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Abstract. It is hard to develop and evolve software product-line architectures (PLAs) 
for large-scale distributed real-time and embedded (DRE) systems. Although certain 
challenges of PLAs can be addressed by combining model-driven development (MDD) 
techniques with component frameworks, domain evolution problems remain largely 
unresolved. In particular, extending or refactoring existing software product-lines to 
handle unanticipated requirements or better satisfy current requirements requires sig-
nificant effort. This paper describes techniques for minimizing such impacts on MDD-
based PLAs for DRE systems through a case study that shows how a layered architec-
ture and model-to-model transformation tool support can reduce the effort of PLA 
evolution. 
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1. Introduction 
 
Software product-line architectures (PLAs) [20] are a promising technology for industrializing 
software development by focusing on the automated assembly and customization of domain-specific 
components, rather than (re)programming systems manually. Conventional PLAs consist of compo-
nent frameworks [29] as core assets, whose design captures recurring structures, connectors, and 
control flow in an application domain, along with the points of variation explicitly allowed among 
these entities. PLAs are typically designed using common/variability analysis (CVA) [23], which 
captures key characteristics of software product-lines, including (1) scope, which defines the do-
mains and context of the PLA, (2) commonalities, which describe the attributes that recur across all 
members of the family of products, and (3) variabilities, which describe the attributes unique to the 
different members of the family of products.  
 
Despite improvements in third-generation programming languages (such as Java, C#, and C++) and 
runtime platforms (such as component and web services middleware), the levels of abstraction at 
which PLAs are developed today remains low relative to the concepts and concerns within the ap-
plication domains themselves. A promising means to address this problem involves developing 
PLAs using model-driven development (MDD) [9] tools. As shown in Figure 1, MDD tools help 
raise the level of abstraction and narrow the gap between problem and solution domain by combin-
ing (1) metamodeling and model interpreters to create domain-specific modeling languages (DSMLs) 
with (2) CVA and object-oriented extensibility capabilities to create domain-specific component 



frameworks. DSMLs help automate repetitive tasks that must be accomplished for each product in-
stance, e.g., generating code to glue components together or synthesizing deployment artifacts for 
middleware platforms Domain-specific component frameworks factor out common usage patterns in 
a domain into reusable platforms, which help reduce the complexity of designing DSMLs by simpli-
fying the code generated by their associated model interpreters.  
 
To use MDD-based PLA technologies effectively in practice, however, requires practical and scal-
able solutions to the domain evolution problem [30], which arises when existing PLAs are extended 
and/or refactored to handle unanticipated requirements or better satisfy current requirements. Al-
though PLAs can be enhanced by combining component frameworks with DSMLs, existing MDD 
tools do not handle the domain evolution problem effectively since they require significant manual 
changes to existing component frameworks and metamodels. For example, changing metamodels in 
a PLA typically invalidates models based on previous versions of the metamodels. While software 
developers can manually update their models and/or components developed with a previous meta-
model to work with the new metamodel, this approach is clearly tedious, error-prone, and non-
scalable.  

 
Figure 1: Using DSMLs and Component Middleware to Enhance Abstraction and Narrow 

the Gap between Problem and Solution Domain 

This paper describes our approach to PLA domain evolution. We use a case study of a representative 
MDD-based tool for DRE system to describe how to evolve PLAs systematically and minimize hu-
man intervention for specifying model-to-model transformation rules as a result of metamodel 
changes. Our approach automates many tedious, time consuming, and error-prone tasks of model-to-
model transformation to reduce the complexity of PLA evolution significantly.  
 
The remainder of this paper is organized as follows: Section 2 describes our vision of the architec-
ture of PLA for DRE systems, and introduces our case study, which applies the Event QoS Aspect 
Language (EQAL) MDD tool to simplify the integration and interoperability of diverse pub-
lish/subscribe mechanisms in the Bold Stroke PLA; Section 3 describes challenges we faced when 
evolving models developed using EQAL and presents our solutions to these challenges; Section 4 
compares our work on EQAL with related research; and Section 5 presents concluding remarks. 
 
