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1.1 Introduction

Emerging trends and technology challenges. A growing number of comput-
ing resources are being expended to control distributed real-time and embedded
(DRE) systems, including medical imaging, patient monitoring equipment, commer-
cial and military aircraft and satellites, automotive braking systems, and manufac-
turing plants. Mechanical and human control of these systems are increasingly being
replaced by DRE software controllers (Ogata 1997). The real-world processes con-
trolled by these DRE applications introduce many challenging quality of service (QoS)
constraints, including

• Real-time requirements, such as low latency and bounded jitter
• High availability requirements, such as fault propagation/recovery across

distribution boundaries and
• Physical requirements, such as limited weight, power consumption, and

memory footprint.
DRE software is generally harder to develop, maintain, and evolve (Joseph K. Cross
and Patrick Lardieri 2001; Sharp 1998) than mainstream desktop and enterprise soft-
ware due to conflicting QoS constraints, e.g., bounded jitter vs. fault tolerance and
high-throughput vs. minimal power consumption.

The tools and techniques used to develop DRE applications have historically been
highly specialized. For example, DRE applications have traditionally been scheduled
using fixed-priority periodic algorithms (Liu and Layland 1973), where time is divided
into a sequence of identical frames at each processor and the processor executes each
task for a uniform interval within each frame. DRE applications also often use frame-
based interconnects, such as 1553, VME, or TTCAN buses where the traffic on an
interconnect is scheduled at system design time to link the processors. Moreover,
highly specialized platforms and protocols, such as cyclic executives (Locke 1992) and
time-triggered protocols (Kopetz 1997), have been devised to support the development
of DRE applications.

Highly specialized technologies have been important for developing traditional
real-time and embedded systems, such as statically scheduled single-processor avionics
mission computing systems (Harrison et al. 1997). These special-purpose technologies
often do not scale up effectively, however, to address the needs of the new generation
of large-scale DRE systems, such as air traffic and power grid management, which
are inherently network-centric and dynamic. Moreover, as DRE applications grow in
size and complexity, the use of highly specialized technologies can make it hard to
adapt DRE software to meet new functional or QoS requirements, hardware/software
technology innovations, or emerging market opportunities.
A candidate solution: QoS-enabled component middleware. During the past
decade, a substantial amount of R&D effort has focused on developing QoS-enabled
component middleware as a means to simplify the development and reuse of DRE
applications. As shown in Figure 1.1, QoS-enabled component middleware is systems
software that resides between the applications and the underlying operating systems,
network protocol stacks, and hardware and is responsible for providing the following
capabilities:
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Figure 1.1 Component Middleware Layers and Architecture

(i) Control over key end-to-end QoS properties. One of the hallmarks of DRE
applications is their need for strict control over the end-to-end scheduling and
execution of CPU, network, and memory resources. QoS-enabled component
middleware is based on the expectation that QoS properties will be developed,
configured, monitored, managed, and controlled by a different set of specialists
(such as middleware developers, systems engineers, and administrators) and
tools than those responsible for programming the application functionality in
traditional DRE systems.

(ii) Isolation of DRE applications from the details of multiple platforms.
Standards-based QoS-enabled component middleware defines a communication
model that can be implemented over many networks, transport protocols, and
OS platforms. Developers of DRE applications can therefore concentrate on the
application-specific aspects of their systems and leave the communication and
QoS-related details to developers of the middleware.

(iii) Reduction of total ownership costs. QoS-enabled component middleware
defines crisp boundaries between the components in the application, which re-
duces dependencies and maintenance costs associated with replacement, integra-
tion, and revalidation of components. Likewise, core components of component
architectures can be reused, thereby helping to further reduce development,
maintenance, and testing costs.

A companion chapter in this book (Wang et al. 2003b) examines how recent en-
hancements to standard component middleware – particularly Real-time CORBA (Obj
2002b) and the CORBA Component Model (Obj 2002a) – can simplify the develop-
ment of DRE applications by composing static QoS provisioning policies and dynamic
QoS provisioning behaviors and adaptation mechanisms into applications.
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Unresolved challenges. Despite the significant advances in QoS-enabled compo-
nent middleware, however, applications in important domains (such as large-scale
DRE systems) that require simultaneous support for multiple QoS properties are still
not well supported. Examples include shipboard combat control systems (Schmidt et
al. 2001) and supervisory control and data acquisition (SCADA) systems that man-
age regional power grids. These types of large-scale DRE applications are typified by
the following characteristics:

• Stable applications and labile infrastructures – Most DRE systems have
a longer life than commercial systems (Cross and Schmidt 2002). In the com-
mercial domain, for instance, it is common to find applications that are revised
much more frequently than their infrastructure. The opposite is true in many
large-scale DRE systems, where the application software must continue to func-
tion properly across decades of technology upgrades. As a consequence, it is
important that the DRE applications interact with the changing infrastructure
through well-managed interfaces that are semantically stable. In particular, if
an application runs successfully on one implementation of an interface, it should
behave equivalently on another version or implementation of the same interface.

• End-to-end timeliness and dependability requirements – DRE appli-
cations have stringent timeliness (i.e., end-to-end predictable time guarantees)
and dependability requirements (Rajkumar et al. 1998). For example, the time-
liness in DRE systems is often expressed as an upper bound in response to exter-
nal events, as opposed to enterprise systems where it is expressed as events-per-
unit time. DRE applications generally express the dependability requirements
as a probabilistic assurance that the requirements will be met, as opposed to
enterprise systems, which express it as availability of a service.

• Heterogeneity – Large-scale DRE applications often run on a wide variety
of computing platforms that are interconnected by different types of network-
ing technologies with varying performance properties. The efficiency and pre-
dictability of execution of the different infrastructure components on which
DRE applications operate varies based on the type of computing platform and
interconnection technology.

