
Addressing Domain Evolution Challenges in
Model-Driven Software Product-line Architectures

Gan Deng

Department of EECS
Vanderbilt University

Nashville, TN 37203, USA
gan.deng@vanderbilt.edu

Gunther Lenz
Software Engineering Department

Siemens Corporate Research
Princeton, NJ 08540, USA
lenz.gunther@siemens.com

Douglas C. Schmidt
Department of EECS
Vanderbilt University

Nashville, TN 37203, USA
d.chmidt@vanderbilt.edu

ABSTRACT
It is hard to develop and evolve software product-line
architectures (PLAs) for large-scale distributed real-
time and embedded (DRE) systems. Although certain
challenges of PLAs can be addressed by combining
model-driven development (MDD) techniques with
component frameworks, domain evolution problems
remain largely unresolved. In particular, extending or
refactoring existing software product-lines to handle
unanticipated requirements or better satisfy current
requirements requires significant effort. This paper
describes techniques for minimizing such impacts on
MDD-based PLAs for DRE systems through a case
study that shows how a layered architecture and
model-to-model transformation tool support can re-
duce the effort of PLA evolution.

Keywords
Model-driven development, Product-line Archi-
tectures, Model Transformation
1. Introduction

Software product-line architectures (PLAs) [20] are a
promising technology for industrializing software de-
velopment by focusing on the automated assembly and
customization of domain-specific components, rather
than (re)programming systems manually. Conventional
PLAs consist of component frameworks [29] as core
assets, whose design captures recurring structures, con-
nectors, and control flow in an application domain,
along with the points of variation explicitly allowed
among these entities. PLAs are typically designed us-
ing common/variability analysis (CVA) [23], which
captures key characteristics of software product-lines,
including (1) scope, which defines the domains and
context of the PLA, (2) commonalities, which describe
the attributes that recur across all members of the fam-
ily of products, and (3) variabilities, which describe the
attributes unique to the different members of the family
of products.

Despite improvements in third-generation program-
ming languages (such as Java, C#, and C++) and run-
time platforms (such as component and web services
middleware), the levels of abstraction at which PLAs
are developed today remains low relative to the con-
cepts and concerns within the application domains
themselves. A promising means to address this prob-
lem involves developing PLAs using model-driven
development (MDD) [9] tools. As shown in Figure 1,
MDD tools help raise the level of abstraction and nar-
row the gap between problem and solution domain by
combining (1) metamodeling and model interpreters to
create domain-specific modeling languages (DSMLs)
with (2) CVA and object-oriented extensibility capa-
bilities to create domain-specific component frame-
works. DSMLs help automate repetitive tasks that must
be accomplished for each product instance, e.g., gener-
ating code to glue components together or synthesizing
deployment artifacts for middleware platforms Do-
main-specific component frameworks factor out com-
mon usage patterns in a domain into reusable platforms,
which help reduce the complexity of designing DSMLs
by simplifying the code generated by their associated
model interpreters.

To use MDD-based PLA technologies effectively in
practice, however, requires practical and scalable solu-
tions to the domain evolution problem [30], which
arises when existing PLAs are extended and/or refac-
tored to handle unanticipated requirements or better
satisfy current requirements. Although PLAs can be
enhanced by combining component frameworks with
DSMLs, existing MDD tools do not handle the domain
evolution problem effectively since they require sig-
nificant manual changes to existing component frame-
works and metamodels. For example, changing meta-
models in a PLA typically invalidates models based on
previous versions of the metamodels. While software
developers can manually update their models and/or
components developed with a previous metamodel to
work with the new metamodel, this approach is clearly
tedious, error-prone, and non-scalable.

Figure 1: Using DSMLs and Component Mid-
dleware to Enhance Abstraction and Narrow

the Gap between Problem and Solution Domain

This paper describes our approach to PLA domain evo-
lution. We use a case study of a representative MDD-
based tool for DRE system to describe how to evolve
PLAs systematically and minimize human intervention
for specifying model-to-model transformation rules as
a result of metamodel changes. Our approach auto-
mates many tedious, time consuming, and error-prone
tasks of model-to-model transformation to reduce the
complexity of PLA evolution significantly.

The remainder of this paper is organized as follows:
Section 2 describes our vision of the architecture of
PLA for DRE systems, and introduces our case study,
which applies the Event QoS Aspect Language (EQAL)
MDD tool to simplify the integration and interoperabil-
ity of diverse publish/subscribe mechanisms in the
Bold Stroke PLA; Section 3 describes challenges we
faced when evolving models developed using EQAL
and presents our solutions to these challenges; Section
4 compares our work on EQAL with related research;
and Section 5 presents concluding remarks.

