
Simplifying Autonomic Enterprise Java
Bean Applications via Model-driven De-
velopment: a Case Study

JULES WHITE, DOUGLAS C. SCHMIDT, ANIRUDDHA GOKHALE

Vanderbilt University, Department of Electrical Engineering and Com-
puter Science, Box 1679 Station B, Nashville, TN, 37235

{jules, schmidt, gokhale}@dre.vanderbilt.edu
(251)-533-9432

 Autonomic computing systems aim to reduce the configuration, operational, and

maintenance costs of distributed applications by enabling them to self-manage, self-

heal, and self-optimize. This paper provides two contributions to the Model-Driven

Development (MDD) of autonomic computing systems using Enterprise Java Beans

(EJBs). First, we describe the structure and functionality of an MDD tool that visually

captures the design of EJB applications, their quality of service (QoS) requirements,

and the autonomic properties applied to their EJBs. Second, the paper describes how

MDD tools can generate code to plug EJBs into a Java component framework that

provides autonomic capabilities.

Keywords: Autonomic Applications Model-Driven Development En-

terprise Java Beans

1 Introduction

Autonomic computing challenges. Developing and maintaining en-

terprise applications is hard, due in part to their complexity and the

mailto:gokhale}@dre.vanderbilt.edu

impact of human operator error, which have been shown to be a signifi-

cant contributor to distributed system repair and down time [19]. The

aim of autonomic computing is to create distributed applications that

have the ability to self-manage, self-heal, self-optimize, self-configure,

and self-protect [13], thereby reducing human interaction with the sys-

tem to minimize down-time from operator error. Although the benefits

of autonomic computing are significant [13], the pressures of limited

development timeframes and inherent/accidental complexities of large-

scale software development have discouraged the integration of sophis-

ticated autonomic computing functionality into distributed applications.

Some enterprise application platforms, such as Enterprise Java Beans

(EJB) [17], offer limited autonomic features, such as application server

clustering capabilities, though they tend to have large development

teams and long development cycles.

A key challenge limiting the use of autonomic features in enterprise

applications today is the lack of design tools and frameworks that can

(1) alleviate the complexities stemming from the use of ad hoc methods

and (2) generate code that mirrors the specifications of the model.

Some infrastructure does exist, such as IBM’s Autonomic Computing

Toolkit [10], which focuses on system-level logging and management.

System-level autonomic toolkits are inadequate, however, for fine-

grained autonomic capabilities, such as adjusting algorithms to handle

different request demands, which are intended to fix problems early

before an entire application must be restarted.

To address the limitations with system-level autonomic toolkits, com-

ponent-level autonomic frameworks are needed to reduce the effort of

developing autonomic applications. Component-level autonomic prop-

erties support more fine-grained healing, optimization, configuration,

monitoring, and protection than system-level toolkits. For example, a

mission-critical command and control system for emergency re-

sponders should be able to shutdown/restart application components

selectively as they fail, rather than shutdown/restart the entire applica-

tion. With existing autonomic infrastructure based on the system-level,

the failure of a key component triggers a restart of the entire application

[4], which can incur excessive overhead, particularly for Java-based

systems due to JVM initialization latency. In contrast, a component-

level autonomic framework provides mechanisms to restart only the

point of failure [3].

Creating applications with either system or component-level auto-

nomic frameworks requires moving large amounts of state data, analy-

sis data, actions plans, and execution commands between components.

These types of applications also require careful weaving of monitoring,

analysis, planning, and execution logic into the functional components

of the system. Analyzing the autonomic aspects of the application

manually, such as checking whether the right state is being monitored

by the right components, is a complex process.

Simplifying autonomic system development via MDD techniques.

Model-driven development (MDD) [21] is a generative software paradigm

that combines

• Domain-Specific Modeling Languages (DSMLs) whose type systems

formalize the application structure, behavior, and requirements within

particular domains, such as software defined radios, avionics mission

computing, online financial services, warehouse and freight manage-

ment, or even the domain of middleware platforms. DSMLs are de-

scribed using metamodels, which define the relationships among con-

cepts in a domain and precisely specify the key semantics and con-

straints associated with these domain concepts. Developers use DSMLs

to build applications using elements of the type system captured by

metamodels and express design intent declaratively rather than impera-

tively.

• Transformation engines and generators that analyze certain aspects of

models and then synthesize various types of artifacts, such as source

code, simulation inputs, XML deployment descriptions, or alternative

model representations. The ability to synthesize artifacts from models

helps ensure the consistency between application implementations and

analysis information associated with functional and QoS requirements

captured by models. This automated transformation process is often re-

ferred to as “correct-by-construction,” as opposed to conventional

handcrafted “construct-by-correction” software development processes

that are tedious and error-prone.

MDD tools are a promising means of reducing the cost associated

with creating and validating autonomic computing systems. Models of

autonomic systems developed with MDD tools can be constructed and

checked for correctness (semi-)automatically to ensure that application

designs meet autonomic requirements. Tools can also generate the vari-

ous capabilities to move data, coordinate actions, and perform other

autonomic functions.

To address the need for component-level autonomic computing – and

to avoid ad hoc techniques that manually imbue autonomic qualities

into distributed applications – we have created the J3 Toolsuite, which

is an open-source MDD environment that supports the design and im-

plementation of autonomic applications. J3 consists of several MDD

tools and autonomic computing frameworks, including (1) J2EEML,

which captures the design of EJB applications, their quality of service

(QoS) [21] requirements, and the autonomic adaptation strategies of

their EJBs via a domain-specific modeling language (DSML) [14], (2)

Jadapt, which is a J2EEML model interpreter that analyzes the QoS

and autonomic properties of J2EEML models, and (3) JFense, which is

an autonomic framework for monitoring, configuring, and resetting in-

dividual EJBs [6].