Despite the advantages of QoS-enabled component middleware, the unique re-
quirements of large-scale DRE applications described earlier require a new gener-
ation of sophisticated tools and techniques for their development and deployment.
Recent advances in QoS-enabled component middleware technology address many re-
quirements of DRE applications, such as heterogeneity and timeliness. However, the
remaining challenges discussed below impede the rapid development, integration, and
deployment of DRE applications using COTS middleware:

i. Accidental complexities in identifying the right middleware technol-
ogy. Recent improvements in middleware technology and various standardization
efforts, as well as market and economical forces, have resulted in a multitude of mid-
dleware stacks, such as those shown in Figure 1.2. This heterogeneity often makes
it hard, however, to identify the right middleware for a given application domain.
Moreover, there exist limitations on how much application code can be factored out
as reusable patterns and components in various layers for each middleware stack.
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Figure 1.2 Multiple Middleware Stacks

This limit on refactoring in turn affects the optimization possibilities that can be im-
plemented in different layers of the middleware. The challenge for DRE application
developers is thus to choose the right middleware technology that can provide the
desired levels of end-to-end QoS.

ii. Accidental complexities in configuring middleware. In QoS-enabled
component middleware, both the components and the underlying component middle-
ware framework may have a large number of configurable attributes and parameters
that can be set at various stages of development lifecycle, such as composing an
application or deploying an application in a specific environment. It is tedious and
error-prone, however, to manually ensure that all these parameters are semantically
consistent throughout an application. Moreover, such ad hoc approaches have no for-
mal basis for validating and verifying that the configured middleware will indeed
deliver the end-to-end QoS requirements of the application. An automated and rigor-
ous tool-based approach is therefore needed that allows developers to formally analyze
application QoS requirements and then synthesize the appropriate set of configuration
parameters for the application components and middleware.

iii. Accidental complexities in composing and integrating software sys-
tems. Composing an application from a set of components with syntactically consis-
tent interface signatures simply ensures they can be connected together. To function
correctly, however, collaborating components must also have compatible semantics
and invocation protocols, which are hard to express via interface signatures alone.
Ad hoc techniques for determining, composing, assembling, and deploying the right
mix of semantically compatible, QoS-enabled COTS middleware components do not
scale well as the DRE application size and requirements increase. Moreover, ad hoc
techniques, such as manually selecting the components, are often tedious, error-prone,
and lack a solid analytical foundation to support verification and validation.

iv. Satisfying multiple QoS requirements simultaneously. DRE appli-
cations often possess multiple QoS requirements that the middleware must help to
enforce simultaneously. Due to the uniqueness and complexity of these QoS require-
ments, the heterogeneity of the environments in which they are deployed, and the
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need to interface with legacy systems and data, it is infeasible to develop a one-size-
fits all middleware solution that can address these requirements. Moreover, it is also
hard to integrate highly configurable, flexible, and optimized components from dif-
ferent providers while still ensuring that application QoS requirements are delivered
end-to-end.

v. Lack of principled methodologies to support dynamic adaptation
capabilities. To maintain end-to-end QoS in dynamically changing environments,
DRE middleware needs to be adaptive. Adaptation requires instrumenting the middle-
ware to reflect upon the runtime middleware, operating systems, and network resource
usage data and adapting the behavior based on the collected data. DRE application
developers have historically defined middleware instrumentation and program adap-
tation mechanisms in an ad hoc way and used the collected data to maintain the
desired QoS properties. This approach creates a tight coupling between the applica-
tion and the underlying middleware, while also scattering the code that is responsible
for reflection and adaptation throughout many parts of DRE middleware and appli-
cations, which makes it hard to configure, validate, modify, and evolve complex DRE
applications consistently.

To address the challenges described above, we need principled methods for specify-
ing, programming, composing, integrating, and validating software throughout these
DRE applications. These methods must enforce the physical constraints of the sys-
tem. Moreover, they must satisfy stringent functional and systemic QoS requirements
within an entire system. What is required is a set of standard integrated tools that
allow developers to specify application requirements at higher levels of abstraction
than that provided by low-level mechanisms, such as conventional general-purpose
programming languages, operating systems, and middleware platforms. These tools
must be able to analyze the requirements and synthesize the required metadata that
will compose applications from the right set of middleware components.
A promising solution: Model Driven Middleware. A promising way to ad-
dress the DRE software development and integration challenges described above is
to develop Model Driven Middleware by combining the Object Management Group
(OMG)’s Model Driven Architecture (MDA) technologies (Allen 2002; Obj 2001a)
with QoS-enabled component middleware (de Miguel 2002; Ritter et al. 2003; Wang
et al. 2003a,b). The OMG MDA is an emerging paradigm for expressing application
functionality and QoS requirements at higher levels of abstraction than is possible
using conventional third-generation programming languages, such as Visual Basic,
Java, C++, or C#. In the context of DRE middleware and applications, MDA tools
can be applied to:

(a) Model different functional and systemic properties of DRE applications in sepa-
rate platform-independent models. Domain-specific aspect model weavers (Gray
et al. 2003) can integrate these different models into composite models that can
be further refined by incorporating platform-specific aspects.

(b) Analyze different—but interdependent—characteristics and requirement of ap-
plication behavior specified in the models, such as scalability, predictability,
safety, schedulability, and security. Tool-specific model interpreters (Ledeczi et
al. 2001) translate the information specified by models into the input format
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expected by model checking and analysis tools (Hatcliff et al. 2003; Stankovic et
al. 2003). These tools can check whether the requested behavior and properties
are feasible given the specified application and resource constraints.

(c) Synthesize platform-specific code and metadata that is customized for particu-
lar component middleware and DRE application properties, such as end-to-end
timing deadlines, recovery strategies to handle various runtime failures in real-
time, and authentication and authorization strategies modeled at a higher level
of abstraction than that provided by programming languages (such as C, C++,
and Java) or scripting languages (such as Perl and Python).

(d) Provision the application by assembling and deploying the selected applica-
tion and middleware components end-to-end using the configuration metadata
synthesized by the MDA tools.