2. Overview of MDD-based PLA and Case
Study

This section presents an overview of an MDD-based
PLA for DRE systems, focusing on the design concepts,
common patterns, and software architecture. We then
describe the structure and functionality of EQAL.

2.1 Design Concepts of MDD-based PLAs for
DRE Systems

The MDD-based design and composition approach for
embedded systems in [10] describes the benefits of

We believe this approach also applies to the design of
PLAs for large-scale DRE systems. Figure 2 illustrates
the high-level design principle and overall architecture
of an MDD-based PLA solution that exploits a layered
and compositional architecture to modularize various
design concerns for DRE systems.

combining DSML and reusable component frameworks.

Figure 2. MDD-Based Product-line Architecture

MDD-based PLA are based on a

for DRE Systems

s for DRE systems
core set of platforms, frameworks, languages, and tools.
DRE systems increasingly run on commercial-off-the-
shelf (COTS) middleware and OS platforms. Middle-
ware platforms include Real-time Java, Real-time
CORBA, Real-time CCM, and the Data Distribution
Service (DDS) and OS platforms include VxWorks,
Timesys Linux, and Windows CE. Since many DRE
systems require a loosely-coupled distribution architec-
ture to simplify extensibility, COTS middleware typi-
cally provides publish/subscribe-based communication
mechanisms where application components commu-
nicate anonymously and asynchronously by defining
three software roles: publishers generate events that are
transmitted to subscribers via event channels that ac-
cept events from publishers and deliver events to sub-
scribers. Event-based communication helps developers
concentrate on the application-specific concerns of
their DRE systems, and leaves the connection, commu-
nication, and QoS-related details to middleware devel-
opers and tools. An event-based communication model
also helps reduce ownership costs since it defines clear
boundaries between the components in the application,
thereby reducing dependencies and maintenance costs
associated with replacement, integration, and revalida-
tion of components. Moreover, core components of
event-based architectures can be reused, thereby reduc-
ing development, quality assurance, and evolution ef-
fort.

Abstraction

Problem Domain Solution Domain

Product Line ArchitectureProduct Line Analysis
DSML

Commonality
& Variability

Analysis
Meta Model

Interpreter

Product Line
Specific

Requirements
Frameworks
and Reusable
Components

Business
Problems

OS API calls

Component frameworks provide reusable building

omain-specific modeling languages (DSMLs) and

d PLA defines a
framework of components that adhere to a common

MDD
 designed to reduce certain aspects of component-

blocks of PLAs for DRE systems. These frameworks
are increasingly built atop COTS middleware and OS
platforms. Since the philosophy of COTS middleware
and OS platforms catered to maintaining “generality,
wide applicability, portability ad reusability,” custom-
ized frameworks are often desired in DRE software
product-lines to (1) raise the level of abstraction, and (2)
offer product-line specific runtime environments.
Examples of component frameworks include domain-
specific middleware services layer in the Boeing Bold
Stroke PLA [26], which supports many Boeing product
variants, such as F/A-18E, F/A-18F, F-15E, and F-15K,
using a component-based, publish/subscribe platform
built atop The ACE ORB (TAO) [27] and Prism [28],
which is QoS-enabled component middleware influ-
enced by the Lightweight CORBA Component Model
(CCM) [19]. The Boeing Bold Stoke PLA supports
systematic reuse of avionics mission computing func-
tionality and is configurable for product-specific func-
tionality (such as heads-up display, navigation, and
sensor management) and execution environments (such
as different networks/buses, hardware, operating sys-
tems, and programming languages).

D
patterns facilitate the model-based design, develop-
ment, and analysis of vertical application domains,
such as industrial process control, telecommunications,
and avionics mission computing. Example DSMLs the
include Saturn Site Production Flow (SSPF), which is
a manufacturing execution system serving as an inte-
gral and enabling component of the business process
for car manufacture industry [11] and the Embedded
System Modeling Language (ESML) [12], which mod-
els mission computing applications in the Boeing Bold
Stroke PLA. DSMLs are also applicable to horizontal
platform domains, such as the domain of component
middleware for DRE systems, which provide the infra-
structure for many veritical application domains. Ex-
amples of DSMLs for horizontal platforms include
Platform Independent Component Modeling Language
(PICML) [13], which facilitates the development of
QoS-enabled component-based DRE systems and
J2EEML [17], which facilitates the development of
EJB applications. Regardless of whether the DSMLs
target vertical or horizontal domains, model interpret-
ers can be used to generate various artifacts (such as
code and metadata descriptors), which can be inte-
grated with component frameworks to form executable
applications and/or simulations.
As shown in Figure 2, MDD-base

architectural style with a clear separation of commonal-
ities and appropriate provisions for incorporating varia-
tions by integrating vertical/horizontal DSMLs, com-
ponent frameworks, middleware and OS platforms. In
this architecture, MDD technologies are used to model
PLA features and glue components together, e.g., they
could be utilized to synthesize deployment artifacts [13]
for standard middleware platforms.