This paper describes the structure and functionality of J2EEML and

shows how it simplifies autonomic system development by providing

notations and abstractions that are aligned with autonomic computing,

QoS, and EJB terminology, rather than low-level features of operating

systems, infrastructure middleware platforms, and third-generation pro-

gramming languages. We also describe how (1) Jadapt generates EJB

and Java code from J2EEML models to ensure that autonomic applica-

tions meet their specifications and to reduce implementation time and

(2) JFense provides a set of reusable autonomic components that allow

developers to plug-in EJB applications and focus on autonomic logic,

rather than the glue for constructing autonomic systems. Finally, we

present a case study that qualitatively and quantitatively evaluates how

the J3 Toolsuite reduces the complexity of developing an autonomic

EJB application.

Fig. 1. An Autonomic Architecture for Scheduling Highway Freight Shipments

Our case study centers on an EJB-based Constraint Optimization aNd

Scheduling sysTem (CONST) that schedules highway freight shipments

using the multi-layered autonomic architecture shown in Figure 1. The

system has a list of freight shipments that it must schedule. It uses a

constraint-optimization engine to find a cost effective assignment of

drivers and trucks to shipments.

A central component in Figure 1 is the Route Time Module (RTM),

which determines the route time from a truck’s current location to a

shipment start or end point. The RTM uses a geo-database and the GPS

coordinates from the truck to perform the calculation. This module is

critical to the proper operation of the optimization engine. Since a

heavy load is placed on the RTM, it must be designed to maintain its

QoS assertions, such as ensuring that the RTM does not exceed a

maximum response time of 100 milliseconds. QoS assertions are prop-

erties that the system can introspectively measure about itself to de-

termine whether the measured value for the property is beneficial to the

system. These measured QoS goals allow the system to decide whether

it is in a good state and predict whether it will continue to remain in a

good state.

Paper organization. The remainder of this paper is organized as fol-

lows: Section 2 describes the MDD J3 Toolsuite for developing auto-

nomic EJB applications; Section 3 gives an overview of J2EEML and

describes key challenges we faced when developing it; Section 4 quan-

tifies the reduction in manual effort achieved by using the J3 Toolsuite

on CONST; Section 5 compares our work with related research; and

Section 6 presents concluding remarks.

2 The J3 Toolsuite for Autonomic System De-
velopment

The J3 Toolsuite contains the following MDD tools and component

middleware frameworks that address the challenges of developing auto-

nomic EJB applications:

• J2EEML, which is a DSML-based MDD tool tailored for design-

ing autonomic EJB applications. J2EEML uses visual represen-

tations to model domain-specific abstractions, such as beans, QoS

properties, and adaptations. J2EEML also provides an automated

mapping from QoS requirements to application components.

• Jadapt, which is an MDD tool that produces many artifacts re-

quired to implement autonomic EJB applications modeled in

J2EEML. Jadapt generates code that meets the J2EEML specifica-

tions and also reduces the amount of code that application devel-

opers must write manually.

• JFense, which is an autonomic framework that provides compo-

nents for monitoring, analysis, planning, and execution. Developers

can use these components to avoid writing custom autonomic frame-

works. JFense can be configured to meet the autonomic require-

ments for a range of EJB applications.

This section focuses on the design and function of J2EEML and illus-

trates how it can be used to create structural models of EJB applica-

tions.

J2EEML is a DSML that enables EJB developers to construct models

that incorporate autonomic and QoS concepts as first-class entities.

J2EEML itself was developed for both the Generic Modeling En-

vironment (GME) [15] and the Generic Eclipse Modeling System

(GEMS) [22], which are general-purpose MDD environments that we

use to simplify the creation of metamodels and model interpreters.

Metamodels characterize the roles and relationships in the autonomic

computing domain, and model interpreters generate many artifacts re-

quired to implement autonomic EJB applications. J2EEML captures the

relationship between QoS assertions and application components to

address key design challenges of developing autonomic applications.

For example, J2EEML helps developers understand which components

to monitor in their EJB applications by enabling them to visualize and

analyze the relationships between components and QoS assertions.

Developers use J2EEML to capture the design of autonomic systems

and the mapping of components to QoS assertions in four phases: (1)

they create a structural model of the EJBs comprising an autonomic

system, (2) they create models of the QoS properties that the system is

attempting to maintain, (3) they map these QoS properties to the spe-

cific beans within the system that the properties are measured from, and

(4) they design courses of action to take when the desired QoS proper-

ties are not maintained. This modeling process captures the structure of

the system, how the QoS properties are related to the structure, and

what adaptation should occur if a QoS property is not within an accept-

able range.

Fig. 2. J2EEML Remote Interface Composition Model for the TruckStatusModule

2.1 Modeling EJB Structures with J2EEML

The first piece of a J2EEML model is its EJB structural model, which

describes the components of the system that will be managed

autonomically. This model defines the beans that compose the system

and captures the EJB specifics of each bean, including JNDI names,

transactional requirements, security requirements, package names, de-

scriptions, remote and local interface composition, and bean-to-bean

interactions. An EJB structural model is constructed via the following

six steps:

1. Each session bean is represented by dragging and dropping session

bean atoms into the J2EEML model. Developers then provide the

Java Naming and Directory Interface (JNDI) name of each bean, its

description, and its state type (i.e., stateful or stateless).

2. For each session bean, a model is constructed of the business meth-

ods and creators supported by the bean by dragging and dropping

method and creator atoms. Figure 2 shows a model of the remote in-

terface composition of the TruckStatusModule from CONST.

3. Entity beans are dragged and dropped into the model to construct the

data access layer. These beans are provided a JNDI name/description

and properties indicating if they use container managed persistence

(CMP) or bean managed persistence (BMP).

4. Persistent fields, methods, and finders are dragged and dropped into

the entity beans. Each persistent field has properties for setting visi-

bility, type, whether it is part of the primary key, and its access type

(i.e., read-only or read-write).

