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Abstract

Component middleware provides dependable and efficient platforms that support key functional,
and quality of service (QoS) needs of distributed real-time embedded (DRE) systems. Component
middleware, however, also introduces challenges for DRE system developers, such as evaluating the
predictability of DRE system behavior, and choosing the right design alternatives before committing
to a specific platform or platform configuration. Model-based technologies help address these issues
by enabling design-time analysis, and providing the means to automate the development, deployment,
configuration, and integration of component-based DRE systems. To this end, this paper applies model
checking techniques to DRE design models using model transformations to verify key QoS properties
of component-based DRE systems developed using Real-time CORBA. We introduce a formal semantic
domain for a general class of DRE systems that enables the verification of distributed non-preemptive
real-time scheduling. Our results show that model-based techniques enable design-time analysis of timed
properties and can be applied to effectively predict, simulate, and verify the event-driven behavior of
component-based DRE systems.

Keywords: Schedulability analysis, model checking, component middleware, distributed real-time
and embedded systems.

1 Introduction

Distributed real-time embedded (DRE) systems, including command and control systems, and avionics
mission computing, increasingly run in open environments, such as network-centric systems of systems.
These open DRE systems operate in less predictable conditions than previous generations of real-time
and embedded systems (such as micro-controllers and PLCs) that are specialized for specific application
domains (such as heavy industry, traffic control, or medical applications). As a result, current and planned
DRE systems require a highly adaptive, and flexible infrastructure that can factor out reusable resource
management services from application code, thereby off-loading many tedious and error-prone aspects of
the software lifecycle from developers of DRE systems.

A promising software infrastructure technology for DRE systems is component middleware, which
defines platform capabilities, and tools for specifying, implementing, deploying, and configuring compo-
nents [1], and publish/subscribe services [2] that exchange messages between components. Components, in
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turn, are units of implementation, reuse, and composition that expose named interfaces called ports, which
are connection points that components use to collaborate with each other. Component middleware helps
simplify the development and validation of DRE systems by providing reusable services, and optimizations
that support their functional, and quality of service (QoS) needs more effectively than conventional ad hoc
software implementations.

Despite recent advances in component middleware, however, there remain significant challenges that
make it hard to develop large-scale DRE systems for domains that require simultaneous support for mul-
tiple QoS properties, such as low latency, low energy consumption, bounded jitter, high reliability, high
throughput, and scalability. Examples of such systems include total ship computing environments, and
supervisory control and data acquisition (SCADA) systems that manage regional power grids. Key un-
resolved challenges include the lack of tools for effectively configuring, integrating, and verifying DRE
systems built using components [3].

To address these challenges, it is useful to analyze system behavior early in the lifecycle, thereby enabling
developers to select suitable design alternatives before committing to specific platforms or implementations.
In particular, making these decisions in the design phase helps minimize mistakes that would otherwise
be revealed in the testing and integration phases, when they are much more expensive to fix. Design-time
analysis requires a means of expressing component behavior with respect to their QoS properties, defining
the semantics for component interactions, and composing components to form subsystems.

It has historically been hard to analyze DRE systems developed using component middleware due to the
many accidental complexities associated with component middleware, and component-based applications
written using third-generation programming languages, such as C++ and Java. Key disadvantages of
analysis methods based on source code are that they require a working implementation, and must also
overcome accidental complexities with popular third-generation programming languages features, such as
pointers and dynamic memory allocation. When analyzing DRE systems, we focus on their structure,
behavior, environment, and the properties they must satisfy. The structure of the system is usually hard
to reconstruct from source code since third-generation languages give an informal, and often ambiguous
definition of behavior. Moreover, they do not capture the desired operational properties of the system (such
as liveness, graceful degradation, and dependability) because they describe the behavior of the system at
too low a level of abstraction.

To reduce this complexity – and facilitate more powerful and extensive analysis – it is essential to raise
the abstraction level from low-level implementation details to higher-level models of DRE system structure
and behavior. Identifying and validating abstractions that support this evolution effectively is the key to
successful model-based verification [4,5]. Formal methods are mathematically-based languages, techniques,
and tools for specifying and verifying complex systems. By formalizing the specifications and the behavior
of these systems, we can increase their analyzability significantly. This paper introduces a new model-based
approach for verifying non-preemptive scheduling of DRE systems, as follows:

• We describe a reusable framework for model-based verification called the Distributed Real-time Em-
bedded Analysis Method (Dream). Dream is a platform-independent, generic and extendable frame-
work for the simulation and verification DRE systems. Dream builds on the timed automata for-
malism and uses model checking tools for schedulability analysis. This analysis method can be
integrated flexibly with refinement-based system development, as well as with platform-based design
automation.