2.2 The Design of the EQAL MDD Tool

The Event QoS Aspect Language (EQAL) is an
tool
based publish/subscribe PLA-based DRE systems, such
as the Boeing Bold Stroke PLA described in Section
2.1. EQAL is implemented using the Generic Modeling
Environment (GME) [5], which is a toolkit that sup-
ports the development of DSMLs. The EQAL DSML
provides an integrated set of metamodels, model inter-
preters, and standards-based component middleware
that allowing PLA developers to visually configure and
deploy event-based communication mechanisms in
DRE systems via models instead of programming them
manually. EQAL is an example of a DSML that sup-
ports a horizontal platform domain, i.e., it is not re-
stricted to a particular vertical application domain, but
instead can be leveraged by multiple vertical domains.

Figure 3. EQAL MDD Tool Architecture

As sh ture
that h are

own in Figure 3, EQAL is a layered archite
supports several types of abstractions, whic

c

subject to change stemming from domain evolution, as
discussed in Section 3. The bottom layer is the EQAL
Runtime Framework, which is a portable, OS-
independent framework built atop the Component-Inte-
grated ACE ORB (CIAO) QoS-enabled implementation
of the Lightweight CCM specification. The EQAL

Runtime Framework provides an extensible way to
deploy various event-based communication mecha-
nisms, including a two-way event communication
mechanism based on direct method invocation, the
CORBA Event Service, and TAO’s Real-time Event
Service [24].

The middle layer in the EQAL architecture is a set of

omain models that represent instances of modeled

f metamodel that enables developers to model con-

 with
volving an MDD-based PLA in the context of the

e 1: Capturing New Requirements
to Existing MDD-based Software Product-

 and inevitable part of the
ftware PLA lifecycle. The changes may be initiated

ust be captured

ms currently sup-

ugh

d
DRE systems. These models are created by the EQAL
DSML and are used to capture the structural and be-
havioral semantic aspects of event-based DRE systems.

The top layer of the EQAL MDD architecture consists
o
cepts of event-based DRE systems, including the con-
figuration and deployment of various publish/subscribe
services and how these services are used by CCM
components. This layer also contains several model
interpreters that synthesize various types of con-
figuration files that specify QoS configurations, pa-
rameters, and constraints. The EQAL interpreters
automatically generate publish/subscribe service con-
figuration files and service property description files
needed by the underlying EQAL Runtime Framework
and CIAO middleware.

3. Resolving Challenges of MDD-based
PLA when Facing Domain Evolution

This section examines challenges associated
e
Boeing Bold Stroke PLA and the EQAL DSML. For
each challenge, we explain the context in which the
challenge arises, identify key problems that must be
addressed, outline our approach for resolving the chal-
lenges, and describe how we can apply these solutions
using EQAL.

3.1 Challeng
in
lines for DRE Systems

Context. Change is a natural
so
to correct, improve, or extend assets or products. Since
assets are often dependent on other assets, changes to
one asset may require corresponding changes in other
assets. Moreover, changes to assets in PLAs can propa-
gate to affect all products using these assets. A suc-
cessful process for PLA evolution must therefore man-
age these changes effectively [15].

Problem → New requirements m
into existing PLAs. DRE systems must evolve to adapt
to changing requirements and operational contexts. In
addition, when some emerging technologies become
sufficiently mature, it is often desirable to integrate
them into existing PLAs for DRE systems. For exam-
ple, depending on customer requirements, different
product variants in the Bold Stroke PLA may require
different levels of QoS assurance for event communi-
cation, including timing constraints, event delivery
latency, jitter, and scalability. Even within the same
product variant, different levels of QoS assurance may
be required for different communication paths, depend-
ing on system criticality, e.g., certain communication
paths between components may require more stringent
QoS requirements than other ones.