2. Overview of MDD-based PLA and Case Study (EQAL) 
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This section presents an overview of an MDD-based PLA for DRE systems, focusing on the design 
concepts, common patterns, and software architecture. We then describe the structure and function-
ality of EQAL. 
 
2.1 Design Concepts of MDD-based PLAs for DRE Systems 
 
The MDD-based design and composition approach for embedded systems in [10] describes the 
benefits of combining DSML and reusable component frameworks. We believe this approach also 
applies to the design of PLAs for large-scale DRE systems. Figure 2 illustrates the high-level design 
principle and overall architecture of an MDD-based PLA solution that exploits a layered and com-
positional architecture to modularize various design concerns for DRE systems.  

 
Figure 2. MDD-Based Product-line Architecture for DRE Systems  

MDD-based PLAs for DRE systems are based on a core set of platforms, frameworks, languages, 
and tools. DRE systems increasingly run on commercial-off-the-shelf (COTS) middleware and OS 
platforms. Middleware platforms include Real-time Java, Real-time CORBA, Real-time CCM, and 
the Data Distribution Service (DDS) and OS platforms include VxWorks, Timesys Linux, and Win-
dows CE. Since many DRE systems require a loosely-coupled distribution architecture to simplify 
extensibility, COTS middleware typically provides publish/subscribe-based communication mecha-
nisms where application components communicate anonymously and asynchronously by defining 
three software roles: publishers generate events that are transmitted to subscribers via event chan-
nels that accept events from publishers and deliver events to subscribers. Event-based communica-
tion helps developers concentrate on the application-specific concerns of their DRE systems, and 
leaves the connection, communication, and QoS-related details to middleware developers and tools. 
An event-based communication model also helps reduce ownership costs since it defines clear 
boundaries between the components in the application, thereby reducing dependencies and mainte-
nance costs associated with replacement, integration, and revalidation of components. Moreover, 
core components of event-based architectures can be reused, thereby reducing development, quality 
assurance, and evolution effort.  
 



Component frameworks provide reusable building blocks of PLAs for DRE systems.  These 
frameworks are increasingly built atop COTS middleware and OS platforms. Since the philosophy 
of COTS middleware and OS platforms catered to maintaining “generality, wide applicability, port-
ability ad reusability,” customized frameworks are often desired in DRE software product-lines to (1) 
raise the level of abstraction, and (2) offer product-line specific runtime environments.  Examples 
of component frameworks include domain-specific middleware services layer in the Boeing Bold 
Stroke PLA [26], which supports many Boeing product variants, such as F/A-18E, F/A-18F, F-15E, 
and F-15K, using a component-based, publish/subscribe platform built atop The ACE ORB (TAO) 
[27] and Prism [28], which is QoS-enabled component middleware influenced by the Lightweight 
CORBA Component Model (CCM) [19]. The Boeing Bold Stoke PLA supports systematic reuse of 
avionics mission computing functionality and is configurable for product-specific functionality 
(such as heads-up display, navigation, and sensor management) and execution environments (such 
as different networks/buses, hardware, operating systems, and programming languages).  
 

Domain-specific modeling languages (DSMLs) and patterns facilitate the model-based design, 
development, and analysis of vertical application domains, such as industrial process control, tele-
communications, and avionics mission computing. Example DSMLs the include Saturn Site Produc-
tion Flow (SSPF), which is a manufacturing execution system serving as an integral and enabling 
component of the business process for car manufacture industry [11] and the Embedded System 
Modeling Language (ESML) [12], which models mission computing applications in the Boeing 
Bold Stroke PLA. DSMLs are also applicable to horizontal platform domains, such as the domain of 
component middleware for DRE systems, which provide the infrastructure for many vertical appli-
cation domains. Examples of DSMLs for horizontal platforms include Platform Independent Com-
ponent Modeling Language (PICML) [13], which facilitates the development of QoS-enabled com-
ponent-based DRE systems and J2EEML [17], which facilitates the development of EJB applica-
tions. Regardless of whether the DSMLs target vertical or horizontal domains, model interpreters 
can be used to generate various artifacts (such as code and metadata descriptors), which can be inte-
grated with component frameworks to form executable applications and/or simulations. 
As shown in Figure 2, MDD-based PLA defines a framework of components that adhere to a com-
mon architectural style with a clear separation of commonalities and appropriate provisions for in-
corporating variations by integrating vertical/horizontal DSMLs, component frameworks, -
middleware and OS platforms. In this architecture, MDD technologies are used to model PLA fea-
tures and glue components together, e.g., they could be utilized to synthesize deployment artifacts 
[13] for standard middleware platforms. 
 