The initial focus of MDA technologies were largely on enterprise applications.
More recently, MDA technologies have emerged to customize QoS-enabled component
middleware for DRE applications, including aerospace (Aeronautics 2003), telecom-
munications (Networks 2003), and industrial process control (Railways 2003). This
chapter describes how MDA technologies are being applied to QoS-enabled CORBA
component middleware to create Model Driven Middleware frameworks.
Chapter organization. The remainder of this chapter is organized as follows: Sec-
tion 1.2 presents an overview of the OMG Model Driven Architecture (MDA) effort;
Section 1.3 describes how the Model Driven Middleware paradigm, which is an in-
tegration of MDA and QoS-enabled component middleware, resolves key challenges
associated with DRE application integration; Section 1.4 provides a case study of
applying Model Driven Middleware in the context of real-time avionics mission com-
puting; Section 1.5 compares our work on Model Driven Middleware with related
efforts; and Section 1.6 presents concluding remarks.

1.2 Overview of the OMG Model Driven Architec-
ture (MDA)

The OMG has adopted the Model Driven Architecture (MDA) shown in Figure 1.3
to standardize the integration of the modeling, analysis, simulation and synthesis
paradigm with different middleware technology platforms. MDA is a development
paradigm that applies domain-specific modeling languages systematically to engi-
neer computing systems, ranging from small-scale real-time and embedded systems
to large-scale distributed enterprise applications. It is model driven because it uses
models to direct the course of understanding, design, construction, deployment, op-
eration, maintenance, and modification. MDA is a key step forward in the long road
of converting the art of developing software into an engineering process. This section
outlines the capabilities and benefits of OMG’s MDA.

1.2.1 Capabilities of the MDA

The OMG MDA approach is facilitated by domain-specific modeling environments (van
Deursen et al. 2002), including model analysis and model-based program synthesis
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Figure 1.3 Roles and Relationships in OMG Model Driven Architecture

tools (Ledeczi et al. 2001). In the MDA paradigm, application developers capture
integrated, end-to-end views of entire applications in the form of models, including
the interdependencies of components. Rather than focusing on a single custom appli-
cation, the models may capture the essence of a class of applications in a particular
domain. MDA also allows domain-specific modeling languages to be formally specified
by metamodels (Karsai et al. 2003; Sprinkle et al. 2001).

A metamodel defines the abstract and concrete syntax, the static semantics (i.e.,
well-formedness rules), and semantic mapping of the abstract syntax into a semantic
domain for a domain-specific modeling language (DSML), which can be used to cap-
ture the essential properties of applications. The (abstract) metamodel of a DSML is
translated into a (concrete) domain-specific modeling paradigm, which is a particu-
lar approach to creating domain models supported by a custom modeling tool. This
paradigm can then be used by domain experts to create the models and thus the
applications.

The MDA specification defines the following types of models that streamline plat-
form integration issues and protect investments against the uncertainty of changing
platform technology:

• Computation-independent models (CIMs) that describe the computation
independent viewpoint of an application. CIMs provide a domain-specific model
that uses vocabulary understandable to practitioners of a domain and hides non-
essential implementation details of the application from the domain experts and
systems engineers. The goal of a CIM is to bridge the gap between (1) domain
experts who have in-depth knowledge of the subject matter, but who are not
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generally experts in software technologies, and (2) developers who understand
software design and implementation techniques, but who are often not domain
experts. For example, the Unified Modeling Language (UML) can be used to
model a GPS guidance system used in avionics mission computing (Sharp and
Roll 2003) without exposing low-level implementation artifacts.

• Platform-independent models (PIMs) that describe at a high-level how
applications will be structured and integrated, without concern for the target
middleware/OS platforms or programming languages on which they will be
deployed. PIMs provide a formal definition of an application’s functionality
implemented on some form of a virtual architecture. For example, the PIM
for the GPS guidance system could include artifacts such as priority of the
executing thread or worst-case execution time for computing the coordinates.

• Platform-specific models (PSMs) that are constrained formal models that
express platform-specific details. The PIM models are mapped into PSMs via
translators. For example, the GPS guidance system that is specified in the PIM
could be mapped and refined to a specific type in the underlying platform,
such as a QoS-enabled implementation (Wang et al. 2003b) of the CORBA
Component Model (CCM) (Obj 2002a).

The CIM, PIM, and PSM descriptions of applications are formal specifications
built using modeling standards, such as UML, that can be used to model application
functionality and system interactions. The MDA enables the application requirements
captured in the CIMs to be traced to the PIMs/PSMs and vice versa. The MDA also
defines a platform-independent metamodeling language, which is also expressed using
UML, that allows platform-specific models to be modeled at an even higher level of
abstraction.

Figure 1.3 also references the Meta-Object Facility (MOF), which provides a
framework for managing any type of metadata. The MOF has a layered metadata
architecture with a meta-metamodeling layer and an object modeling language—
closely related to UML—that ties together the metamodels and models. The MOF
also provides a repository to store metamodels.

The Common Warehouse Model (CWM) shown in Figure 1.3 provides standard
interfaces that can manage many different databases and schemas throughout an
enterprise. The CWM interfaces are designed to support management decision making
and exchange of business metadata between diverse warehouse tools to help present
a coherent picture of business conditions at a single point in time. The OMG has
defined the XML Metadata Interchange (XMI) for representing and exchanging CWM
metamodels using the Extended Markup Language (XML).

The OMG partitions the architecture of a computing system into the following
three levels where MDA-based specifications are applicable:

1. The Pervasive services level constitutes a suite of PIM specifications of es-
sential services, such as events, transactions, directory and security, useful for
large scale application development.

2. The Domain facilities level constitutes a suite of PIM specifications from
different domains such as manufacturing, healthcare and life science research
within the OMG.
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3. The Applications level constitutes a suite of PIM specifications created by
software vendors for their applications.