The event communication mechanis
ported by EQAL include: (1) two-way based event
communication based on direct method invocation, (2)
CORBA event service, and (3) TAO’s Real-time Event
Service [24]. Although the communication mecha-
nisms provided by EQAL are applicable to many types
of event-based systems, with the evolution in a domain
and new technologies emerging, other event communi-
cation mechanisms may be needed. For example,
TAO’s reliable multicast Federated Notification Ser-
vice is desired in certain DRE systems to address scal-
ability and reliability. Likewise, the OMG’s Data Dis-
tribution Service (DDS) [25] is often desired when low
latency and advanced QoS capabilities are key product
variant concerns. When these two new pub-
lish/subscribe technologies are added into the existing
EQAL MDD tool, all layers in EQAL MDD architec-
ture must change accordingly, including EQAL Run-
time Framework, EQAL DSML and EQAL Domain
Models. Moreover, since EQAL models have already
been used in earlier incarnations of a PLA, such as
Bold Stroke, we must minimize the effort required to
migrate existing EQAL models to adhere to the new
metamodels.

Solution → Evolve PLA systematically thro
framework and metamodel enhancement. A layered
PLA can reduce software design complexity by sepa-
rating concerns and enforcing boundaries between dif-
ferent layers. Since different layers in PLA still need to
interact with each other through predefined interfaces,
to integrate new requirements into a PLA, all layers
must evolve in a systematic manner. As shown in Fig-
ure 3, for most PLAs for DRE systems we generalized
this evolution to the following three ordered steps:

1. Component framework evolution. As discussed

. DSML evolution. DSML metamodels and inter-

. Domain model evolution. The DSML metamodel

e discuss the challenges and solutions associated

.1.1 EQAL Framework Evolution

 our case study, the EQAL Runtime Framework pro-

in Section 2.1, frameworks are often built atop
middleware and OS platforms and provide the run-
time environment to DRE systems. As a result,
whenever the DRE systems must evolve to adapt to
new requirements, component frameworks are often
affected since they have direct impact on the sys-
tem.

2
preters are often used to capture the variability and
features of DRE systems so a system can expose
different capabilities for different product variants.
Often, DSMLs are used to glue different component
framework entities together to form a complete ap-
plication, so typically DSML evolution should be
performed after framework evolution is completed.

3
defines a type system to which domain models must
conform. Since the changes to the metamodel of a
DSML often invalidate the existing domain models
by redefining the type system, domain model evo-
lution must be performed after the DSML evolution.

W
with component framework and DSML evolution in
the Section 3.1.1 and then discuss the challenges and
solutions associated with domain model evolution in
Section 3.1.2.

3

In
vides a set of service configuration libraries that can
configure various publish/subscribe services. Since
these middleware services can be configured using
well-defined and documented interfaces, we can for-
mulate the usage patterns of such middleware services
easily. The EQAL Runtime Framework can encapsu-
late these usage patterns and provide reusable libraries
that (1) contain wrapper façades for the underlying
publish/subscribe middleware services to shield com-
ponent developers from tedious and error-prone pro-
gramming tasks associated with initializing and con-
figuring these publish/subscribe services and (2) ex-
pose interfaces to the external tools to manage the ser-
vices, so that service configuration and deployment
processes can be automated, as shown in Figure 3. I.
To incorporate these new publish/subscribe technolo-
gies and minimize the impact on existing DRE systems,
we used the Adapter and Strategy patterns so all event
communication mechanisms supported by EQAL pro-

vide the same interface, yet can also be configured with
different strategies and QoS configurations.

Figure 4. EQAL Runtime Framework Evolutio

.1.2 EQAL DSML Evolution

he EQAL metamodel must be enhanced to incorpo-

ompositional metamodeling is a key idea to make

n

3

T
rate these new requirements, so system developers can
model the behavior of new event-based communication
mechanisms visually. For example, to enhance EQAL
to support DDS and TAO’s Federated Notification
Service, the metamodel of the EQAL DSML must be
changed. Since the EQAL metamodel defines the lan-
guage to describe EQAL domain models, it is essential
to minimize the impact on EQAL domain models, so
that the EQAL domain models can be transformed eas-
ily to comply with the new EQAL metamodel.

C
metamodel scalable and easier to evolve. This tech-
nique provides a metamodel composition capability for
reusing and combining existing modeling languages
and language concepts. Since EQAL is implemented
with GME, when new publish/subscribe services are
integrated, we could design a new DSML within GME
and import the old EQAL metamodel as a “library”..
Apart from being read-only, all objects in the meta-
model imported through the library are equivalent to
objects created from scratch. Since the new pub-
lish/subscribe services share much commonality be-
tween the exiting publish/subscribe services that EQAL
already supports, when the old EQAL metamodel is
imported as library, we could create subtypes and in-

stances from the metamodel library and refer library
objects through references..