5. Relationship roles are dragged and dropped into the entity beans and

connected to persistent fields. These relationship roles can be con-

nected to other relationship roles to indicate entity bean relationships.

6. Connections are made between beans to indicate bean-to-bean inter-

actions. Capturing these interactions allows Jadapt to later generate

the required JNDI lookup code for a bean to obtain a reference to an-

other bean.

After these six steps have been completed, the J2EEML model contains

enough information to represent the composition of the EJBs.

Fig. 3. J2EEML Structural Model Showing Bean-to-Bean Interactions

Figure 3 shows a J2EEML structural model of CONST. In this fig-

ure, each bean within CONST has been modeled via J2EEML. Interac-

tions between the beans are also modeled, thereby allowing developers

to understand which beans interact with one another. Figure 3 also il-

lustrates snippets of the XML deployment descriptor and Java class

generated for the Scheduler.

To support decomposition of complex enterprise architectures into

smaller pieces, J2EEML allows EJB structural models to contain child

EJB structural models or subsystems. Beans within these children show

up as ports that can receive connections from the parent solution. This

hierarchical design allows developers to decompose models into man-

ageable pieces and enables different developers to encapsulate their

designs.

For CONST, we constructed a structural model of each bean required

for the Route Time Module, constraint-optimization engine, truck status

system, and incoming pickup request system, as shown in Figure 3. The

model also includes information on the entity beans used to access the

truck location and pickup request databases.

Using J2EEML provides several advantages in the design phase, in-

cluding (1) visualization of beans and their interactions, component

security requirements, system transactional requirements, and interac-

tions between beans, (2) enforcement of EJB best practices, such as the

Session Façade pattern [1], which hides Entity beans from clients

through Session beans, and (3) model validation, including checks for

proper JNDI naming. J2EEML’s visualization benefits significantly

decrease the difficulty of understanding system structure and in-

teractions. The model validation and enforcement of best design prac-

tices facilitate rapid creation of a well-designed solution that is correct-

by-construction.

3 Designing J2EEML to Address Key Con-
cerns of Autonomic Computing

Autonomic applications require four elements to achieve their goals:

monitoring, analysis, planning, and execution [13]. These elements

form a controller that observes and adapts the application to maintain

its QoS goals, such as maintaining a minimum response time of 100ms

for requests. This section describes how the monitoring, analysis, and

planning aspects of autonomic systems presented unique challenges

when designing and building J2EEML and shows how we addressed

each challenge. To focus the discussion, we use the Route Time Module

(RTM) shown in Figure 1 as a case study to illustrate key design chal-

lenges associated with autonomic systems.

3.1 Monitoring

Monitoring is the phase in autonomic systems where applications ob-

serve their own state. Since this state information is used in later phases

to control system behaviors it is crucial that the right information be

collected at the right times without adversely impacting system func-

tionality and QoS. The following are key design challenges faced when

developing the monitoring aspects of autonomic systems:

Challenge 3.1.1: Providing the ability to specify the large range of

data that can be monitored by the system. Developers of autonomic

systems must address the issue of how to self-monitor key data, e.g., by

capturing CPU and memory utilization, exceptions thrown by the ap-

plication, or error messages in a log. The model for specifying what

information to capture from the system must be flexible and support a

range of data types. The model must also be extensible and support

unforeseen future data types that might be needed later.

A core concept behind J2EEML is that an autonomic EJB application

can measure properties of its current state introspectively and deter-

mine if the property values indicate the application is in a safe or opti-

mal state. J2EEML models the properties it measures via QoS asser-

tions, which determine which properties an autonomic system can in-

trospectively measure and analyze to determine if the properties are in

an acceptable assertion range. Each assertion provides properties for

setting its name and description. Developers can drag and drop these

assertions into J2EEML models.

The J2EEML QoS assertions model is critical for understanding an

autonomic system’s QoS properties, how they can be measured, what

their values should be, and how degradations in them can be corrected.

Understanding QoS assertions is also crucial to designing the structural

architecture of EJB applications and understanding how they meet

those assertions. Capturing and mapping QoS requirements to the ap-

propriate structural architecture have traditionally used natural lan-

guage descriptions, such as “the service must support 1,000 simultane-

ous users with a good response time.” Due to the lack of an unambigu-

ous formal notation, such descriptions are prone to different interpreta-

tions, which result in architectures that do not meet the QoS require-

ments. Choosing an EJB architecture that best fits the QoS require-

ments can be complex and error-prone since specification ambiguity

and hidden architectural trade-offs make it hard to choose the appro-

priate design.

For example, deciding whether to use remote interfaces for a J2EE

implementation of a service can have a substantial impact on end-to-

end system QoS. Remote interfaces allow distribution of beans across

servers, which can increase scalability and reliability. Distribution can

also increase latency, however, since requests must travel across a net-

work or virtual machine boundaries.

With the RTM in our case study, one QoS assertion is the average re-

sponse time. This QoS assertion states that the system will measure all

requests to the RTM and track the average time required to service each

request. If the calculated average response time exceeds 50 milli-

seconds, the assertion is false, indicating that the RTM is taking too

long to respond, otherwise the assertion is true, indicating that the RTM

is responding properly.

Fig. 4. J2EEML Model Associating the ResponseTime QoS Assertion with the RouteTi-

meModule

Figure 4 illustrates a J2EEML model of the scheduling system and the

association of the RTM to the ResponseTime QoS property. This model

shows J2EEML’s ability to model QoS properties as aspects [16] that

are applied to a component. When the model is interpreted and the Java

implementation generated, the association between the RTM and Re-

sponseTime assertion will generate the appropriate monitoring code in

the RTM’s implementing class.

