scheduling
strategies. The results of this study have the following benefits
for designers and developers of DRE systems:

Original rescheduling profile: Characterizing the order and
constant factors of the original sensitivity-based adaptive
rescheduling approach gave insights leading to the compari-
son sorting and radix sorting optimizations. Furthermore, the
constant factors for the original approach can be related to the
constant factors for the optimized approaches, so that we can
project the overhead effects of those optimizations based on
the order reductions they provide.

Characteristics of primitive elements: Characterizing the
overhead of primitive dispatching elements gives guidance on
expected trade-offs between different adaptive rescheduling
strategies, based on the configuration of dispatching elements
each produces. These empirical results, along with analytical
approaches such as exact [18] or polynomial-time [19] schedu-
lability tests, serve to guide selection of scheduling strategies,
based on performance and schedulability trade-offs.

Comparison of concrete alternatives: Examining two al-
ternative scheduling strategies in detail reveals nuances of the
expected trade-offs in a realistic environment for our target
platform. We juxtapose these results with the appropriate
schedulability considerations to show how the tension between
empirical and analytical results guides optimization within the
total space of scheduling heuristics.

Space of alternative strategies: Empirical measurements
of a larger space of alternative scheduling strategies will (1)

identify trade-offs for off-line selection of sets of appropri-
ate scheduling strategies, (2) characterize the overhead fac-
tors across the space of relevant scheduling strategies, and
(3) ultimately provide parameters for on-line adaptive selec-
tion of scheduling strategies to optimize both the effectiveness
of scheduling for any steady application state and the time of
adaptive transitions between steady states.

Concrete rescheduling characteristics: Quantifying the
original sensitivity-based adaptive rescheduling approach, and
the comparison sorting and radix sorting optimizations in the
target platform environment will give hard data on the effec-
tiveness of these optimizations for production avionics sys-
tems. Furthermore, precise measurement of the constant over-
head factors for these approaches will allow reliable projection
of the effects of different numbers of operations and the degree
of information about their scheduling characteristics on actual
scheduling behavior in those systems.

The first experiments were conducted on a single CPU
(300MHz Pentium) machine, running the Windows NT Work-
station 4.0 operating system. The second set of experiments
was conducted on single-CPU (200MHz Power PC) single-
board computers, running the VxWorks 5.3 operating system.

4.2 Empirical Results

In this section, we examine the results of the three completed
sets of experiments in our empirical study. Section 4.2.1
profiles the original sensitivity-based approach to adaptive
rescheduling of operations. Section 4.2.2 explores concrete al-
ternative scheduling strategies in the target platform environ-
ment, describes their relative performance, and relates those
results to the earlier more basic measurements.

4.2.1 Original Rescheduling Profile

Qualitative comparisons of the adaptive transition optimiza-
tions we propose for integrating predictable RT-ARM execu-
tion with mandatory and optional tasks were discussed in Sec-
tion 3.3. We support these indications of the benefits of our
approach with new results measuring the behavior of the pre-
vious generation RT-ARM and scheduler during adaptive tran-
sitions over a small number of operations.

Figures 8 and 9 show respectively the number and aver-
age duration of calls to our scheduler by the earlier-generation
RT-ARM during an adaptive transition. In each figure, we
plot data for theoperation set utilization value
call, which returns the utilization level for a particular as-
signment of rates to tasks by the RT-ARM, and for the
operation sensitivity call, which returns a value
indicating the sensitivity of the current utilization level to
changes in the proposed rates.

7

Sensitivity Ops Count

0

2

4

6

8

10

12

14

16

[5
+5]

->
[3

+3
]

[4
+4]

->
[3

+3
]

[3
+5]

->
[3

+3
]

[5
+3]

->
[3

+3
]

[5
+5]

->
[5

+3
]

[4
+4]

->
[5

+3
]

[3
+5]

->
[5

+3
]

[3
+3]

->
[5

+3
]

[5
+5]

->
[3

+5
]

[4
+4]

->
[3

+5
]

[5
+3]

->
[3

+5
]

[3
+3]

->
[3

+5
]

[5
+5]

->
[4

+4
]

[3
+5]

->
[4

+4
]

[5
+3]

->
[4

+4
]

[3
+3]

->
[4

+4
]

[4
+4]

->
[5

+5
]

[3
+5]

->
[5

+5
]

[5
+3]

->
[5

+5
]

[3
+3]

->
[5

+5
]

state transitions

n
u

m
b

er
 o

f
ca

lls

operation_set_utilization_value operation_sensitivity

Figure 8: Adaptation Method Call Counts

Each horizontal axis label describes an adaptive transition.
The first bracketed numbers in each label show the number of
mandatory and then optional operations in the application state
before the adaptive transition, and the second bracketed num-
bers show the number of mandatory and then optional opera-
tions in the following application state. Both the average time
and number of sensitivity interface calls give plots that are lin-
ear in the total number of operations in thedestinationstate
during an adaptive transition, for an expected resulting adap-
tive transition time that is a quadratic function of the number
of operations in the destination state.