3.2 Challenge 2: Migrating Existing Domain

ontext. The primary value of the MDD paradigm

roblem → Existing domain models evolution tech-

ost existing model transformation techniques, how-

a-

.2.1 Integration of Syntactic-based and Semantic-

Models with MDD-based PLA Evolution

C
stems from the models created using the DSML. These
models specify the system, and from the models the
executable system can be generated or composed.
Changes to the computer-based system can be modeled,
and the resulting executable model is thus a working
version of the actual system. Unfortunately, if the
metamodel is changed, all models that were defined
using that metamodel may require maintenance to
adapt to the semantics that represent the computer-
based system correctly. Without ensuring the correct-
ness of the domain models after a change to the domain,
the benefits of MDD will be lost. The only way to use
instance models based on the original metamodel is to
migrate them to use the modified metamodel. During
this migration process, we must preserve the existing
set of domain model assets and allow new features to
be added into domain models; ideally with as little hu-
man intervention effort as possible.

P
niques require excessive human intervention. To
address the challenge of preserving the existing set of
domain model assets, old domain models must be
transformed to become compliant with the changed
metamodel. In the MDD research community, particu-
larly in the DSML community, research has been con-
ducted on using model transformation to address meta-
model evolution. Since the underlying structure of
models, especially visual models, can be described by
graphs, most of the model transformation research has
been conducted in the context of graph transformation.
In particular, recent research [1,2] has shown that
graph transformation is a promising formalism to spec-
ify model transformations rules.

M
ever, require the transformation be performed after the
domain metamodel has changed. For example, when an
old metamodel is modified and a new metamodel based
on it is created, the model transformation designer must
take both the old metamodel and new metamodel as
input, and then manually specify the model transforma-
tion rules based on these two metamodels by using the
“transformation behavior specification language” pro-
vided by the transformation tool. Although such a de-
sign approach could solve the model transformation

problem, it introduces additional effort in specifying
the model transformation rules, even if the metamodel
evolution is minor (e.g., a simple rename of a concept
in the metamodel). This additional effort is particularly
high when the metamodels are complex, since the
transformation tool must take both complex metamod-
els as input to specify the transformation.

Solution → Tool-supported domain model migr
tion. To preserve the assets of domain models, our ap-
proach is to bring model migration capabilities online,
i.e., embed domain model migration capabilities into
the metamodeling environment itself. This approach is
sufficiently generic to be applied to any existing meta-
modeling environment. A description of the change in
semantics between and old and a new DSML is a suffi-
cient specification to transform domain models such
that they are correct in the new DSML. Moreover, the
pattern that specifies the proper model migration is
driven by the change in semantics, and may be fully
specified by a model composed of entities from the old
and new metamodels, along with directions for their
modification [6].

3
based Domain Model Migration

Table 1: Changes that Require a Paradigm Shift 6] [

Based on the characteristics of metamodel change, re-
searchers have shown that 14 “atomic” types of meta-
model changes can be defined [6], as shown in Table 1.
These results provide us the intuition into the problem.
In some cases, the semantics can be easily specified.
For example, if the metamodel designer deletes an
atom called “foo” in the metamodel and creates a new
atom called “bar” we can then specify the semantics of
the change as:

replace(Atom("foo") -> Atom("bar"));

Syntactic metamodel changes, however, can often af-
fect semantic changes, which results in a highly chal-
lenging task in model migration, i.e., semantic migra-
tion. Semantic migration requires that the meaning of
the old domain models is preserved after the transfor-
mation, and that the new domain models conform to
the entire set of static constraints required in the new
domain. In these cases, it is quite challenging to dis-
cover the semantics of the change. To make such algo-
rithms provide actual “semantic migration” capabilities,
human input will be necessary since semantic changes
in metamodels can not be captured through syntactic
changes alone.

For model migration, we generalized two approaches
to perform model transformation with semantic migra-
tion. In the first approach, given two distinct metamod-
els, old and new, we can perform a transformation that
converts the old model in entirety to the new one. This
means one will have to write a complete set of rules to
convert each entity in the models. In the second ap-
proach, we create a unified metamodel (old + new),
such that both old and new models are valid in it. De-
velopers can then write transformation translators that
converts those parts of the model belonging to the old
part of the paradigm to equivalent models in the new
part of the paradigm.