2.2 The Design of EQAL 
 
The Event QoS Aspect Language (EQAL) is an MDD tool designed to reduce certain aspects of 
component-based publish/subscribe PLA-based DRE systems, such as the Boeing Bold Stroke PLA 
described in Section 2.1. EQAL is implemented using the Generic Modeling Environment (GME) 
[5], which is a toolkit that supports the development of DSMLs. The EQAL DSML provides an in-
tegrated set of metamodels, model interpreters, and standards-based component middleware that 
allowing PLA developers to visually configure and deploy event-based communication mechanisms 
in DRE systems via models instead of programming them manually. EQAL is an example of a 
DSML that supports a horizontal platform domain, i.e., it is not restricted to a particular vertical 
application domain, but instead can be leveraged by multiple vertical domains.  



 

         
    Figure 3. EQAL MDD Tool Architecture           Figure 4. EQAL Framework Evolution 

As shown in     Figure 3, EQAL is a layered architecture that supports several types of abstractions, 
which are subject to change stemming from domain evolution, as discussed in Section 3. The bottom 
layer is the EQAL Runtime Framework, which is a portable, OS-independent framework built atop 
the Component-Integrated ACE ORB (CIAO) QoS-enabled implementation of the Lightweight 
CCM specification. The EQAL Runtime Framework provides an extensible way to deploy various 
event-based communication mechanisms, including a two-way event communication mechanism 
based on direct method invocation, the CORBA Event Service, and TAO’s Real-time Event Service 
[24].  
 
The middle layer in the EQAL architecture is a set of domain models that represent instances of 
modeled DRE systems. These models are created by the EQAL DSML and are used to capture the 
structural and behavioral semantic aspects of event-based DRE systems. 
 
The top layer of the EQAL MDD architecture consists of metamodel that enables developers to 
model concepts of event-based DRE systems, including the configuration and deployment of various 
publish/subscribe services and how these services are used by CCM components. This layer also 
contains several model interpreters that synthesize various types of configuration files that specify 
QoS configurations, parameters, and constraints. The EQAL interpreters automatically generate 
publish/subscribe service configuration files and service property description files needed by the 
underlying EQAL Runtime Framework and CIAO middleware.  
 
Although the EQAL MDD tool could be used to simplify the integration and interoperability of di-
verse publish/subscribe mechanisms in some PLAs, evolving such a MDD-based PLA would often 
bring additional challenges. 
 

3. Resolving Challenges of MDD-based PLA when Facing Domain Evolution 
 
This section examines challenges associated with evolving an MDD-based PLA in the context of the 



Boeing Bold Stroke PLA and the EQAL DSML.  For each challenge, we explain the context in 
which the challenge arises, identify key problems that must be addressed, outline our approach for 
resolving the challenges, and describe how we can apply these solutions using EQAL. 
 
3.1 Challenge 1: Capturing New Requirements into Existing MDD-based Software 
Product-lines for DRE Systems 
 

Context. Change is a natural and inevitable part of the software PLA lifecycle. The changes may be 
initiated to correct, improve, or extend assets or products. Since assets are often dependent on other 
assets, changes to one asset may require corresponding changes in other assets. Moreover, changes 
to assets in PLAs can propagate to affect all products using these assets. A successful process for 
PLA evolution must therefore manage these changes effectively [15]. 