• We present the DRE Semantic Domain, which is formalizes the key timed properties of DRE
systems based on timed automata. We use the DRE Semantic Domain to verify distributed
non-preemptive real-time scheduling of avionics applications built upon the Boeing Bold Stroke plat-
form [6,7], which is component middleware developed using Real-time CORBA [8] that has been ap-
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plied in a variety of mission-critical avionics computing systems. This specification technique enables
the use of a wide variety of modeling formalisms supported by analysis tools, such as Uppaal [9,10],
Kronos [11], and the IF [12] toolset.

• We present an analysis method that uses Dream to capture the reactive behavior of event-driven DRE
systems, and verify critical timed properties. We show that Dream can verify key QoS properties for
DRE systems, such as end-to-end deadlines, graceful degradation, or dependability. Our techniques
can be used to analyze component-based DRE systems based upon (1) relatively tightly coupled
time-triggered periodic processing, (2) more loosely coupled aperiodic event-driven publish/subscribe
communication patterns, and (3) systems with a both time-triggered and event-driven dynamics.

This paper uses the Dream framework to illustrate and validate the concepts of model-based verification
in the context of the Boeing Bold Stroke platform. In particular, we consider the problem of deciding the
schedulability of a given set of Bold Stroke tasks with event- and time-driven interactions. We represent
the task model and scheduling policy via the DRE Semantic Domain model of computation. The timed
automata formulation of the problem translates the schedulability problem into a reachability problem in
which the set of tasks are schedulable if none of the corresponding timed automata can reach a state that
was predefined to express missed deadlines. If this analysis completes successfully it implies that all tasks
complete before their respective deadlines.

The remainder of this paper is organized as follows. Section 2 describes the Boeing Bold Stroke
execution framework; Section 3 formalizes the DRE Semantic Domain and summarizes the underlying
research problems; Section 4 explains our model-based Dream verification method; Section 5 uses Bold
Stroke as a detailed case study of model-based verification; Section 6 compares our research on model-based
verification with related work, and Section 7 presents concluding remarks.

2 Boeing Bold Stroke Execution Platform

The Boeing Bold Stroke architecture is an event-driven component-based DRE system platform built atop
(1) The ACE ORB (TAO) [13], which implements key Real-time CORBA [8] features (such as thread-
pools, lanes, and client-propagated and server-declared threading policies), and (2) TAO’s Real-time Event
Service [2], which implements the publish/subscribe pattern [14], and schedules and dispatches events via
a federation of real-time event channels (any event channel mentioned in the rest of the paper refers to
the real-time event channel). Bold Stroke uses a Boeing-specific component model called PRISM [7],
which implements a variant of the CORBA Component Model (CCM) [1] atop TAO. Following the CCM
specification, PRISM defines the following types of ports, which are named interfaces, and connection
points components use to collaborate with each other:

• Facets, which define named interfaces that process method invocations from other components.

• Receptacles, which provide named connection points to facets provided by other components.

• Event sources and event sinks, which indicate a willingness to exchange event messages with one
or more components via event channels.

PRISM operation invocations provides blocking synchronous call/return semantics, where one component’s
receptacle is used to invoke an operation on another component’s facet. Conversely, PRISM’s event propa-
gation mechanism provides non-blocking asynchronous publish/subscribe semantics supported by real-time
event channels connected via event sources/sinks. When a publisher pushes an event to an event channel
all of its subscribed components are notified.
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Figure 1: The Boeing Bold Stroke Execution Platform

Although the CCM specification allows the dynamic creation and connection of components, PRISM
follows common patterns in safety/mission-critical systems, and enforces a static component allocation and
configuration policy by creating and connecting components only during system initialization. Dynamical
components in PRISM can reconfigure themselves by changing their behavior based on system mode
settings, such as takeoff mode, landing mode, and threat-evasion mode.

Figure 1 shows the runtime architecture of the Bold Stroke execution platform, which consists of
three primary layers: (1) the ORB layer, which performs (de)marshalling, connection management, data
transfer, event/request demultiplexing, error handling, concurrency, and synchronization, (2) the real-time
event channel layer, which schedules and dispatches events in accordance with their deadlines and other
real-time properties, and (3) the application component layer, which contain actions that are the smallest
units of end-to-end processing that Bold Stroke application developers can manipulate.