It is evident that the second approach is much cleaner
and user-friendly than the first approach since it re-
quires much less human effort. We are therefore inves-
tigating the second model migration approach. In our
approach, after the unified metamodel is formulated,
we use an "SQL-like" declaratively language that al-
lows one to query and change the model to define
model transformation rules. The Embedded Constraint
Language (ECL), used by the C-SAW GME plug-in
[2], seems to be a good candidate for such a language.
The ECL is a textual language for describing transfor-
mations on visual models. Similar to the Object Con-
straint Language (OCL) defined in OMG’s UML speci-

fication, the ECL provides concepts such as collection
and model navigation. In addition, the ECL also pro-
vides a rich set of operators that are not found in the
OCL to support model aggregations, connections, and
transformations. ECL is a imperative language that
allows one to specify procedural style transformation
rules of the syntax translator to capture the semantic
migration.

3.2.2 EQAL Domain Model Evolution.

Figure 5 illustrates the BasicSP application scenario in
the Boeing Bold Stroke PLA, in which two component
instances named BMDevice and BMClosedED are
connected with each other through real-time event
channel provided by TAO’s Real-time Event Service.
An event channel consists of one
RTEC_Proxy_Consumer module and
RTEC_Proxy_Supplier module, which could be
configured with various QoS settings. Consider a do-
main evolution scenario, where the Real-time Event
Service is not the desired choice for a particular Bold
Stroke product variant, so it must be replaced with
TAO Federated Notification Service. In this case, the
current domain model below will become invalid and
must be migrated to the new EQAL DSML that sup-
ports the configuration of TAO’s Federated Notifica-
tion Service.

Figure 5. EQAL Configuring Real-time Event Service
between Two Components

With ECL declarative language, we could create a
model translator by defining strategies as below:

strategy ChangeToFNS() {

declare FNS_Proxy_Consumer, FNS_Proxy_Supplier : model;

// Find interested model elements…
if(atoms()->select(a | a.kindOf() =

"RTEC_Proxy_Consumer")->size() >= 1) then

//get the RTEC_Proxy_Consumer model element
//and its connections

…
//delete the RTEC_Proxy_Consumer model element
RTEC_Model.deleteModel(“RTEC_Proxy_Consumer”,

“RTEC_proxy_consumer”);

//add the FNS_Proxy_Consumer model
FNS_Proxy_Consumer:= addModel(“FNS_Proxy_Consumer”,

“FNS_proxy_consumer”);
FNS_Proxy_Consumer.setAttribute("Reactive", "1");
FNS_Proxy_Consumer.setAttribute("LockType",

"Thread Mutex");

//add the connections
RTEC_Model.addConnection(

"Event_Source_Proxy_Consumer",
event_source,
FNS_Proxy_Consumer);

RTEC_Model.addConnection(
"Proxy_Supplier_Event_Sink",
FNS_Proxy_Consumer,

 event_sink);

//do similar to the FNS_Proxy_Supplier model
…
endif;

}

The semantic meaning of this translator is straightfor-
ward, i.e., first find the interested model elements and
their associations that are based on TAO’s Real-time
Event Service and replace these model elements and
associations with TAO’s Federated Notification Ser-
vice.

4. Related Work
Software product-line is a viable software development
paradigm that enables order-of-magnitude improve-
ments in time to market, cost, productivity, quality, and
other business drivers [20]. As MDD technology be-
comes more pervasive, there has been an increase in
focus on technologies, architecture, and tools for apply-
ing MDD-based techniques into software PLAs. This
section compares our research with related work.

Microsoft’s Software Factory scheme [9] focuses on
combining MDD- and component-based techniques
with product-line principles to create highly extensible
development tools quickly and cheaply for specific
domains. The PLAs for DRE systems we describe in
Section 2 are similar to the Software Factory scheme,
but focuses on how aspects of PLAs for DRE systems
should be designed and evolved throughout a system’s
lifecycle.

Generative software development techniques [19] de-
velop software system families by synthesizing code
and other artifacts from specifications written in textual
or graphical domain-specific languages. Key concepts
and idea in this paradigm include DSML, domain and
application engineering. and generative domain models.
Feature modeling [18] is a method and notation for
capturing common/variable features in a system family.
This software development paradigm is related to our
approach, though in our MDD-based PLA we use do-
main-specific graphical DSML notations to describe
the application semantics, instead of using a universal
feature modeling notation since the latter is too restric-
tive for many DRE systems. .