Problem → New requirements must be captured into existing PLAs. DRE systems must evolve 
to adapt to changing requirements and operational contexts. In addition, when some emerging tech-
nologies become sufficiently mature, it is often desirable to integrate them into existing PLAs for 
DRE systems. For example, depending on customer requirements, different product variants in the 
Bold Stroke PLA may require different levels of QoS assurance for event communication, including 
timing constraints, event delivery latency, jitter, and scalability. Even within the same product vari-
ant, different levels of QoS assurance may be required for different communication paths, depending 
on system criticality, e.g., certain communication paths between components may require more 
stringent QoS requirements than other ones.  

The event communication mechanisms currently supported by EQAL include: (1) two-way based 
event communication based on direct method invocation, (2) CORBA event service, and (3) TAO’s 
Real-time Event Service [24]. Although the communication mechanisms provided by EQAL are 
applicable to many types of event-based systems, with the evolution in a domain and new technolo-
gies emerging, other event communication mechanisms may be needed. For example, TAO’s reli-
able multicast Federated Notification Service is desired in certain DRE systems to address scal-
ability and reliability. Likewise, the OMG’s Data Distribution Service (DDS) [25] is often desired 
when low latency and advanced QoS capabilities are key product variant concerns. When these two 
new publish/subscribe technologies are added into the existing EQAL MDD tool, all layers in 
EQAL MDD architecture must change accordingly, including EQAL Runtime Framework, EQAL 
DSML and EQAL Domain Models. Moreover, since EQAL models have already been used in ear-
lier incarnations of a PLA, such as Bold Stroke, we must minimize the effort required to migrate 
existing EQAL models to adhere to the new metamodels. 

Solution → Evolve PLA systematically through framework and metamodel enhancement. Al-
though a layered PLA can significantly reduce software design complexity by separating concerns 
and enforcing boundaries between different layers, since different layers in PLA still need to interact 
with each other through predefined interfaces, therefore, to integrate new requirements into a PLA, 
all layers must evolve in a systematic manner. As shown in Figure 3, for most PLAs for DRE sys-
tems we generalized this evolution to the following three ordered steps: 

 
1. Component framework evolution. As discussed in Section 2.1, frameworks are often built atop 

middleware and OS platforms and provide the runtime environment to DRE systems. As a result, 



whenever the DRE systems must evolve to adapt to new requirements, component frameworks 
are often affected since they have direct impact on the system. 

 
2. DSML evolution. DSML metamodels and interpreters are often used to capture the variability 

and features of DRE systems so a system can expose different capabilities for different product 
variants.  Often, DSMLs are used to glue different component framework entities together to 
form a complete application. Hence, typically DSML evolution should be performed after frame-
work evolution is completed. 

 
3. Domain model evolution. The DSML metamodel defines a type system to which domain mod-

els must conform to. Since the changes to the metamodel of a DSML often invalidate the exist-
ing domain models by redefining the type system, domain model evolution must be performed 
after the DSML evolution. 

 
We discuss the challenges and solutions associated with component framework and DSML evolu-
tion in the Section 3.1.1 and then discuss the challenges and solutions associated with domain model 
evolution in Section 3.1.2. 
 
3.1.1 EQAL Framework Evolution 

In our case study, the EQAL Runtime Framework provides a set of service configuration libraries 
that can configure various publish/subscribe services. Since these middleware services can be con-
figured using well-defined and documented interfaces, we can formulate the usage patterns of such 
middleware services easily. The EQAL Runtime Framework can encapsulate these usage patterns 
and provide reusable libraries that (1) contain wrapper façades for the underlying publish/subscribe 
middleware services to shield component developers from tedious and error-prone programming 
tasks associated with initializing and configuring these publish/subscribe services and (2) expose 
interfaces to the external tools to manage the services, so that service configuration and deployment 
processes can be automated, as shown in Figure 3. I. To incorporate these new publish/subscribe 
technologies and minimize the impact on existing DRE systems, we used the Adapter and Strategy 
patterns so all event communication mechanisms supported by EQAL provide the same interface, 
yet can also be configured with different strategies and QoS configurations. 
 