Challenge 3.1.2: Building a system to specify where monitoring

logic should reside in the system. The decision of what to monitor

directly affects where the monitoring logic will reside. To monitor a log

for errors, the logic could be at any level of the application, such as a

central control level. For observing exceptions or the load on a specific

subcomponent of the application, the monitoring logic must be embed-

ded more deeply. In particular, developers must position the monitoring

capability precisely so that it is close enough to capture the needed in-

formation, but not so deeply entangled in the application logic that it

adversely affects performance and separation of concerns [20].

In CONST, for example, we must ensure separation of concerns in

the application design and find an efficient means of monitoring. A

natural approach to collecting request statistics for the RTM might be

to simply add the appropriate state collection code into the route time

logic. The monitoring logic for the RTM, however, should not be entan-

gled with the route time calculation logic and reduce its readability and

maintainability. Moreover, the time to monitor and analyze each re-

quest should be insignificant compared to the time to fulfill each route

request.

After the structural and QoS assertion models are completed, devel-

opers can use J2EEML to map QoS assertions to EJBs in the structural

model. This mapping documents which QoS assertions should be ap-

plied to each component. It also indicates where monitoring, analysis,

and adaptation should occur for an autonomic system to maintain those

assertions. For example, to determine the average response time of the

RTM, calls to the RTM’s route time calculation method must be inter-

cepted to calculate their servicing time. The relationship between the

RTM bean and average response time assertion in the model indicates

that the RTM bean must be able to monitor its route time calculation

requests.

J2EEML supports aspect-oriented modeling [8] of QoS assertions,

i.e., each QoS assertion in J2EEML that crosscuts component bounda-

ries can be associated with multiple EJBs. For example, maintaining a

maximum response time of 100 milliseconds is crucial for both the

RTM and the Scheduler bean. Connecting multiple components to a

QoS assertion, rather than creating a copy for each EJB, produces

clearer models. It also shows the connections between components that

share common QoS assertions. Figure 5 shows a mapping from QoS

assertions to EJBs. Both the RTM and the Scheduler in this figure are

associated with the QoS assertions ResponseTime and AlwaysAvailable.

The ResourceTracker and ShipmentSchedule components also share the

AlwaysAvailable QoS assertion in the model.

Fig. 5. J2EEML Mapping of QoS Assertions to EJBs

Components can have multiple QoS assertion associations, which

J2EEML supports by either creating a single assertion for the compo-

nent that contains sub-assertions or by connecting multiple QoS asser-

tions to the component. If the combination of assertions produces a

meaningful abstraction, hierarchical composition is preferred. For ex-

ample, the RTM is associated with a QoS assertion called AlwaysAvail-

able constructed from the sub-assertions NoExceptionsThrown and

NeverReturnsNull. Combining MinimumResponseTime and NoExcep-

tionsThrown, however, would not produce a meaningful higher-level

abstraction, so the multiple connection method is preferred in this case.

3.2 Analysis

Analysis is the phase in autonomic systems, which takes state infor-

mation acquired by monitoring and reasons about whether certain con-

ditions have been met. For example, analysis can determine if an appli-

cation is maintaining its QoS requirements. The analysis aspects of an

autonomic system can be (1) centralized and executed on the entire

system state or (2) distributed and concerned with small discrete sets of

the state. The following are key challenges faced when developing an

autonomic analysis engine:

Challenges 3.2.1: Building a model to facilitate choosing the type

of analysis engine and Challenge 3.2.2: Building a model to fa-

cilitate choosing how the engine should be decomposed. To choose a

hierarchical vs. monolithic analysis engine, the tradeoffs of each must

be understood. Concentration of analysis logic into a single monolithic

engine enables more complex calculations. However, for simple calcu-

lations, such as the average response time of the RTM component, a

monolithic engine requires more overhead to store/retrieve state infor-

mation for individual components than an analysis engine dedicated to

a single component. A monolithic analysis engine also provides a cen-

tral point of failure. A key design question is thus where analysis

should be done and at what granularity.

A model to facilitate choosing the appropriate type of analysis engine

must enable developers to identify what data types are being analyzed,

what beneficial information about the system state can be gleaned from

this information, and how that beneficial information can most easily

be extracted. It is important that the model enable a standard process

for examining the required analyses and determining the appropriate

engine type.

To create an effective analysis engine, developers must determine the

appropriate hierarchy or number of layers of analysis logic. A key issue

to consider is whether an application should have a single-layer vs. a

hierarchical multi-layered analysis engine. At each layer, the original

monitoring design questions are applicable, i.e., what should be moni-

tored and how should it be monitored? A model to enable these deci-

sions must clearly convey the layers composing the system. It must also

capture what analysis takes place at each layer and how each layer of

analysis relates with other layers.

In the context of our highway freight scheduling system, a key ques-

tion is whether the RTM’s autonomic layer analyzes its response time

or whether a layer above the RTM should do it. At each layer, the

analysis design considerations are important too, e.g., what information

the system is looking for in the data, how it finds this information, and

how this can be better accomplished by splitting the layer. For exam-

ple, a developer must consider whether every request to the RTM

should be monitored to determine if the RTM is meeting its minimum

response time QoS. Conversely, perhaps only certain types of requests

known to be time consuming should be monitored. Another question

facing developers is how the RTM’s monitoring logic sends data to its

analysis engine.

Developers can use J2EEML to design hierarchical QoS assertions to

simplify complex QoS analyses via divide-and-conquer. A hierarchical

QoS assertion is only met if all its child assertions are met, i.e., all the

child QoS assertions must hold for the parent QoS assertion to hold.

With respect to the RTM, the QoS assertion GoodResponseTime only

holds if both the child QoS assertions AverageResponseTime and

MaximumResponseTime also hold. This hierarchical composition is

illustrated in Figure 6, where GoodResponseTime is an aggregation of

several properties of the response time.