Bold Stroke actions are largely event-driven, rather than strictly time-triggered. In particular, periodic
real-time processing of frames is driven by unsynchronized software timers that may drift apart from each
other, so component interactions are unrestricted and unsynchronized. This approach is intentional [15]
and designed to increase flexibility and performance, though it has the side-effect of impeding analyzability
and strict predictability.

As a result of Bold Stroke’s event-driven architecture, dependencies between actions can significantly
influence the schedulability of avionics mission computing systems built atop it. Bold Stroke applications
use priority-based scheduling, where actions that have the same priorities are scheduled non-preemptively
in a priority band (also referred to as rate group) based on their sub-priorities. In this setting, preemptive
scheduling is used between priority bands, whereas non-preemptive scheduling is used within a particular
band.

A priority band is implemented by three types of threads: (1) the dispatcher (worker) threads, which
reside in real-time event channels and execute all actions initiated by event propagations, (2) the interval
timeout thread, which pushes timeout events at predefined intervals, and (3) ORB threads, which continually
process request inputs from the ORB core executing actions initiated by operation invocations. This
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concurrency architecture implements the Half-Sync/Half-Async pattern [16], where a fixed pool of threads
is generated in the server at the initialization phase to process incoming requests. This pattern ensures
that Bold Stroke applications incur low latency and jitter for end-to-end actions [17].

An action has an assigned priority and sub-priority (importance) value for every real-time event channel
to which it is subscribed. If two actions have the same sub-priority they will be ordered or scheduled non-
deterministically according to the configuration. Every action has a worst-case execution time (WCET)1 in
the given scenario in which it is used. Actions can be initiated by two ways: operation invocations and
event propagations. The Bold Stroke scheduling strategy is also configurable – by default its actions are
scheduled in accordance with Rate Monotonic Analysis [18].

Facet-initiated actions invoked by a remote operation call inherit the QoS execution semantics from the
invoking component and do not interact with TAO’s runtime scheduler, which resides inside the real-time
event channels. We therefore do not distinguish these actions from the invoking action in the scheduling
perspective. The smallest unit of scheduling is an event-initiated action together with all the remote
operation calls it can invoke. Since facet-initiated actions can also call other actions using remote operation
calls, the complete call chain is an acyclic graph, with the event-initiated action as the root element. We
call this smallest unit of scheduling an invocation unit.

An executing action may initiate actions on other priority bands, which are known as cross-rate actions.
All processing inside a priority band must finish within the fixed execution period of the timer assigned
to the band. This periodicity divides processing into frames, which are defined by the rate/period of the
timer. For example, a 20 Hz timer will have a 50 ms frame and the overall execution time of the tasks
in the timer’s rate group must be smaller than 50 ms to fit within the frame. A priority band failing to
complete outputs prior to the start of the next frame incurs a so-called frame overrun condition, where
the band did not meet its completion deadline, i.e., the frame completion time.

3 The DRE Semantic Domain

This subsection formalizes a computational model that can express the event-driven nature of DRE systems
with characteristics similar to those described in Section 2. We define a model on a distributed platform
with non-preemptive executions. The proposed model of computation is timed automata. We refer to this
semantic domain as the DRE Semantic Domain. We chose timed automata as the underlying model
of computation for our analysis since it has well-defined formal semantics [19], is supported by several
automated model checking tools, and is expressive enough to capture the dynamics of a wide class of DRE
systems.

The DRE Semantic Domain can be used to model basic components in DRE system such as timers,
dynamic computation tasks, event channels, and schedulers. DRE system models can be built by the
composition of these components. To facilitate formal developments – and without loss of generality – we
assume that communication through shared variables or common coupling are not considered in the model.
We also assume that delays within a processor are ignored since such delays are orders of magnitude less
than the delays incurred by the real-time event channels between hosts.

This paper considers the problem of deciding the schedulability of a given set of tasks with event-
and time-driven interactions on a distributed non-preemptive platform. In the context of DRE systems
in which each task is associated with a deadline, a system is schedulable if all tasks finish their execution
before their respective deadlines. In our work the deadline is measured from the time when the task is
enabled, i.e., the time when it receives a release event. We use a timed automata formulation of the
problem that translates the schedulability problem into a reachability problem in which the set of tasks

1WCETs are computed by measuring the times corresponding to executing the tasks millions of times in a loop, do not
include the time spent waiting to be scheduled, and are assumed to be independent of the scheduling policy.

5



are schedulable if a predefined error state is not reachable in any of the tasks’ timed automata. If this
analysis completes successfully, it implies that all tasks complete before their respective deadlines.