The three levels outlined above allow a broad range of services and application designs
to be reused across multiple platforms. For instance, some of the domain-specific
services from the OMG could be reused for other technology platforms, rather than
designing them from scratch.
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Figure 1.4 The Model Driven Architecture Computing Process

As shown in Figure 1.4, MDA uses a set of tools to
• Model the application in a computation-independent and platform-independent

style
• Analyze the interdependent features of the system captured in a model and
• Determine the feasibility of supporting different system quality aspects, such as

QoS requirements, in the context of the specified constraints.
Another set of tools translate the PIMs into PSMs. As explained in Section 1.2.1,
PSMs are executable specifications that capture the platform behavior, constraints,
and interactions with the environment. These executable specifications can in turn
be used to synthesize various portions of application software.

1.2.2 Benefits of the MDA

When implemented properly, MDA technologies help to:
• Free application developers from dependencies on particular software APIs,

which ensures that the models can be used for a long time, even as existing
software APIs become obsolete and replaced by newer ones.

• Provide correctness proofs for various algorithms by analyzing the models au-
tomatically and offering refinements to satisfy various constraints.

• Synthesize code that is highly dependable and robust since the tools can be
built using provably correct technologies.

• Rapidly prototype new concepts and applications that can be modeled quickly
using this paradigm, compared to the effort required to prototype them manu-
ally.

• Save companies and projects significant amounts of time and effort in design
and maintenance, thereby also reducing application time-to-market.
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Earlier generations of computer-aided software engineering (CASE) technologies
have evolved into sophisticated tools, such as objectiF and in-Step from MicroTool and
Paradigm Plus, VISION, and COOL from Computer Associates. This class of prod-
ucts has evolved over the past two decades to alleviate various complexities associated
with developing software for enterprise applications. Their successes have added the
MDA paradigm to the familiar programming languages and language processing tool
offerings used by previous generations of software developers. Popular examples of
MDA or MDA-related tools being used today include the Generic Modeling Envi-
ronment (GME) (Ledeczi et al. 2001), Ptolemy (Buck et al. 1994), and MDA-based
UML/XML tools, such as Codagen Architect or Metanology.

As described in Section 1.2.1, MDA is a platform-independent technology that
aims to resolve the complexities involved with COTS obsolescence and the resulting
application transition to newer technologies. The design and implementation of MDA
tools for a given middleware technology, however, is itself a challenging problem that is
not completely addressed by the standards specifications. The next section addresses
these challenges by describing how MDA technology can be effectively combined with
QoS-enabled middleware to create Model Driven Middleware.

1.3 Overview of Model Driven Middleware

Although rapid strides in QoS-enabled component middleware technology have helped
to resolve a number of DRE application development challenges, Section 1.1 high-
lighted the unresolved challenges faced by DRE application developers. It is in this
context that the OMG’s Model Driven Architecture can be effectively combined with
these QoS-enabled component middleware technologies to resolve these challenges.
We coined the term Model Driven Middleware to describe integrated suites of MDA
tools that can be applied to the design and runtime aspects of QoS-enabled component
middleware.

This section first outlines the limitations of prior efforts to use modeling and
synthesis techniques for lifecycle management of large-scale applications, including
DRE applications. These limitations resulted from the lack of integration between
modeling techniques and QoS-enabled middleware technologies. We then describe
how to effectively integrate MDA with QoS-enabled middleware.

1.3.1 Limitations of Using Modeling and Middleware in Iso-
lation

Earlier efforts in model driven synthesis of large-scale applications and component
middleware technologies have evolved from different perspectives, i.e., modeling tools
have largely focused on design issues (such as structural and behavioral relationships
and associations), whereas component middleware has largely focused on runtime is-
sues (such as (re)configuration, deployment, and QoS enforcement). Although each of
these two paradigms have been successful independently, each also has its limitations,
as discussed below:



MODEL DRIVEN MIDDLEWARE 12

Complexity due to heterogeneity. Conventional component middleware is de-
veloped using separate tools and interfaces written and optimized manually for each
middleware technology (such as CORBA, J2EE, and .NET) and for each target de-
ployment (such as various OS, network, and hardware configurations). Developing,
assembling, validating, and evolving all this middleware manually is costly, time-
consuming, tedious, and error-prone, particularly for runtime platform variations and
complex application use cases. This problem is exacerbated as more middleware, tar-
get platforms, and complex applications continue to emerge.
Lack of sophisticated modeling tools. Previous efforts at model-based devel-
opment and code synthesis attempted by CASE tools generally failed to deliver on
their potential for the following reasons (Allen 2002):

• They attempted to generate entire applications, including the middleware in-
frastructure and the application logic, which often led to inefficient, bloated code
that was hard to optimize, validate, evolve, or integrate with existing code.

• Due to the lack of sophisticated domain-specific languages and associated meta-
modeling tools, it was hard to achieve round-trip engineering, i.e., moving back
and forth seamlessly between model representations and the synthesized code.

• Since CASE tools and modeling languages dealt primarily with a restricted set
of platforms (such as mainframes) and legacy programming languages (such as
COBOL) they did not adapt well to the distributed computing paradigm that
arose from advances in PC and Internet technology and newer object-oriented
programming languages, such as Java, C++, and C#.

1.3.2 Combining Model Driven Architecture and QoS-enabled
Component Middleware

The limitations with modeling techniques and component middleware outlined above
can largely be overcome by integrating OMG MDA and component middleware as
follows:

• Combining MDA with component middleware helps to overcome problems with
earlier-generation CASE tools since it does not require the modeling tools to
generate all the code. Instead, large portions of applications can be composed
from reusable, prevalidated middleware components, as shown in Figure 1.5.

• Combining MDA and component middleware helps address environments where
control logic and procedures change at rapid pace, by synthesizing and assem-
bling newer extended components that implement the new procedures and pro-
cesses.

• Combining component middleware with MDA helps to make middleware more
flexible and robust by automating the configuration of many QoS-critical as-
pects, such as concurrency, distribution, resource reservation, security, and de-
pendability. Moreover, MDA-synthesized code can help bridge the interoperabil-
ity and portability problems between different middleware for which standard
solutions do not yet exist.