Significant efforts have focused on evolution problems
of model-based legacy systems. The Atlas Transforma-
tion Language (ATL) developed in the Generative
Model Transformer project [22] aims to define and
perform general transformations based on OMG’s
MDA technology. Atlas is a model transformation lan-
guage specified both as a metamodel and as a textual
concrete syntax, and a hybrid of declarative and im-
perative language. The Graph Rewriting and Transfor-
mation (GReAT) [21] tool provides a model transfor-
mation specification language to handle the model mi-
gration problem by explicitly defining complex graph
patterns and pattern matching algorithms through mod-
els. While the methods mentioned above are powerful,
they are also labor-intensive since transformations
must be defined manually, which does not scale up for
large-scale DRE systems. In contrast, our approach
enables automatic transformation with limited human
intervention that eliminates much of the tedious tasks
of model evolution. C-SAW [2] is a general model
transformation engine developed as a GME [5] plug-in
and is compatible with any metamodel, i.e., it is do-
main-dependent and can be used with any modeling
language defined within the GME. C-SAW, however,
can only handle domain model transformations when
the metamodel is not changed, while our approach can
be used even when the metamodel has changed.

5. Concluding Remarks

Large-scale DRE systems are hard to build. Software
product-line architectures (PLAs) are an important
technology for meeting the growing demand for highly
customized and reusable DRE systems. MDD-based
PLA provides a promising means to develop software
product-lines for DRE systems by combining meta-
modeling, DSMLs, interpreters, frameworks, and
COTS middleware and OS platforms.

Software product-lines must inevitably evolve to meet
new requirements. Adding new (particularly new unan-
ticipated) requirements to MDD-based PLAs, however,
often causes invasive modifications to the PLA’s com-
ponent frameworks and DSMLs to reflect these new
requirements. Since these modifications significantly
complicate PLA evolution efforts, they can outweigh
the advantages of PLA development compared to one
off development. To rectify these problems, a layered
and compositional architecture is needed to modularize
system concerns and reduce the effort associated with
domain evolution. This paper illustrates via a case
study how (1) structural-based model transformations
help maintain the stability of domain evolution by
automatically transforming domain models and (2)
aspect-oriented model transformation and weaving
helps reduce human effort by capturing model-based
structural concerns.

References

[1] Jonathan Sprinkle, Aditya Agrawal, Tihamer
Levendovszky, Feng Shi, Gabor Karsai, “Domain
Model Translation Using Graph Transforma-
tions,” ECBS 2003: 159-167

[2] Jeff Gray, Ted Bapty, Sandeep Neema, James
Tuck, “Handling Crosscutting Constraints in Do-
main-specific Modeling,” Communicaton of ACM
44(10): 87-93 (2001)

[3] Jayant Madhavan, Philip A. Bernstein, Erhard
Rahm: “Generic Schema Matching with Cupid,”
VLDB 2001: 49-58, Roma, Italy

[4] Frank Budinsky, David Steinberg, Ed Merks, Ray
Ellersick, Timothy Grose, “Eclipse Modeling
Framework”, Addison-Wesley 2004

[5] Ledeczi A., Maroti M., Bakay A., Karsai G.,
Garrett J., Thomason IV C., Nordstrom G., Sprin-
kle J., Volgyesi P., “The Generic Modeling Envi-
ronment,” Workshop on Intelligent Signal Proc-
essing, Budapest, Hungary, May 17, 2001.

[6] Jonathan Sprinkle, Gabor Karsai, “A Domain-
Specific Visual Language for Domain Model
Evolution”, Journal of Visual Language and
Computation, vol. 15, no. 3-4, pp. 291-307, Jun.,
2004.

[7] Gan Deng, Jaiganesh Balasubramanian, William
Otte, Douglas C. Schmidt, and Aniruddha Gok-
hale, “DAnCE: A QoS-enabled Component De-
ployment and Conguration Engine,” Proceedings
of the 3rd Working Conference on Component
Deployment, Grenoble, France, November 28-29,
2005.

[8] Gan Deng, “Supporting Configuration and De-
ployment of Component-based DRE Systems Us-
ing Frameworks, Models, and Aspects,” OOP-
SLA ’06 Companion, October 2005, San Diego,
CA, to appear

[9] Jack Greenfield, Keith Short, Steve Cook, Stuart
Kent, John Crupi, Software Factories: Assem-
bling Applications with Patterns, Models,
Frameworks, and Tools, Wiley 2004

[10] Gabor Kasai, Janos Sztipanovits, Akos Ledeczi,
and Ted Bapty, “Model-Integrated Development
of Embedded software”, Proceedings of the IEEE
number 1, volume 91, Jan. 2003

[11] Karsai G., Sztipanovits J., Ledeczi A., Moore M.,
“Model-Integrated System Development: Models,
Architecture and Process,” 21st Annual Interna-
tional Computer Software and Application Con-
ference (COMPSAC), pp. 176-181, Bethesda, MD,
August, 1997

[12] http://www.isis.vanderbilt.edu/Projects/mobies/.
[13] Krishnakumar Balasubramanian, Jaiganesh