Sensitivity Ops Time

0

20

40

60

80

100

120

140

160

180

[5
+5

]->
[3

+3]

[4
+4

]->
[3

+3]

[3
+5

]->
[3

+3]

[5
+3

]->
[3

+3]

[5
+5

]->
[5

+3]

[4
+4

]->
[5

+3]

[3
+5

]->
[5

+3]

[3
+3

]->
[5

+3]

[5
+5

]->
[3

+5]

[4
+4

]->
[3

+5]

[5
+3

]->
[3

+5]

[3
+3

]->
[3

+5]

[5
+5

]->
[4

+4]

[3
+5

]->
[4

+4]

[5
+3

]->
[4

+4]

[3
+3

]->
[4

+4]

[4
+4

]->
[5

+5]

[3
+5

]->
[5

+5]

[5
+3

]->
[5

+5]

[3
+3

]->
[5

+5]

state transitions

av
g

 t
im

e
(u

se
c)

operation_set_utilization_value operation_sensitivity

Figure 9: Average�sec/Call

These results motivate the comparison sort and radix sort
optimizations to adaptive rescheduling described in Sec-
tion 3.3. In particular, we expect that constantsC0; :::; C6 in
the order complexity equations to be of similar magnitude, ac-
cording to the following reasoning. First, the constant over-
heads in the original sensitivity based case were proportional
to two function calls (feasibility and sensitivity) per operation
and an inspection of each operation per function call. In the
comparison sorting case, there is only one function call (sort),
but at worstnlog(n) comparisons of two operations, wheren
is the number of operations. Finally, in the radix sorting case,
there is again one function call (sort), and a single light-weight
hash computation per operation.

4.2.2 Comparison of Concrete Alternatives

As shown in Figure 10, there was a measurable difference in

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10 11

state number
S

R
T

 d
ea

d
lin

es
 m

ad
e

[H
R

T
 m

is
se

d
 =

 0
]

MUF

MUF©

RMS+LLF

RMS+LLF©

RMS

RMS©

Figure 10: Comparison of Strategies

the dispatching performance of three alternative scheduling
strategies, RMS [15], MUF [16], and RMS+LLF [9] in the tar-
get platform environment. In each subsequent operating state
we increased the non-critical load, and also cycled from state
to state through low, medium-low, high, and medium high lev-
els of execution time jitter. RMS performed optimally in these
studies up to the point of overload, shown in state 7. While
both MUF and RMS+LLF allowed critical operations to meet
their deadlines in overload2, RMS+LLF was consistently able
to achieve more deadline successes in states with low or high
jitter levels, while MUF made more deadlines in states with
intermediate jitter levels.

We attribute these differences to two factors. First,
RMS+LLF applies a static queueing discipline for all criti-
cal operations and fans them out across multiple rate-based
queues, both of which tend to reduce the overhead per op-
eration at a given level of loading. MUF on the other hand
manages all critical operations within a single queue ordered
by laxity. Second is the ability to manage queue ordering and
preemption effectively, and the known sensitivity of RMS to
non-harmonic rates of execution requests. As the jitter in ex-
ecution times may be considered a kind of additional sporadic
load, it seems reasonable that at some levels of jitter a kind of
non-harmonic behavior would result,e.g., as in the intermedi-
ate levels observed here.

2a single critical deadline miss was observed late in state 9, for MUF with-
out cancellation and for RMS+LLF with cancellation.

8

4.3 Interpretation of Empirical Results

The empirical results presented here support the following
conclusions: (1) the original sensitivity-based approach leaves
ample room for improvement, and the comparison sorting
and radix sorting optimizations show promise for significant
reductions in overhead and thus completion time for adap-
tive rescheduling of operations; (2) empirical measurement of
overhead for primitive dispatching elements offers some guid-
ance selection of scheduling strategies, and these results are
born out in practice by the measured performance of MUF and
RMS+LLF in the target platform environment.

5 Related Work

Traditional approaches to QoS enforcement have adopted ex-
isting solutions from the domain of real-time scheduling [15,
9, 17], fair queuing in network routers [20], or OS support for
continuous media applications [21]. In addition, there have
been efforts to implement new concurrency mechanisms for
real-time processing, such as the real-time threads of Mach
[22] and real-time CPU scheduling priorities of Solaris [23].