• Combining component middleware with MDA helps to model the interfaces
among various components in terms of standard middleware interfaces, rather
than language-specific features or proprietary APIs.
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Figure 1.5: Integrating MDA and Component Middleware to Create Model
Driven Middleware

• Changes to the underlying middleware or language mapping for one or many
of the components modeled can be handled easily as long as they interoperate
with other components. Interfacing with other components can be modeled as
constraints that can be validated by model checkers, such as Cadena (Hatcliff
et al. 2003).

Figure 1.6 illustrates seven points at which MDA can be integrated with compo-
nent middleware architectures and applied to DRE applications. Below, we present ex-
amples of each of these integration points in the Model Driven Middleware paradigm:
1. Configuring and deploying application services end-to-end. Developing
complex DRE applications requires application developers to handle a variety of con-
figuration, packaging and deployment challenges, such as

• Configuring appropriate libraries of middleware suites tailored to the QoS and
footprint requirements of the DRE application

• Locating the appropriate existing services
• Partitioning and distributing application processes among component servers

using the same middleware technologies and
• Provisioning the QoS required for each service that comprises an application

end-to-end.
It is a daunting task to identify and deploy all these capabilities into an efficient,
correct, and scalable end-to-end application configuration. For example, to maintain
correctness and efficiency, services may change or migrate when the DRE applica-
tion requirements change. Careful analysis is therefore required for large-scale DRE
systems to effectively partition collaborating services on distributed nodes so the
information can be processed efficiently, dependably, and securely. The OMG’s De-
ployment and Configuration specification (Obj 2003a) addresses these concerns and
describes the mechanisms by which distributed component-based applications are
configured and deployed.
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Figure 1.6: Integrating Model Driven Architecture with Component Mid-
dleware

Integrating MDA and component middleware to deploy DRE application services
end-to-end can help developers configure the right set of services into the right part
of an application in the right way. MDA analysis tools can help determine the appro-
priate partitioning of functionality that should be deployed into various component
servers throughout a network. For example, tools like Matlab, Simulink, TimeWiz,
and RapidRMA allow DRE application developers to model and visualize their appli-
cation end-to-end and their QoS requirements. In particular, the Simulink tool allows
application developers to model, analyze, simulate, verify, and rapidly prototype DRE
applications.
2. Composing components into component servers. Integrating MDA with
component middleware provides capabilities that help application developers to com-
pose components into application servers by

• Selecting a set of suitable, semantically compatible components from reuse
repositories

• Specifying the functionality required by new components to isolate the details
of DRE systems that (1) operate in environments where DRE processes change
periodically and/or (2) interface with third-party software associated with ex-
ternal systems

• Determining the interconnections and interactions between components in meta-
data

• Packaging the selected components and metadata into an assembly that can be
deployed into the component server.
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OMG MDA tools, such as OptimalJ from Compuware, provide tools for composing
J2EE component servers from visual models.
3. Configuring application component containers. Application components
use containers to interact with the component servers in which they are configured.
Containers manage many policies that distributed applications can use to fine-tune
underlying component middleware behavior, such as its priority model, required ser-
vice priority level, security, and other quality of service properties. Since DRE appli-
cations consist of many interacting components, their containers must be configured
with consistent and compatible QoS policies.

Due to the number of policies and the intricate interactions among them, it is
tedious and error-prone for a DRE application developer to manually specify and
maintain component policies and semantic compatibility with policies of other com-
ponents. MDA tools can help automate the validation and configuration of these
container policies by allowing system designers to specify the required system prop-
erties as a set of models. Other MDA tools can then analyze the models and generate
the necessary policies and ensure their consistency.

The Embedded Systems Modeling Language (ESML) (Karsai et al. 2002) devel-
oped as part of the DARPA MoBIES program uses MDA technology to model the be-
havior of, and interactions between, avionics components. Moreover, the ESML model
generators synthesize fault management and thread policies in component containers.
4. Synthesizing application component implementations. Developing com-
plex DRE applications involves programming new components that add application-
specific functionality. Likewise, new components must be programmed to interact with
external systems and sensors (such as a machine vision module controller) that are
not internal to the application. Since these components involve substantial knowledge
of application domain concepts (such as mechanical designs, manufacturing process,
workflow planning, and hardware characteristics) it would be ideal if they could be
developed in conjunction with systems engineers and/or domain experts, rather than
programmed manually by software developers.

The shift toward high-level design languages and modeling tools is creating an
opportunity for increased automation in generating and integrating application com-
ponents. The goal is to bridge the gap between specification and implementation via
sophisticated aspect weavers (Kiczales et al. 1997) and generator tools (Ledeczi et
al. 2001) that can synthesize platform-specific code customized for specific applica-
tion properties, such as resilience to equipment failure, prioritized scheduling, and
bounded worst-case execution under overload conditions.

The Constraint Specification Aspect Weaver (C-SAW) (Gray et al. 2003) and
Adaptive Quality Modeling Environment (AQME) (Neema et al. 2002) tools devel-
oped as part of the DARPA PCES program use MDA technology to provide a model
driven approach for weaving in and synthesizing QoS adaptation logic DRE applica-
tion components. In particular, AQME is used in conjunction with QuO/Qoskets (Tech-
nologies n.d.) to provide adaptive QoS policies for an unmanned aerial vehicle (UAV)
real-time video distribution application (R. Schantz and J. Loyall and D. Schmidt
and C. Rodrigues and Y. Krishnamurthy and I. Pyarali 2003).
5. Synthesizing dynamic QoS provisioning and adaptation logic. Based on
the overall system model and constraints, MDA tools may decide to plug in existing
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dynamic QoS provisioning and adaptation modules, using appropriate parameters.
When none is readily available, the MDA tools can assist in creating new behaviors
by synthesizing appropriate logic, e.g., using QoS-enabled aspect languages (Pal et al.
2000). The generated dynamic QoS behavior can then be used in system simulation
dynamically to verify its validity. It can then be composed into the system as described
above.