Fig. 6. J2EEML Hierarchical Composition of ResponseTime QoS Assertion J2EEML

Hierarchical Composition of ResponseTime QoS Assertion

Modeling QoS assertions hierarchically can help enhance developer

understanding of what type of analysis engine to choose. A small num-

ber of complex QoS assertions that cannot be broken into smaller

pieces implies the need for a monolithic analysis engine. A large num-

ber of assertions – especially hierarchical QoS assertions – implies the

need for a multi-layered hierarchical analysis engine.

Modeling QoS assertions hierarchically also enhances developer un-

derstanding of how to decompose the analysis engine into layers. The

hierarchical model of QoS assertions corresponds directly to the de-

composition of the analysis engine into layers. Developers can use

J2EEML to first add complex QoS assertions to their models and then

determine if the complex assertion can be accomplished by combining

the results of several smaller analyses. If so, developers can add these

smaller QoS assertions as children of the original QoS assertion to rep-

resent the smaller analyses and then apply this iterative process to the

new children.

3.3 Planning

Planning is the phase in autonomic systems where applications exam-

ine the results of their analyses and decide what actions to take to reach

their assertions. For our highway freight scheduling example, this could

involve changing the RTM to use a less precise but faster algorithm that

maintains the minimum response time as demand grows. A typical

autonomic application may have hundreds of assertions and planning

the correct actions in the face of QoS failures is critical to an autonomic

application. The following are key challenges faced when developing

an autonomic planning engine:

Challenge 3.3.1 Designing a means to specify layered adaptation

plans. As with monitoring and analysis, planning can be implemented

with a layered architecture. A simple, one-layer architecture would

monitor, reason, and react to all system events at one level, which

works well for macro-level events and actions. For applications that

need more flexible and fine-grained control of their behavior this sim-

ple one-layer architecture is less suitable. For example, if the RTM

needs to switch algorithms in response to a degradation in response

time, a small controller located close to the RTM would be able to react

more quickly and with less overhead than a larger controller located

farther away. If however, the RTM needed to switch algorithms due to

a period of high demand predicted from historical data, a small control-

ler located close to the RTM is infeasible since it is unlikely to have

access to the appropriate data for the prediction. Moreover, a predicted

period of high demand may necessitate changes to components other

than just the RTM and thus require a large monolithic controller with

access to multiple components. To increase flexibility and fine-grained

control, therefore, more layers can be integrated into the system. Layers

distribute intelligence throughout the system and support a divide-and-

conquer approach to planning.

After the planning is provisioned into layers, each layer must be as-

signed a responsibility to react to and recover from QoS failures. In

CONST, one layer ensures that the RTM is always available and the

next layer down ensures that a minimum response time is maintained.

Intelligent separation of responsibilities can produce hierarchical chains

of command that reduce the complexity of accomplishing the overall

assertion. Finding these well-proportioned divisions of labor is hard.

J2EEML models adaptation by specifying the actions the system

should take when a QoS assertion fails. Each application component

may have a group of assertions associated with it. If one assertion does

not hold for the component, it indicates a QoS failure that must be

fixed. Developers can use J2EEML to specify groups of actions that

must be taken to correct these failures.

Once an assertion has failed to hold for a specific component, the ap-

plication must determine how to fix the problem. To model the appro-

priate course of action, J2EEML uses the concept of adaptation plans,

which are groups of actions that can be performed to fix a specific type

of QoS assertion failure. For example, if the average response time

assertion fails, the RTM must change its calculation algorithms to be

less precise but run faster. Figure 7 shows a J2EEML model that asso-

ciates the ResponseTime QoS assertion with the ChangeAlgorithms

single-layered adaptation plan.

Figure 7: An Association between the ResponseTime QoS Assertion and the ChangeAlgo-

rithms Adaptation Plan

Adaptation plans indicate the responsibilities of an autonomic layer,

i.e., the adaptation plan specifies the actions that the autonomic layer

can perform in the event of a QoS failure. This association also guides

the selection of a single-layer or multi-layered planning architecture. If

a complex QoS assertion does not have adaptation plans associated

with its children, the proper course of action to take when one of the

child QoS assertions fails cannot be determined by the data available to

the child. If only top-level QoS assertions have associated adaptation

plans, this implies the need for a single planning layer. If, however, the

QoS children have adaptation plans associated with them, this implies

that they can determine the corrective course of action and require a

multi-layered planning solution.

3.4 Reducing the Complexity of Developing Auto-

nomic Systems with JFense and Jadapt

JFense is a component-level framework that performs autonomic

functions, such as monitoring the QoS of EJBs, analyzing system state,

communicating between autonomic layers, determining how to adapt to

QoS failures, and executing adaptation plans. Jadapt is a J2EEML

model interpreter that supports rapid development and verification of

autonomic code by generating implementations of EJBs from a struc-

tural model.

Figure 8, Developing an Autonomic Application with the J3 Toolsuite.

Jadapt serves as a bridge between a J2EEML model and the JFense

framework, i.e., it generates Java code for (1) the J2EEML structural

model and (2) plugging the generated EJBs into the JFense framework.

Jadapt generates configurations for JFense to mirror the J2EEML

model, stubs for the EJBs, EJB deployment descriptors, and monitor-

ing, analysis, planning, and execution class stubs, which relieves de-

velopers from tedious and error-prone coding tasks. Moreover, Jadapt

ensures that the code mirrors the system architecture in the J2EEML

implementation, which reduces problems stemming from misinterpret-

ing specifications and inconsistencies between interfaces and their im-

plementations.

Figure 9, The JFense Architecture

To simplify the development of autonomic EJB applications, we cre-

ated the JFense framework for constructing autonomic EJB systems.