In contrast to research on network- and OS-level QoS, the
programming model for developers of OO middleware focuses
on invoking remote operations on distributed objects. Deter-
mining how to map the results from the network and OS layers
to OO middleware is a major focus of our research. Our pre-
vious research has examined many dimensions of DRE mid-
dleware, including static [24] and dynamic [14] scheduling
and real-time event services [7]. This earlier work provides
the basis for our research on optimizing a flexible middleware
scheduling framework described in this paper.

Feng,et al. [25] compare and contrast previous-generation
CORBA scheduling approaches and offered suggestions for
producing more open and scalable real-time CORBA middle-
ware. Our approach follows and expands on several of their
suggestions, notably offering flexible policies and mechanisms
for configuring a variety of scheduling approaches, while pre-
serving isolation of the application from low-level scheduling
details.

Montez,et al. [26] present an approach based on hybridiz-
ing polymorphic invocation and (m,k)-firm scheduling assur-
ances. This approach could prove beneficial for RT-ARM [10]
scheduling in particular, and we plan to investigate this ap-
proach for implementation in our framework.

Standard COTS middleware approaches, such as the ap-
proved Real-Time CORBA 1.0 [4] specification, and emerg-
ing approaches, such as Dynamic Scheduling Real-Time
CORBA [5] (DSRT CORBA) and the RTSJ [6], generalize the
possible range of scheduler implementations, rather than spec-
ifying a particular scheduling approach. Kokyu offers a natu-

ral basis for reuse of policies and mechanisms in implement-
ing schedulers and associated dispatching infrastructures for
either of these standards. In its current form, Kokyu is already
accessible to DSRT CORBA under the C++ language binding.
We intend to re-host Kokyu on a range of RTSJ-compliant en-
vironments, which would enable its use in implementing both
the RTSJ schedulers and DSRT CORBA schedulers under the
Java language binding.

6 Concluding Remarks

This paper presented a number of middleware-specific opti-
mizations for a target application, using a flexible middleware
scheduling framework. We describe a performance-oriented
approach to designing and optimizing scheduling policies, and
show qualitative and preliminary quantitative evidence of our
approach’s benefits. We believe these techniques are useful
and appropriate for building mission-critical distributed real-
time and embedded (DRE) applications using standards-based
COTS middleware.

Lessons learned during the Kokyu research project in-
clude the following: (1) empirical results serve to validate
an adaptive and hybrid scheduling approach; (2) quantify-
ing the costs/benefits of discrete alternatives can be pow-
erful when combined with feasibility analysis; (3) compos-
able dispatching modules based on primitive elements enables
domain-specific and even environment-specific optimizations;
(4) design decisions are aided by empirical data; (5) experi-
ments currently underway are needed to offer a quantitative
blueprint for co-scheduling middleware services such as the
RT-ARM with applications; (6) these experiments will allow
us to demonstrate a general co-scheduling technique where
feasibility analysis and empirical studies meet.

The optimizations and framework extensions described in
this paper have been integrated first into the TAO Event Ser-
vice [7], and theKokyusource code will be available as a dis-
tinct framework provided with the ACE [27] and TAO distri-
butions. Our continuing work is focusing on (1) a more thor-
ough analysis of the space of scheduling heuristics enabled
by this approach, combininga priori observations and empir-
ical measurements to offer specific patterns and overall de-
sign guidance to developers of DRE systems and (2) further
work on measuring and optimizing real-time interactions with
other higher-level resource managers and schedulers in adap-
tive DRE middleware.

7 Acknowledgments

This work was funded in part by Boeing. We gratefully ac-
knowledge the support and direction of Boeing Principal In-

9

vestigators David Corman and David Sharp. In addition,
we would like to thank Boeing Engineers Brian Mendel and
Jeanna Gossett for their contributions to this research.

References
[1] D. L. Levine, C. D. Gill, and D. C. Schmidt, “Dynamic Scheduling

Strategies for Avionics Mission Computing,” inProceedings of the 17th
IEEE/AIAA Digital Avionics Systems Conference (DASC), Nov. 1998.

[2] E. R. Z. Zhu, K. Rajasekar and A. Hanson, “Panoramic Virtual Stereo
Vision of Cooperative Mobile Robots for Localizing 3D Moving Ob-
jects,” inProceedings of the IEEE Workshop on Omnidirectional Vision
(OMNIVIS’00), IEEE, 2000.

[3] H. Hansson and H. Lawson and O. Bridal and C. Eriksson and S. Lars-
son and H. Lon and M. Stromberg, “BASEMENT: An Architecture and
Methodology for Distributed Automotive Real-Time Systems,”IEEE
Transactions on Computers, vol. 46, pp. 1016–1027, SEPTEMBER
1997.

[4] Object Management Group,Realtime CORBA Joint Revised Submis-
sion, OMG Document orbos/99-02-12 ed., March 1999.