The AQME (Neema et al. 2002) modeling language mentioned at the end of
integration point 4 above models the QuO/Qosket middleware by modeling system
conditions and service objects. For example, AQME enables modeling the interactions
between the sender and receiver of the UAV video streaming applications, as well as
parameters that instrument the middleware and application components.
6. Synthesizing middleware-specific configurations. The infrastructure mid-
dleware technologies used by component middleware provide a wide range of policies
and options to configure and tune their behavior. For example, CORBA Object Re-
quest Brokers (ORBs) often provide many options and tuning parameters, such as
various types of transports and protocols, various levels of fault tolerance, middleware
initialization options, efficiency of (de)marshaling event parameters, efficiency of de-
multiplexing incoming method calls, threading models and thread priority settings,
and buffer sizes, flow control, and buffer overflow handling. Certain combinations of
the options provided by the middleware may be semantically incompatible when used
to achieve multiple QoS properties.

For example, a component middleware implementation could offer a range of se-
curity levels to the application. In the lowest security level, the middleware exchanges
all the messages over an unsecure channel. The highest security level, in contrast, en-
crypts and decrypts messages exchanged through the channel using a set of dynamic
keys. The same middleware could also provide an option to use zero-copy optimiza-
tions to minimize latency. A modeling tool could automatically detect the incompat-
ibility of trying to compose the zero-copy optimization with the highest security level
(which makes another copy of the data during encryption and decryption).

Advanced meta-programming techniques, such as adaptive and reflective middle-
ware (Cross and Schmidt 2002; Fábio M. Costa and Gordon S. Blair 1999; Gordon S.
Blair and G. Coulson and P. Robin and M. Papathomas 1998; Kon et al. 2002) and
aspect-oriented programming (Kiczales et al. 1997), are being developed to configure
middleware options so they can be tailored for particular DRE application use cases.
7. Synthesizing middleware implementations. MDA tools can also be inte-
grated with component middleware by using generators to synthesize custom mid-
dleware implementations. This integration is a more aggressive use of modeling and
synthesis than integration point 6 described above since it affects middleware im-
plementations, rather than just their configurations. For example, application inte-
grators could use these capabilities to generate highly customized implementations
of component middleware so that it (1) only includes the features actually needed
for a particular application and (2) is carefully fine-tuned to the characteristics of
particular programming languages, operating systems, and networks.

The customizable middleware architectural framework Quarterware (Campbell et
al. 1998) is an example of this type of integration. Quarterware abstracts basic mid-
dleware functionality and allows application-specific specializations and extensions.
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The framework can generate core facilities of CORBA, Remote Method Invocation
(RMI), and Message Passing Interface (MPI). The framework-generated code is op-
timized for performance, which the authors demonstrate is comparable—and often
better—than many commercially available middleware implementations.

1.4 Model Driven Middleware Case Study: Inte-
grating MDA with QoS-enabled Middleware for
Avionics Mission Computing

The Model Driven Middleware tool suite we are developing is called CoSMIC (Com-
ponent Synthesis with Model Integrated Computing) (Gokhale 2003; Gokhale et al.
2002; Lu et al. 2003). Our research on CoSMIC is manifested in the integration of
OMG MDA with QoS-enabled component middleware, such as CIAO (Wang et al.
2003b), along the seven points illustrated in Figure 1.6. This section illustrates how
the Model Driven Middleware concept manifested in CoSMIC is being operationalized
in practice for the avionics mission computing domain.

Within the CoSMIC framework, we are integrating the OMG MDA tools and
processes with the CIAO QoS-enabled component middleware platform (Wang et al.
2003b) and applying them in the context of Boeing’s Bold Stroke (Sharp 1998; Sharp
and Roll 2003) avionics mission computing platform. Bold Stroke is a large-scale DRE
platform that is based heavily on QoS-enabled component middleware. The CoSMIC
tools we are developing for avionics mission computing are designed to model and
analyze both application functionality and end-to-end application QoS requirements.
With CIAO’s support for QoS-enabled, reusable CCM components it is then possible
for CoSMIC to:

• Model the QoS requirements of avionics applications using domain-specific mod-
eling languages we have developed

• Associate the models with different static and dynamic QoS profiles
• Simulate and analyze dynamic behaviors
• Synthesize appropriate middleware configuration parameters including different

policies of the CIAO containers
• Synthesize the QoS-enabled application functionality in component assemblies

and
• Weave in crosscutting runtime adaptation logic metadata.

Figure 1.7 illustrates the interaction between CoSMIC and CIAO that enables the
resolution of the challenges outlined in Section 1.1. Below we describe how we are
using Model Driven Middleware in the context of avionics mission computing.

Handling avionics mission computing middleware configuration. The CIAO
CCM implementation provides a large number of configuration parameters to fine
tune its performance to meet the QoS needs of Bold Stroke avionics applications.
CIAO imposes several constraints on what combinations of these options are valid for
a given specification of application QoS requirements. To handle these complexities,
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Figure 1.7 Interactions between CoSMIC and CIAO

CoSMIC provides a modeling paradigm (Karsai et al. 2003) called the Options Config-
uration Modeling Language (OCML) (Gokhale 2003). CIAO middleware developers
can use OCML to model the available configuration parameters and the different
constraints involving these options. Likewise, the Bold Stroke avionics mission com-
puting application developers can use the OCML modeling, analysis, and synthesis
framework to (1) model the desired QoS requirements and (2) synthesize the appro-
priate middleware configuration metadata that is then used by CIAO to fine tune its
performance.

Figure 1.8 illustrates an example of using the OCML modeling paradigm to model
a rule for combining configuration options in CIAO. DRE application developers using

Figure 1.8 Example using OCML Modeling Paradigm

the OCML paradigm to choose the CIAO middleware configuration parameters will
be constrained by the rules imposed by the suite of OCML models, such as those
illustrated in Figure 1.8.