JFense provides a multi-layered architecture for monitoring, analyzing,

planning, and executing in an autonomic system. The basic structure of

JFense is defined as follows:

1.Each bean has a guardian class responsible for monitoring its state

and running QoS analysis, as shown in Figure 9. The beans push state

data out to the guardians using an event-based system. The guardians

act as observers on the beans, i.e., they are the key elements for moni-

toring beans and routing state information to the proper QoS analysis

objects.

2.An analysis class for each QoS goal is created. These QoS goals are

used by the guardians to analyze the bean’s current state and deter-

mine if it is meeting its QoS requirements. Hierarchical QoS goals

are created through aggregation.

3.Each guardian class has an associated action plan for determining the

course of action if a QoS goal fails. The guardian also notifies any

guardians at the level above when it cannot maintain its QoS goals.

When a bean’s state changes, it notifies its guardian that a state

change event has occurred. The guardian then uses each of its QoS

analysis objects to analyze the bean’s state and ensure that its objec-

tives are still being met.

Bean requests are the default state information monitored by guardi-

ans. Jadapt generates proxies that monitor the input, output, time, and

exceptions thrown for each method accessible through the beans local

or remote interface and pass it to the Guardians.

Beans monitor requests on their accessible methods through gener-

ated proxies. When a request is issued to the bean, the generated proxy

first receives the request and notes the starting time. The proxy then

notifies the guardian that a request is starting so that any pre-conditions

on the request can be analyzed. These pre-conditions can be used to

identify QoS failures in other portions of the system, other systems, or

clients. The proxy then passes the request to the actual method that

contains the logic to fulfill it (we refer to this method as the imple-

menting method). When the implementing method has returned, the

bean again notifies its guardian, which enables the guardian to check

post-conditions, such as output correctness or servicing time. Finally,

the result is passed back to the caller.

After the state is routed to the analysis object, it determines if its QoS

property is being met. JFense has several predefined analysis objects

for common functions, such as monitoring request time. Other auto-

nomic analyses can be added by extending the JFense analysis inter-

faces or implementing the class skeletons generated by Jadapt from the

J2EEML model. If the QoS is not being maintained, the analysis object

notifies the guardian, which will either directly execute an action plan

or propagate the QoS failure event up the chain of guardians.

Guardians also use the Strategy pattern [7] to determine how to react

to a QoS failure. Different planning strategies can be plugged into a

guardian at design- or run-time to find the appropriate course of action

for each QoS failure. Strategies can be plugged in at both design and

run-time. The default strategy uses a hashing scheme to associate QoS

analysis objects with Command pattern [7] actions, which encapsulate

actions as objects, to allow adaptations to be queued, logged, or un-

done. In the event of a QoS failure, the appropriate action is looked up

from the table and executed.

JFense alleviates developers of the need to build an autonomic frame-

work from scratch. In the highway freight scheduling system, for ex-

ample, JFense handles inter-layer communication so that developers

can focus on the logic needed to analyze the state data, determine the

correct course of action, and adapt the system. JFense also provides the

communication, monitoring, and message bus infrastructure to glue the

provided logic together, which significantly reduces the time and effort

required to build autonomic applications that monitor their own state

and adapt to achieve their goals.

4 Evaluating Development Effort Savings of
the J3 Toolsuite

We developed the highway freight scheduling system case study to

illustrate the advantages of using the J3 Toolsuite to develop autonomic

EJB applications. The initial implementation of this case study required

~1200 lines of Java code. The generated EJB implementations ac-

counted for nearly 75% of the complete code base, the test framework

accounted for 20%, and the JFense glue code accounted for 5%. Using

a traditional development approach, all of this code would have been

developed manually. With the J3 Toolsuite, in contrast, ~883 lines of

code were generated by Jadapt from our J2EEML specification.

Using our highway freight scheduling case study, we evaluated the

impact of adding new sources of information that required monitoring

and where the logic would reside. In our initial design, only response

times of the Scheduling component were monitored. We then refac-

tored the design to monitor response times of the RTM component, as

well. Adjusting the design using J2EEML and re-generating the im-

plementation took approximately five mouse clicks and resulted in the

generation of ~20 new lines of source code that correctly mirrored the

specification. This refactoring can be seen in Figure 10.

Figure 10, Refactoring the RTM’s QoS Assertions

To evaluate the impact of design refactoring on the analysis and plan-

ning layers of the highway freight system, we modified its initial design

by changing its response time analysis and adaptation into a hierarchy

of average and maximum response times. The refactoring in J2EEML

was straightforward and took ~12 mouse clicks. The change generated

~75 new lines of code, which minimized the complexity of the design

change and implementation update. Again, for large development pro-

jects without MDD tool support, many such changes would occur and

hence the manual redevelopment effort would be much higher.

To evaluate the development effort associated with sharing ad-

aptation plans between QoS assertions, we refactored our highway

freight system to share the improved response time adaptation plan

between both the average response time QoS assertion and the maxi-

mum response time QoS assertion. After this change was made to the

model and Jadapt regenerated the model artifacts, 36 new lines of code

were present that updated the existing adaptation plan to include the

new adaptations and changed the adaptation plan of the maximum re-

sponse time to use its modified adaptation plan. As with other refactor-

ings we analyzed, adjusting the J2EEML model and regenerating the

code required ~12 mouse clicks, while developing the equivalent func-

tionality manually required significantly more effort.

As with the autonomic modeling and generation capabilities of the J3

Toolsuite, significant reductions in development complexity were

yielded by applying MDD to the implementation of the structural

model. For example, when a single SessionBean with one method

was added to the J2EEML model, the resulting bean, interfaces, de-

ployment descriptor, and helper classes generated 116 lines of Java

code and 80 lines of XML. The model change in J2EEML required two

drag and drop operations. As with the autonomic code generated by

Jadapt, the code was correct-by-construction and the JNDI name of the

bean was also correct. Adding two interactions from existing beans to

the new bean generated another ~12 lines of error-prone JNDI

lookup/narrowing code that was automatically generated by Jadapt,

thereby simplifying developer effort and enhancing confidence in the

results.