[5] Object Management Group,Dynamic Scheduling Real-Time CORBA
Joint Revised Submission, OMG Document orbos/2000-08-12 ed., Au-
gust 2000.

[6] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin, and Turnbull,The
Real-Time Specification for Java. Addison-Wesley, 2000.

[7] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-time CORBA Event Service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), pp. 184–199, ACM, October 1997.

[8] Object Management Group,The Common Object Request Broker: Ar-
chitecture and Specification, 2.2 ed., Feb. 1998.

[9] K.-J. L. J.-Y. Chung, J. W.-S. Liu, “Scheduling Periodic Jobs that Al-
low Imprecise Results,”IEEE Transactions on Computers, vol. 39,
pp. 1156–1174, September 1990.

[10] J. Huang and R. Jha and W. Heimerdinger and M. Muhammad and S.
Lauzac and B. Kannikeswaran and K. Schwan and W. Zhao and R. Bet-
tati, “RT-ARM: A Real-Time Adaptive Resource Management System
for Distributed Mission-Critical Applications,” inWorkshop on Middle-
ware for Distributed Real-Time Systems, RTSS-97, (San Francisco, Cal-
ifornia), IEEE, 1997.

[11] B. S. Doerr, T. Venturella, R. Jha, C. D. Gill, and D. C. Schmidt, “Adap-
tive Scheduling for Real-time, Embedded Information Systems,” inPro-
ceedings of the 18th IEEE/AIAA Digital Avionics Systems Conference
(DASC), Oct. 1999.

[12] Center for Distributed Object Computing, “TAO: A High-
performance, Real-time Object Request Broker (ORB).”
www.cs.wustl.edu/�schmidt/TAO.html, Washington University.

[13] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and Perfor-
mance of a Real-Time CORBA Scheduling Service,”Real-Time Sys-
tems, The International Journal of Time-Critical Computing Systems,
special issue on Real-Time Middleware, vol. 20, March 2001.

[14] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment,”JACM, vol. 20, pp. 46–61, January
1973.

[15] D. B. Stewart and P. K. Khosla, “Real-Time Scheduling of Sensor-Based
Control Systems,” inReal-Time Programming(W. Halang and K. Ra-
mamritham, eds.), Tarrytown, NY: Pergamon Press, 1992.

[16] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal
Reward-Based Scheduling for Periodic Real-Time Tasks,”IEEE Trans-
actions on Computers, vol. 50, pp. 111–129, February 2001.

[17] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,” inPro-
ceedings of the 10th IEEE Real-Time Systems Symposium, pp. 166–171,
IEEE Computer Society Press, 1989.

[18] C.-C. J. Han and H. Y. Tyan, “A Better Polynomial-Time Schedulabil-
ity Test for Real-Time Fixed-Priority Scheduling Algorithms,” inIEEE
Real-Time Systems Symposium, (San Francisco, CA), IEEE, Dec. 1997.

[19] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for Packet
Switched Networks,” inProceedings of the Symposium on Communi-
cations Architectures and Protocols (SIGCOMM), (Philadelphia, PA),
pp. 19–29, ACM, Sept. 1990.

[20] G. Coulson, G. Blair, J.-B. Stefani, F. Horn, and L. Hazard, “Supporting
the Real-time Requirements of Continuous Media in Open Distributed
Processing,”Computer Networks and ISDN Systems, pp. 1231–1246,
1995.

[21] H. Tokuda, T. Nakajima, and P. Rao, “Real-Time Mach: Towards Pre-
dictable Real-time Systems,” inUSENIX Mach Workshop, USENIX,
October 1990.

[22] Khanna, S.,et al., “Realtime Scheduling in SunOS 5.0,” inProceedings
of the USENIX Winter Conference, pp. 375–390, USENIX Association,
1992.

[23] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Perfor-
mance of Real-Time Object Request Brokers,”Computer Communica-
tions, vol. 21, pp. 294–324, Apr. 1998.

[24] W. Feng, U. Syyid, and J.-S. Liu, “Providing for an Open, Real-Time
CORBA,” in Proceedings of the Workshop on Middleware for Real-Time
Systems and Services, (San Francisco, CA), IEEE, December 1997.

[25] C. Montez, J. Fraga, R. Oliveira, and J.-M. Farines, “An Adaptive
Scheduling Approach in Real-Time CORBA,” inProceedings of the In-
ternational Symposium on Object-Oriented Real-time Distributed Com-
puting (ISORC), IEEE/IFIP, 1999.

[26] D. C. Schmidt, “Applying Design Patterns and Frameworks to Develop
Object-Oriented Communication Software,” inHandbook of Program-
ming Languages(P. Salus, ed.), MacMillan Computer Publishing, 1997.

10