Handling avionics middleware component assembly and deployment. The
CoSMIC tool suite provides modeling of DRE systems, their QoS requirements, and
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component assembly and deployment. A modeling paradigm called the Component
Assembly and Deployment Modeling Language (CADML) (Gokhale 2003) has been
developed for this purpose. In the context of avionics mission computing, the CADML
assembly and deployment models convey information on which Bold Stroke compo-
nents are collocated on which processor boards of the mission computer. CADML
models also convey information on the replication of components used to enhance
reliability. CADML is based on a related paradigm called the Embedded Systems
Modeling Language (ESML) (Karsai et al. 2002). Whereas ESML enables modeling a
proprietary avionics component middleware, CoSMIC CADML enables modeling the
standards-based CCM components, and their assembly and deployment described in
the OMG D&C specification (Obj 2003a).

Figure 1.9 illustrates an example of using the CADML modeling paradigm to
model an assembly of components of an avionics application. This figure illustrates a
simple avionics application comprising an assembly of a GPS, an airframe, and a nav-
igational display component. The CoSMIC tool also provides synthesis tools targeted

Figure 1.9 Using CADML to Model Avionics Component Assembly

at the CIAO QoS-enabled component assembly and deployment. As described in our
companion chapter in this book (Wang et al. 2003b), QoS-enabled component mid-
dleware, such as CIAO, abstracts component QoS requirements into metadata that
can be specified in a component assembly after a component has been implemented.
Decoupling QoS requirements from component implementations greatly simplifies the
conversion and validation of an application model with multiple QoS requirements
into CCM deployment of DRE applications. The synthesis tools use the CADML
models to generate the assembly and deployment data.

The CoSMIC component assembly and deployment tools described in this section
have been applied successfully for modeling and synthesis of a number of Bold Stroke
product scenarios. To address scalability issues for Bold Stroke component assemblies
comprising large number of components, e.g., 50 or more, CADML allows partition-
ing the assemblies into manageable logical units that are then themselves assembled.
Moreover, using CADML to synthesize the assembly metadata for such large assem-
blies is a big win over manually handcrafting the same both in terms of the scalability
as well as correctness of the synthesized assembly metadata.

1.5 Related Work

This section reviews related work on model driven architectures and describes how
modeling, analysis, and generative programming techniques are being used to model
and provision QoS capabilities for DRE component middleware and applications.
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Model-based software development. Research on Model Driven Middleware ex-
tends earlier work on Model-Integrated Computing (MIC) (Gray et al. 2001; Harel and
Gery 1996; Lin 1999; Sztipanovits and Karsai 1997) that focused on modeling and syn-
thesizing embedded software. MIC provides a unified software architecture and frame-
work for creating Model-Integrated Program Synthesis (MIPS) environments (Ledeczi
et al. 2001). Examples of MIC technology used today include GME (Ledeczi et al.
2001) and Ptolemy (Buck et al. 1994) (used primarily in the real-time and embed-
ded domain) and MDA (Obj 2001a) based on UML (Obj 2001b) and XML (Domain
n.d.) (which have been used primarily in the business domain). Our work on CoS-
MIC combines the GME tool and UML modeling language to model and synthesize
QoS-enabled component middleware for use in provisioning DRE applications. In par-
ticular, CoSMIC is enhancing GME to produce domain-specific modeling languages
and generative tools for DRE applications, as well as developing and validating new
UML profiles (such as the UML profile for CORBA (Obj 2002c), the UML profile for
quality of service (Obj 2003b), and UML profile for schedulability, performance and
time (Obj 2003c)) to support DRE applications.

As part of an ongoing collaboration (R. Schantz and J. Loyall and D. Schmidt and
C. Rodrigues and Y. Krishnamurthy and I. Pyarali 2003) between ISIS, University
of Utah, and BBN Technologies, work is being done to apply GME techniques to
model an effective resource management strategy for CPU resources on the TimeSys
Linux real-time OS (TimeSys 2001). Timesys Linux allows applications to specify
CPU reservations for an executing thread, which guarantee that the thread will have
a certain amount of CPU time, regardless of the priorities of other threads in the
system. Applying GME modeling to develop the QoS management strategy simplifies
the simulation and validation necessary to assure end-to-end QoS requirements for
CPU processing.

The Virginia Embedded System Toolkit (VEST) (Stankovic et al. 2003) is an
embedded system composition tool that enables the composition of reliable and con-
figurable systems from COTS component libraries. VEST compositions are driven
by a modeling environment that uses the GME tool (Ledeczi et al. 2001). VEST
also checks whether certain real-time, memory, power, and cost constraints of DRE
applications are satisfied.

The Cadena (Hatcliff et al. 2003) project provides an MDA tool suite with the
goal of assessing the effectiveness of applying static analysis, model-checking, and
other light-weight formal methods to CCM-based DRE applications. The Cadena
tools are implemented as plug-ins to IBM’s Eclipse integrated development environ-
ment (IDE) (Object Technology International, Inc. 2003). This architecture provides
an IDE for CCM-based DRE systems that ranges from editing of component defini-
tions and connections information to editing and debugging of auto-generated code
templates.

Commercial successes in model-based software development include the Rational
Rose (Matthew Drahzal 1999) suite of tools used primarily in enterprise applications.
Rose is a model driven development tool suite that is designed to increase the pro-
ductivity and quality of software developers. Its modeling paradigm is based on the
Unified Modeling Language (UML). Rose tools can be used in different application
domains including business and enterprise/IT applications, software products and
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systems, and embedded systems and devices. In the context of DRE applications,
Rose has been applied successfully in the avionics mission computing domain (Sharp
1998).

Other commercial successes include the Matlab Simulink and Stateflow tools that
are used primarily in engineering applications. Simulink is an interactive tool for
modeling, simulating, and analyzing dynamic, multidomain systems. It provides a
modeling paradigm that covers a wide range of domain areas, including control sys-
tems, digital signal processors (DSPs), and telecommunication systems. Simulink is
capable of simulating the modeled system’s behavior, evaluating its performance, and
refining the design. Stateflow is an interactive design tool for modeling and simulat-
ing event-driven systems. Stateflow is integrated tightly with Simulink and Matlab
to support designing embedded systems that contain supervisory logic. Simulink uses
graphical modeling and animated simulation to bridge the traditional gap between
system specification and design.
Program transformation technologies. Program transformation is used in many
areas of software engineering, including compiler construction, software visualiza-
tion, documentation generation, and automatic software renovation. The approach
basically involves changing one program to another. Program transformation envi-
ronments provide an integrated set of tools for specifying and performing semantic-
preserving mappings from a source program to a new target program.