3.1.2 EQAL DSML Evolution 
 
The EQAL metamodel must be enhanced to incorporate these new requirements, so system develop-
ers can model the behavior of new event-based communication mechanisms visually. For example, 
to enhance EQAL to support DDS and TAO’s Federated Notification Service, the metamodel of the 
EQAL DSML must be changed. Since the EQAL metamodel defines the language to describe 
EQAL domain models, it is essential to minimize the impact on EQAL domain models, so that the 
EQAL domain models can be transformed easily to comply with the new EQAL metamodel. 
 
Compositional metamodeling is a key idea to make metamodel scalable and easier to evolve. This 
technique provides a metamodel composition capability for reusing and combining existing model-
ing languages and language concepts. Since EQAL is implemented with GME, when new pub-
lish/subscribe services are integrated, we could design a new DSML within GME and import the old 
EQAL metamodel as a “library”.. Apart from being read-only, all objects in the metamodel imported 



through the library are equivalent to objects created from scratch.  Since the new publish/subscribe 
services share much commonality between the exiting publish/subscribe services that EQAL already 
supports, when the old EQAL metamodel is imported as library, we could create subtypes and in-
stances from the metamodel library and refer library objects through references. 
 
3.2 Challenge 2: Migrating Existing Domain Models with MDD-based PLA Evolution 
 
Context. The primary value of the MDD paradigm stems from the models created using the DSML. 
These models specify the system, and from the models the executable system can be generated or 
composed. Changes to the computer-based system can be modeled, and the resulting executable 
model is thus a working version of the actual system. Unfortunately, if the metamodel is changed, 
all models that were defined using that metamodel may require maintenance to adapt to the seman-
tics that represent the computer-based system correctly. Without ensuring the correctness of the do-
main models after a change to the domain, the benefits of MDD will be lost. The only way to use 
instance models based on the original metamodel is to migrate them to use the modified metamodel. 
During this migration process, we must preserve the existing set of domain model assets and allow 
new features to be added into domain models; ideally with as little human intervention effort as pos-
sible. 
 
Problem → Existing domain models evolution techniques require excessive human interven-
tion. To address the challenge of preserving the existing set of domain model assets, old domain 
models must be transformed to become compliant with the changed metamodel. In the MDD re-
search community, particularly in the DSML community, research has been conducted on using 
model transformation to address metamodel evolution. Since the underlying structure of models, 
especially visual models, can be described by graphs, most of the model transformation research has 
been conducted in the context of graph transformation. In particular, recent research [1,2] has shown 
that graph transformation is a promising formalism to specify model transformations rules.  
 
Most existing model transformation techniques, however, require the transformation be performed 
after the domain metamodel has changed. For example, when an old metamodel is modified and a 
new metamodel based on it is created, the model transformation designer must take both the old 
metamodel and new metamodel as input, and then manually specify the model transformation rules 
based on these two metamodels by using the “transformation behavior specification language” pro-
vided by the transformation tool. Although such a design approach could solve the model transfor-
mation problem, it introduces additional effort in specifying the model transformation rules, even if 
the metamodel evolution is minor (e.g., a simple rename of a concept in the metamodel). This addi-
tional effort is particularly high when the metamodels are complex, since the transformation tool 
must take both complex metamodels as input to specify the transformation. 
 
Solution → Tool-supported domain model migration. To preserve the assets of domain models, 
our approach is to bring model migration capabilities online, i.e., embed domain model migration 
capabilities into the metamodeling environment itself. This approach is sufficiently generic to be 
applied to any existing metamodeling environment. A description of the change in semantics be-
tween an old and a new DSML is a sufficient specification to transform domain models such that 
they are correct in the new DSML. Moreover, the pattern that specifies the proper model migration 



is driven by the change in semantics, and may be fully specified by a model composed of entities 
from the old and new metamodels, along with directions for their modification [6]. 
 
3.2.1 Integration of Syntactic-based and Semantic-based Domain Model Migration 

 
Table 1: Changes that Require a Paradigm Shift [6] 

Based on the characteristics of metamodel change, researchers have shown that 14 “atomic” types of 
metamodel changes can be defined [6], as shown in Table 1. 
 