3.1 Timed Automata

This section reviews timed automata as the underlying semantic domain for the proposed analysis. A
timed automaton is a state machine equipped with a finite set of real-valued clock variables, called clocks
for short. We use AC(V ) to denote the set of atomic constraints over the set of variables V where ci op
na or ci − cj op nb where ci, cj ∈ V, op ∈ {<,≤, >,≥}, na, nb ∈ N. We use RC(V ) to denote the restricted
subset of AC(V ) where all atomic constraints are expressed as xi op ni, op ∈ {<,≤}. The set of atomic
constraints AC(V ) represents the clock constraints or guards.

Transitions in a timed automaton can have guards and reset operations on clock and data variables.
Transitions are enabled if the corresponding guard evaluates to true. An enabled transition can execute
instantaneously while resetting certain variables to new values according to the underlying reset assign-
ments. States in timed automata can be associated with an invariant that determines the validity of clock
assignment in the state. A system can be in a given state only if the underlying invariant is true.

Definition 1 A timed automaton is a 5-tuple T A = (C,L, l0, E, Inv) consisting of the following compo-
nents:

• a finite set of clock variables C. Each clock variable c ∈ C is evaluated over (R+ ∪ 0);

• a finite non-empty set L of vertices called locations;

• the initial location l0 ∈ L;

• a finite set of edges E ⊆ L×AC(C)× 2C × L called transitions, where e = (l, γ, α, l′) represents an
edge from location l to location l′ with guard γ and α which is an assignment of clocks to the value
zero (possible clock reset);

• a labeling function Inv : L → RC(C) that assigns a restricted atomic constraint to each location.
This constraint is the invariant of the location. �

Definition 2 A state of the timed automaton is defined as a pair (li, ci) where li ∈ L and ci is a valuation
of the clock ci ∈ C. We denote the set of states as S. �

A more detailed description of the timed automata model can be found in [19]. The Uppaal model
checking tool uses an extended version of the above timed automata formulation. The Uppaal extensions
to the timed automata model of computation are described in [9].

3.2 Timed Languages

We extend the definition of timed automata with two sets of states: regular and error states. A finite
(infinite) run ρ is accepting if ρ does not contain any of the error states (and it contains infinitely many
regular states). With every finite (infinite) run we associate a timed word σ: with each transition we
associate a timestamp ti, which is the value of the global clock in C. The run ρ therefore accepts the timed
word (a0, t0), (a1, t1), . . . , (an, tn). The timed language L(T A) accepted by the timed automata T A is the
set of timed words which correspond to accepting runs.
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Figure 2: Generic Model of the DRE Semantic Domain

3.3 Timers

A timer in the Dream semantic domain is a simple periodic event generator that releases task initiation
events at a specified rate. Timers may represent sensors sampled at a predefined rate and can drift
arbitrarily from each other. We assume, however, that time drifts in timers are bounded. Timers can be
represented by a generic timed automaton model shown in Figure 2.

3.4 Tasks

Tasks are the main components in DRE systems that carry out computations and interact with the physical
environment. Tasks are enabled by events that may be received from other tasks, event channels, or at
regular intervals from a timer. The scheduler triggers the execution of tasks based on the scheduling policy.
After execution, a task may also initiate other tasks by generating a release event. We assume that the
task generates events at the end of the execution. Generating an event at the end of the execution is
optional.
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3.5 Event Channels

Event propagations between tasks follow the timed automata non-blocking broadcast semantics, i.e., events
that are not received (and therefore lost) are not regenerated since received events are not acknowledged.
To provide a reliable event service, therefore, event passing must be synchronized between the publisher
and consumer tasks. To alleviate these restrictions, communication between tasks are coordinated through
event channels that provide the mechanisms to allow reliable asynchronous communication, where publish-
ers do not block until the consumer receives the event. Instead, published events are queued in the event
channel until the consumer is ready to receive them.

Event channels are generically represented by the timed automaton shown in Figure 2. This model
takes into account possible communication delays represented by the channel dependent maximum delay
factor δc and minimum delay factor γc. The locations denoted with the C letter correspond to committed
locations. In the Uppaal timed automata model, a location is committed if an outgoing transition must
be taken as soon as the system enters this location.

An event channel receives events from a timer or task and propagates it to a task with some delay
δ ∈ [γc, δc]. If the task is in an execution cycle (not in the idle location) it buffers the events. When the
task receives a release event it either propagates it or buffers it according to the state of the subscribed
task. When a subscribed task finishes the execution cycle the event channel moves to the wait location if
the buffer is not empty. After the delay δ has passed the event channel generates an event for the subscribed
task if the subscribed task is in the idle location. When an event is received in the wait location the
event channel buffers it.