5 Related Work

An increasing number of MDD tools exist for modeling component-

based systems. Cadena [9] is an MDD tool for building and modeling

component-based DRE systems, with the goal of applying static analy-

sis, model-checking, and lightweight formal methods to enhance these

systems. Other tools, such as Rational Rose, provide UML modeling

capabilities for component-based systems. In contrast to J2EEML,

these tools are not tailored to the domain of modeling autonomic func-

tionality in component-based systems. For example, they lack the abil-

ity to establish the critical mapping between QoS properties, compo-

nents, and adaptations, which forces developers to (1) resort to tradi-

tional textual descriptions for specifying QoS properties and (2) main-

tain separate models for understanding how the QoS, adaptation, and

components in the system interrelate. As a result, it is hard to under-

stand how an application will monitor itself and how it will react to

QoS failures.

Other middleware approaches to managing the QoS of distributed ap-

plications are similar to JFense. The Generic Object Platform Infra-

structure (GOPI) [5] provides a pluggable and modular platform for the

development of middleware. GOPI, in particular, includes support for

annotating interface interaction points with QoS attributes. As with J3,

there is no limitation on what can be considered a QoS attribute. These

attributes are mapped to specific middleware configurations through

code to tailor an application’s performance. QoS groups can be created

to partition the interaction points into sets that share QoS requirements.

JFense also provides the ability to associate components that have simi-

lar QoS requirements. JFense, however, allows a single component to

be associated with multiple QoS groups whereas GOPI does not. In

GOPI, each communication protocol can have a QoS manager associ-

ated with it to ensure that a communication binding maintains its re-

quired QoS. This design is similar to the JFense approach of using

Guardian classes to monitor EJBs and notify the appropriate adapta-

tions when QoS degrades. GOPI requires that developers implement

the planning logic that determines what response should be taken to a

QoS degradation. By using the J3 toolsuite, the planning logic is auto-

matically generated from the J2EEML model. Furthermore, adaptations

can be written once and incorporated into multiple aspects of an appli-

cation by merely updating the J2EEML model and regenerating the

JFense code. Using a model-driven middleware approach provides sig-

nificant benefits to the implementation and re-factoring of adaptation

logic when compared to hand-coding with a platform such as GOPI.

QuO [23] is another middleware architecture for mapping QoS to ob-

jects. In QuO, the state of the operating environment can be partitioned

into regions. Transitions between these regions trigger adaptive behav-

ior. This architecture is similar to how JFense operates. With JFense,

adaptations occur as assertions become true or false. A key difference

between J3 and Quo is that J3 is a complete model-driven process for

developing adaptive applications and not just a QoS-aware middleware

framework. With J3, most of the tedious configuration and implementa-

tion code is generated from the modeling tool. As discussed previously,

this greatly reduces the cost of re-factoring adaptations as the under-

standing of the target operating domain improves. Moreover, it de-

creases the initial entry cost of building an adaptive application.

IBM’s Autonomic Toolkit [18] addresses the issues of monitoring,

analysis, planning, and executing autonomic applications. It includes

the Autonomic Management Engine, which monitors events, analyzes

them, then plans and executes corrective action on a computing re-

source; the Generic Log Adapter [10] for Autonomic Computing,

which converts existing log files to the Common Base Event format

[11]; and the Log and Trace Analyzer for Autonomic Computing,

which reads logs in the Common Base Event format, correlates the logs

based on different criteria, and displays the correlated log records.

These tools do not, however, address the complexity of integrating

autonomic functionality into applications, i.e., they do not help devel-

opers design their autonomic applications or implementing the logic

required by them. In contrast, the J3 Toolsuite is specifically tailored to

reducing design and implementation complexity, as well as providing a

runtime framework.

Another related research area is microrebooting [3], which posits that

entering unsafe states in large scale systems is unavoidable and can be

combated by recursively rebooting larger and larger portions of the

system until the unsafe state is cleared. This research is complimentary

to the work of J2EEML and JFense. JFense provides a framework

whereby rebooting logic can be inserted at the component level to en-

able microrebooting. Moreover, in J2EEML, application designers can

specify exactly which components must support rebooting and use

Jadapt to automatically weave the required code into those locations.

6 Concluding Remarks

In theory, autonomic systems can minimize the impact of human er-

ror in development and management. In practice, however, it is hard to

develop the monitoring, analysis, planning, and execution aspects re-

quired for autonomic systems reliably and productively since de-

velopers must reason about complex sets of QoS assertions and ensure

that applications meet them. Model-driven autonomic capabilities pro-

vide a means for EJB applications to self-manage and attempt to main-

tain the QoS assertions. To facilitate self-management, the structure of

EJB applications and their QoS assertions must be captured in models

so applications can reason about themselves.

The bridge between the QoS assertions of autonomic systems and

their structural designs involves mapping these assertions to specific

system components. Without this mapping, applications cannot use

introspection to determine whether their QoS assertions are being met.

The J3 Toolsuite described in this paper provides Model-Driven Devel-

opment (MDD) tools and an autonomic computing framework to sup-

port these capabilities to simplify the development of autonomic EJB

applications.

The J2EEML MDD tool helps link assertions and structure by allow-

ing developers to specify this mapping via a DSML. J2EEML also in-

cludes mechanisms for modeling complex EJB structures, interactions,

and architectures and using these models to generate code that mirrors

the specifications from the model, which frees developers from rein-

venting complex autonomic frameworks for each new application.

After capturing structural properties, QoS assertions, and assertion to

structure mapping in J2EEML, developers still must integrate auto-

nomic features into their distributed EJB applications. This integration

is often complicated due to the lack of component-level frameworks for

autonomic systems. To address these concerns, we have developed the

Jadapt code generation tool and the JFense autonomic framework.