Program transformations are typically specified as rules that involve pattern match-
ing on an abstract syntax tree (AST). The application of numerous transformation
rules evolves an AST to the target representation. A transformation system is much
broader in scope than a traditional generator for a domain-specific language. In fact,
a generator can be thought of as an instance of a program transformation system
with specific hard-coded transformations. There are advantages and disadvantages to
implementing a generator from within a program transformation system. A major
advantage is evident in the pre-existence of parsers for numerous languages (Baxter
2001). The internal machinery of the transformation system may also provide better
optimizations on the target code than could be done with a stand-alone generator.

Generative Programming (GP) (Czarnecki and Eisenecker 2000) is a type of pro-
gram transformation concerned with designing and implementing software modules
that can be combined to generate specialized and highly optimized systems fulfilling
specific application requirements. The goals are to (1) decrease the conceptual gap
between program code and domain concepts (known as achieving high intentionality),
(2) achieve high reusability and adaptability, (3) simplify managing many variants of
a component, and (4) increase efficiency (both in space and execution time).

GenVoca (Batory et al. 1994) is a generative programming tool that permits hi-
erarchical construction of software through the assembly of interchangeable/reusable
components. The GenVoca model is based upon stacked layers of abstraction that can
be composed. The components can viewed as a catalog of problem solutions that are
represented as pluggable components, which then can be used to build applications
in the catalog domain.

Yet another type of program transformation is aspect-oriented software devel-
opment (AOSD). AOSD is a new technology designed to more explicitly separate
concerns in software development. The AOSD techniques make it possible to mod-
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ularize crosscutting aspects of complex DRE systems. An aspect is a piece of code
or any higher level construct, such as implementation artifacts captured in a MDA
PSM, that describes a recurring property of a program that crosscuts the software
application i.e., aspects capture crosscutting concerns). Examples of programming
language support for AOSD constructs include AspectJ (Kiczales et al. 2001) and As-
pectC++ (Olaf Spinczyk and Andreas Gal and Wolfgang Schröder-Preikschat 2002).

1.6 Concluding Remarks

Large-scale distributed real-time and embedded (DRE) applications are increasingly
being developed using QoS-enabled component middleware (Wang et al. 2003b). QoS-
enabled component middleware provides policies and mechanisms for provisioning
and enforcing large-scale DRE application QoS requirements. The middleware itself,
however, does not resolve the challenges of choosing, configuring, and assembling
the appropriate set of syntactically and semantically compatible QoS-enabled DRE
middleware components tailored to the application’s QoS requirements. Moreover, a
particular middleware API does not resolve all the challenges posed by obsolescence
of infrastructure technologies and its impact on long-term DRE system lifecycle costs.

The OMG’s Model Driven Architecture (MDA) is emerging as an effective paradigm
for addressing the challenges described above. The MDA is a software development
paradigm that applies domain-specific modeling languages systematically to engineer
computing systems. This chapter provides an overview of the emerging paradigm of
Model Driven Middleware, which applies MDA techniques and tools to help configure
and deploy QoS-enabled component middleware and DRE applications and large-scale
systems of systems.

To illustrate recent progress on Model Driven Middleware, we describe a case
study of applying the CoSMIC tool suite in the domain of avionics mission computing.
CoSMIC is designed to simplify the integration of DRE applications that consist of
QoS-enabled component middleware, such as the CIAO QoS enhancements to the
CORBA Component Model (CCM) (Wang et al. 2003b). CoSMIC provides platform-
dependent metamodels that describe middleware and container configurations, as well
as platform-independent metamodels to describe DRE application QoS requirements.
These metamodels can be used to provision static and dynamic resources in CIAO. By
extending CIAO to support component deployment metadata for QoS policies, such
as real-time priorities, DRE applications can be composed from existing components
while applying various QoS policies. This capability not only reduces the cost of
developing DRE applications, it also makes it easier to analyze the consistency of
QoS policies applied throughout a system using MDA tools.

All the material presented in this book chapter is based on the CoSMIC Model
Driven Middleware tools available for download at www.dre.vanderbilt.edu/cosmic.
The associated component middleware CIAO can be downloaded in open-source for-
mat from www.dre.vanderbilt.edu/Download.html.



Bibliography

Aeronautics LM 2003 Lockheed Martin (MDA Success Story)
http://www.omg.org/mda/mda_files/LockheedMartin.pdf.

Allen P 2002 Model Driven Architecture. Component Development Strategies.
Batory D, Singhal V, Thomas J, Dasari S, Geraci B and Sirkin M 1994 The GenVoca

Model of Software-System Generators. IEEE Software 11(5), 89–94.
Baxter I 2001 DMA: A Tool for Automating Software Quality Enhancement. Semantic

Designs (www.semdesigns.com).
Buck JT, Ha S, Lee EA and Messerschmitt DG 1994 Ptolemy: A Framework for Simulating

and Prototyping Heterogeneous Systems. International Journal of Computer Simulation,
Special Issue on Simulation Software Development Component Development Strategies.

Campbell R, Singhai A and Sane A 1998 Quarterware for Middleware Proceedings of
ICDCS 98 IEEE.

Cross JK and Schmidt DC 2002 Applying the Quality Connector Pattern to Optimize
Distributed Real-time and Embedded Middleware In Patterns and Skeletons for
Distributed and Parallel Computing (ed. Rabhi F and Gorlatch S) Springer Verlag.

Czarnecki K and Eisenecker U 2000 Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Boston.

de Miguel MA 2002 QoS-Aware Component Frameworks The 10th International Workshop
on Quality of Service (IWQoS 2002), Miami Beach, Florida.

Domain WA n.d. Extensible Markup Language (XML) http://www.w3c.org/XML.
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