Balasubramanian, Jeff Parsons, Aniruddha Gok-
hale, and Douglas C. Schmidt, “A Platform-
Independent Component Modeling Language for
Distributed Real-time and Embedded Systems,”
Proceedings of the 11th IEEE Real-Time and Em-
bedded Technology and Applications Symposium,
San Francisco, CA, March 2005

[14] George Edwards, Gan Deng, Douglas C. Schmidt,
Anirudda Gokhale, and Balachandran Natarajan,
“Model-driven Configuration and Deployment of
Component Middleware Publisher/Subscriber Ser-
vices,” Proceedings of the 3rd ACM International
Conference on Generative Programming and
Component Engineering, Vancouver, CA, October
2004

[15] John D. McGregor, “The Evolution of Product-
line Assets,” Technical Report, CMU/SEI-2003-
TR-005m ESC-TR-2003-005

[16] David Sharp. “Avionics Product-line Software
Architecture Flow Policies,” In Proceedings of the
Digital Avionics Systems Conference, 1999

[17] Jules White, Douglas Schmidt, and Aniruddha
Gokhale, “Simplifying Autonomic Enterprise Java
Bean Applications via Model-driven Development:
a Case Study”, Proceedings of ACM/IEEE 8th In-
ternational Conference on Model Driven Engi-
neering Languages and Systems, Montego Bay,
Jamaica, October 5-7, 2005.

[18] Krzysztof Czarnecki, Simon. Helsen, and Ulrich.
Eisenecker, “Staged configuration using feature
models”, In Proceedings of the Third Software
Product-Line Conference, Robert Nord, 2004

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sprinkle:Jonathan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Levendovszky:Tihamer.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Levendovszky:Tihamer.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Shi:Feng.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Karsai:Gabor.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bapty:Ted.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Neema:Sandeep.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tuck:James.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tuck:James.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Madhavan:Jayant.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rahm:Erhard.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Rahm:Erhard.html

[19] Krzysztof Czarnecki, Ulrich Eisenecker, Genera-
tive Programming: Methods, Tools, and Applica-
tions, Addison-Wesley 2000

[20] Paul Clements, Linda Northrop, Software Prod-
uct-lines: Practices and Patterns, Addison-
Wesley, ISBN 0201703327, August 20, 2001

[21] Aditya Agrawal, Gabor Karsai, Ákos Lédeczi,
“An End-to-end Domain-driven Software Devel-
opment Framework,” Proceeding of ACM SIG-
PLAN OOPSLA 2003 Domain Driven Design ses-
sion , Anaheim, CA, 2003

[22] Available at Generative Model Transformer pro-
ject website, http://www.eclipse.org/gmt/

[23] James Coplien, Daniel Hoffman, and David Weiss,
“Commonality and Variability in Software En-
gineering” IEEE Software, 15(6) Novem-
ber/December, 37—45, 1998

[24] Tim Harrison and David Levine and Douglas C.
Schmidt, “The Design and Performance of a Real-
time CORBA Event Service”, Proceedings of
OOPSLA '97, ACM, Atlanta, GA, October 6-7,
1997

[25] OMG’s “Data Distribution Service for Real-time
Systems Specification”, version 1.0, Dec.2004.

http://www.omg.org/docs/formal/04-12-02.pdf
[26] David Sharp and Wendy Roll, “Model-Based Inte-

gration of Reusable Component-Based Avionics
System,” in Proceedings of the Workshop on
Model-Driven Embedded Systems in RTAS 2003,
May 2003

[27] Douglas Schmidt, David Levine, and Sumedh
Mungee, “The Design and Performance of Real-
Time Object Request Brokers”, Computer Com-
munications, vol. 21, pp. 294–324, Apr. 1998

[28] Wendy Roll, “Towards Model-Based and CCM-
Based Applications for Real-Time Systems,” in
Proceedings of the International Symposium on
Object-Oriented Real-time Distributed Comput-
ing (ISORC), Hokkaido, Japan, IEEE/IFIP, May
2003

[29] Clemens Szyperski, “Component Software: Be-
yond Object-Oriented Programming”, Addison-
Wesley, Dec. 1997

[30] Randall R. Macala, Lynn D. Stuckey, Jr. David C.
Gross, "Managing Domain-Specific, Product-Line
Development", IEEE Software, Vol.14, No. 13,
May 1996

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Karsai:Gabor.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/L=eacute=deczi:=Aacute=kos.html
http://www.eclipse.org/gmt/
http://www.omg.org/docs/formal/04-12-02.pdf

	Addressing Domain Evolution Challenges in �Model-Driven Soft

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