Jadapt allows developers to generate the code needed to plug their ap-

plication’s EJBs into JFense. JFense provides a comprehensive and

flexible framework for multi-layered autonomic monitoring, analysis,

planning, and execution architectures, which allows developers to focus

on the system’s business logic and QoS analysis logic.

The following are our lessons learned thus far by developing and us-

ing the J3 Toolsuite:

• Creating a flexible system to aid the development of autonomic EJB

applications is hard, e.g., not all applications want to monitor the

same types of data sets. A DSML must therefore be flexible to in-

corporate unanticipated data sets, yet also handle the most common

cases intuitively. Striking this balance between flexibility and gen-

eral case utility took patience and iteration.

• Developing adaptations for an application is hard. Most developers

do not think about designing components that can be adapted,

swapped, restarted, or reconfigured to handle errors. Providing a

DSML to aid developers in seeing the crosscutting adaptive con-

cerns was hard.

• Creating a model of the mapping from components to QoS proper-

ties and adaptive behavior greatly enhances the ability of developers

to understand the complex behavior of autonomic systems that

would ordinarily be buried in hundreds of source files.

• Constraint checking and code generation can greatly reduce and/or

eliminate hard-to-debug runtime errors, such as JNDI naming errors.

In future work, we are developing increasingly sophisticated auto-

nomic distributed applications using our J3 Toolsuite to serve as a test-

bed for investigating various autonomic architectures. We are also en-

hancing these tools to increase their expressive and code generation

capabilities. Finally, we are planning to use our MDD tools to investi-

gate developing applications for multi-core processors and optimizing

the allocation of threads and components to cores.

The J3 Toolsuite DSMLs, tools, and frameworks are available in

open-source form at www.sourceforge.net/projects/j2eeml.

References

1. Alur D, Crupi J, Malks D (2003) J2EE Core Patterns. Sun Microsystems Press

2. Asikainen T, Männistö T, Soininen T (2004) Representing Feature Models of Software

Product Families Using a Configuration Ontology ECAI 2004. Workshop on Configuration

3. Candea G, Kawamoto S, Fujiki Y, Friedman G, Fox A (2004) Microreboot -- A Technique

for Cheap Recovery. In: Proc. 6th Symposium on Operating Systems Design and Implementa-

tion (OSDI), San Francisco, CA, December

4. Candea G, Fox A (2001) Designing for High Availability and Measurability. In: Proc. of the

1st Workshop on Evaluating and Architecting System Dependability

5. Coulson G, Baichoo S, Moonian O (2002) A Retrospective on the Design of the GOPI Mid-

dleware Platform. In: ACM Multimedia Journal

6. Eymann T, Reinicke M (2003) Self-Organizing Resource Allocation for Autonomic Net-

works. In: Proc. DEXA Workshops

7. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, New York

8. Gray J, Roychoudhury S (2004) A Technique for Constructing Aspect Weavers Using a

Program Transformation Engine. In: Proc. of AOSD '04, Lancaster, UK

9. Hatcliff J, Deng W, Dwyer M, Jung G, Prasad V (2003) Cadena: An Integrated Develop-

ment, Analysis, and Verification Environment for Component-based Systems. In: Proc. of the

25th International Conference on Software Engineering, Portland, OR

10. IBM, Autonomic Computing Toolkit,

www106.ibm.com/developerworks/autonomic/overview.html.

11. IBM Developerworks, Specification: Common Base Event.

(www106.ibm.com/developerworks/webservices/library/ws-cbe/).

12. Kang K, Cohen SG, Hess JA, Novak WE, Peterson.SA (1990) Feature Oriented Domain

Analysis (FODA) - Feasibility Study. Technical report, Carnegie-Mellon University

13. Kephart JO, Chess DM (2003) The Vision of Autonomic Computing. IEEE Computer,

January

14. Ledeczi A, Bakay A, Maroti M, Volgysei P, Nordstrom G, Sprinkle J, Karsai G (2001)

Composing Domain-Specific Design Environments. IEEE Computer, November

15. Ledeczi A (2001) The Generic Modeling Environment. In: Proc. Workshop on Intelligent

Signal Processing, Budapest, Hungary

16. Loyall J, Bakken D, Schantz R, Zinky J, Karr D, Vanegas R (1998) QoS Aspect Languages

and Their Runtime Integration. In: Proc. of the Fourth Workshop on Languages, Compilers and

Runtime Systems for Scalable Components

17. Matena V, Hapner M (1999) Enterprise Java Beans Specification, Version 1.1. Sun

Microsystems, December

18. Melcher B, Mitchell B (2004) Towards an Autonomic Framework: Self-Configuring

Network Services and Developing Autonomic Applications. Intel Technology Journal,

November

19. Oppenheimer D, Ganapathi A, Patterson D (2003) Why do Internet services fail, and what

can be done about it?. In: Proc. USENIX Symposium on Internet Technologies and Systems,

March

20. Tarr P, Ossher H, Harrison W, Sutton SM (1999) N Degrees of Separation: Multi-

Dimensional Separation of Concerns. In: Proc. 21st International Conference on Software

Engineering, May

21. Wang N, Schmidt DC, Gokhale A, Rodrigues C, Natarajan B, Loyall J, Schantz R., Gill C

(2003) QoS-enabled Middleware. In Q Mahmoud (ed) Middleware for Communications.

Wiley and Sons, New York, (2003)

22. White J, Schmidt D (2005) Simplifying the Development of Product-Line Customization

Tools via MDD. In: Proc. Workshop: MDD for Software Product Lines, ACM/IEEE 8th

International Conference on Model Driven Engineering Languages and Systems, October

23. Zinky J, Bakken D, Schantz. R (1997) Architectural Support for Quality of Service for

CORBA Objects. In: Theory and Practice of Object Systems, Vol. 3, No. 1