These results provide us the intuition into the problem. In some cases, the semantics can be easily 
specified. For example, if the metamodel designer deletes an atom called “foo” in the metamodel 
and creates a new atom called “bar” we can then specify the semantics of the change as: 

replace(Atom("foo") -> Atom("bar")); 

Syntactic metamodel changes, however, can often affect semantic changes, which results in a highly 
challenging task in model migration, i.e., semantic migration. Semantic migration requires that the 
meaning of the old domain models is preserved after the transformation, and that the new domain 
models conform to the entire set of static constraints required in the new domain.  In these cases, it 
is quite challenging to discover the semantics of the change. To make such algorithms provide actual 
“semantic migration” capabilities, human input will be necessary since semantic changes in meta-
models can not be captured through syntactic changes alone.   
 
For model migration, we generalized two approaches to perform model transformation with seman-



tic migration. In the first approach, given two distinct metamodels, old and new, we can perform a 
transformation that converts the old model in entirety to the new one. This means one will have to 
write a complete set of rules to convert each entity in the models. In the second approach, we create 
a unified metamodel (old + new), such that both old and new models are valid in it. Developers can 
then write transformation translators that convert those parts of the model belonging to the old part 
of the paradigm to equivalent models in the new part of the paradigm. 
 

It is evident that the second approach is much cleaner and user-friendly than the first approach since 
it requires much less human effort. We are therefore investigating the second model migration ap-
proach. In our approach, after the unified metamodel is formulated, we use an "SQL-like" declara-
tively language that allows one to query and change the model to define model transformation rules. 
The Embedded Constraint Language (ECL), used by the C-SAW GME plug-in [2], seems to be a 
good candidate for such a language. The ECL is a textual language for describing transformations on 
visual models. Similar to the Object Constraint Language (OCL) defined in OMG’s UML specifica-
tion, the ECL provides concepts such as collection and model navigation. In addition, the ECL also 
provides a rich set of operators that are not found in the OCL to support model aggregations, con-
nections, and transformations.  ECL is an imperative language that allows one to specify procedural 
style transformation rules of the syntax translator to capture the semantic migration. 

3.2.2 EQAL Domain Model Evolution.   

Figure 5 illustrates the BasicSP application scenario in the Boeing Bold Stroke PLA, in which two 
component instances named BMDevice and BMClosedED are connected with each other through 
real-time event channel provided by TAO’s Real-time Event Service. An event channel consists of 
one RTEC_Proxy_Consumer module and RTEC_Proxy_Supplier module, which could be 
configured with various QoS settings. Consider a domain evolution scenario, where the Real-time 
Event Service is not the desired choice for a particular Bold Stroke product variant, so it must be 
replaced with TAO Federated Notification Service. In this case, the current domain model below 
will become invalid and must be migrated to the new EQAL DSML that supports the configuration 
of TAO’s Federated Notification Service. 
 

 
 

Figure 5. EQAL Configuring Real-time Event Service between Two Components 
 



With ECL declarative language, we could create a model translator by defining strategies as below: 
 

strategy ChangeToFNS() { 
 

declare FNS_Proxy_Consumer,  
FNS_Proxy_Supplier : model; 

 
// Find interested model elements… 
if(atoms()->select(a | a.kindOf() = 

"RTEC_Proxy_Consumer")->size() >= 1) then 
 

//get the RTEC_Proxy_Consumer model element 
//and its connections 

… 
//delete the RTEC_Proxy_Consumer model element 
RTEC_Model.deleteModel( 

“RTEC_Proxy_Consumer”, 
“RTEC_proxy_consumer”); 

 
//add the FNS_Proxy_Consumer model 
FNS_Proxy_Consumer:=  

addModel(“FNS_Proxy_Consumer”, 

“FNS_proxy_consumer”); 
FNS_Proxy_Consumer.setAttribute("Reactive", "1"); 
FNS_Proxy_Consumer.setAttribute("LockType", 
"Thread Mutex"); 

 
//add the connections 
RTEC_Model.addConnection( 
"Event_Source_Proxy_Consumer", 
event_source, 
FNS_Proxy_Consumer); 
RTEC_Model.addConnection( 
"Proxy_Supplier_Event_Sink", 
FNS_Proxy_Consumer, 
event_sink); 

 
//do similar to the FNS_Proxy_Supplier model 
… 
endif; 

}; 

 
The semantic meaning of this translator is straightforward, i.e., first find the interested model ele-
ments and their associations that are based on TAO’s Real-time Event Service and replace these 
model elements and associations with TAO’s Federated Notification Service. 
 
4. Related Work 
Software product-line is a viable software development paradigm that enables order-of-magnitude 
improvements in time to market, cost, productivity, quality, and other business drivers [20]. As 
MDD technology becomes more pervasive, there has been an increase in focus on technologies, ar-
chitecture, and tools for applying MDD-based techniques into software PLAs. This section com-
pares our research with related work. 
 
Microsoft’s Software Factory scheme [9] focuses on combining MDD- and component-based tech-
niques with product-line principles to create highly extensible development tools quickly and 
cheaply for specific domains. The PLAs for DRE systems we describe in Section 2 are similar to the 
Software Factory scheme, but focuses on how aspects of PLAs for DRE systems should be designed 
and evolved throughout a system’s lifecycle. 
 
Generative software development techniques [19] develop software system families by synthesizing 
code and other artifacts from specifications written in textual or graphical domain-specific languages. 
Key concepts and idea in this paradigm include DSML, domain and application engineering, and 
generative domain models. Feature modeling [18] is a method and notation for capturing com-
mon/variable features in a system family. This software development paradigm is related to our ap-
proach, though in our MDD-based PLA we use domain-specific graphical DSML notations to de-
scribe the application semantics, instead of using a universal feature modeling notation since the 
latter is too restrictive for many DRE systems. . 
 
Significant efforts have focused on evolution problems of model-based legacy systems. The Atlas 



Transformation Language (ATL) developed in the Generative Model Transformer project [22] aims 
to define and perform general transformations based on OMG’s MDA technology. Atlas is a model 
transformation language specified both as a metamodel and as a textual concrete syntax, and a hy-
brid of declarative and imperative language. The Graph Rewriting and Transformation (GReAT) 
[21] tool provides a model transformation specification language to handle the model migration 
problem by explicitly defining complex graph patterns and pattern matching algorithms through 
models. While the methods mentioned above are powerful, they are also labor-intensive since trans-
formations must be defined manually, which does not scale up for large-scale DRE systems. In con-
trast, our approach enables automatic transformation with limited human intervention that eliminates 
much of the tedious tasks of model evolution. C-SAW [2] is a general model transformation engine 
developed as a GME [5] plug-in and is compatible with any metamodel, i.e., it is domain-dependent 
and can be used with any modeling language defined within the GME. C-SAW, however, can only 
handle domain model transformations when the metamodel is not changed, while our approach can 
be used even when the metamodel has changed. 
 
5. Concluding Remarks 
 
Large-scale DRE systems are hard to build. Software product-line architectures (PLAs) are an im-
portant technology for meeting the growing demand for highly customized and reusable DRE sys-
tems.  MDD-based PLA provides a promising means to develop software product-lines for DRE 
systems by combining metamodeling, DSMLs, interpreters, frameworks, and COTS middleware and 
OS platforms. 
 
Software product-lines must inevitably evolve to meet new requirements. Adding new (particularly 
new unanticipated) requirements to MDD-based PLAs, however, often causes invasive modifica-
tions to the PLA’s component frameworks and DSMLs to reflect these new requirements. Since 
these modifications significantly complicate PLA evolution efforts, they can outweigh the advan-
tages of PLA development compared to one off development. To rectify these problems, a layered 
and compositional architecture is needed to modularize system concerns and reduce the effort asso-
ciated with domain evolution. This paper illustrates via a case study how (1) structural-based model 
transformations help maintain the stability of domain evolution by automatically transforming do-
main models and (2) aspect-oriented model transformation and weaving helps reduce human effort 
by capturing model-based structural concerns. 
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