The Buffer modeling construct shown in Figure 2 is a special version of the event channel that ensures
every event will be delivered before the scheduler is invoked. This construct is used to model event channels
within a thread as explained in Section 5.

3.6 The Scheduler

To express the mapping of execution tasks to platform processors, we introduce the scheduler modeling
construct shown in Figure 2. The scheduler selects enabled tasks for execution according to the scheduling
policy. The scheduler initially starts in the idle location and will move to the select location if any tasks
become eligible for execution. The selection is made instantaneously from the enabled tasks’ queue and
the selected task will receive the start event, which triggers its execution. The time required for selection
and context switching can be bounded in a real-time implementation and added to the measured WCET
times of the tasks. The scheduler moves to the idle location if no task is ready for execution.

The scheduling policy is encoded in three functions: (1) Add(w, i), which increases the current priority
level when taski becomes ready, (2) Sub(w, i), which decreases the current priority level when taski becomes
ready, and (3) Enable(w, i), which evaluates to true if the ith task is eligible for execution. For example, in
the case where priority is directly proportional to the component index, Add(w, i) = w + 2i−1, Sub(w, i) =
w − 2i−1, and Enable(w, i) = 2i−1 ≤ w < 2i. Other scheduling schemes can be established by defining
appropriate formulas for the three functions outlined above.

3.7 Event propagation

This section explains how events propagate in the DRE Semantic Domain. Composition rules simply
follow from the event propagation constraints and the basic rules for timed automata composition as given
in [19]. We identify the following constraints when using the DRE Semantic Domain.

• Task to Task connections must be one-to-many. Events are broadcasted from the source to every
dependent. If multiple events are sent to the same task, however, events will be dropped, which is a
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failure we want to avoid.

• Task to Channel connections must be one to many, which provides a modeling construct - the event
channel - to express one-to-many broadcasting and many-to-one event consumptions.

• Channels can only have one dependent. Since event channel has only one buffer it cannot keep track
of the buffer of individual tasks.

• Channels can only have one source. We have previously allowed a single task to broadcast events to
multiple channels. If a task A is connected to an event channel C that channel also receives events
from a task B emitting an event from task A will be received by task B, as well, since connections
are unidirectional. We therefore disable this modeling construct.

3.8 Dependency and Platform: The Aspects of Scheduling

We propose a platform-based analysis of DRE systems consisting of two major aspects: dependency, which
describes various relations and dependencies between tasks, and platform, which specifies the platform that
executes the tasks.

The timed-automata based model checking captures both dependency and platform aspects of the
scheduling, and provides both sufficient and necessary conditions for distributed system schedulability.
The Scheduler expresses the scheduling algorithm on the underlying platform - decoupled from the tasks
and event channels that specify the dependencies. The verification is inherently complex and is most
suitable for analysis in a mission-critical resource-constrained embedded domain.

In the embedded domain there is no single method that prevails over others. Testing captures both
the platform and dependency aspects of the analysis but can only cover a subset of the possible execution
traces. Classic scheduling theory [18, 20] is generally strong in analysis that involves the platform aspect,
e.g., offering polynomial execution time for several scheduling problems. Synchronization is often assumed,
however, and dependencies between tasks are usually neglected. The analysis of mission-critical DRE
systems has to utilize all these methods - schedulability analysis, testing, and model checking - to certify,
and validate safe behavior.

3.9 Analysis for Preemptive Scheduling

The DRE Semantic Domain model provides a solid foundation for verifying non-preemptive scheduling
on distributed platforms. This model can be extended to handle preemptions by defining a location in the
Task model in which the execution time does not progress. This extension, however, turns the model into
the stopwatch model of computation that can be expressed using hybrid automata.

Deciding the schedulability of the stopwatch model with execution intervals using timed automata has
been shown to be undecidable [21]. Current approaches for stopwatch automata verification include semi-
decidable methods for reachability analysis using hybrid automata [22, 23]. Potential directions to offer
decidable results include using timed automata for the conservative approximation of the scheduling prob-
lem based on time discretization. This approximation is a promising direction to increase the performance
of the verification, which is crucial in larger systems. Finding an appropriate time discretization scheme is
currently under investigation [24].

4 Model-Based Verification

Developing a DRE system that satisfies multiple QoS properties is a complex constraint-satisfaction prob-
lem. To ensure optimal QoS support in practical applications, developers often face hard or even unde-
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Figure 3: Model Checking using Model Transformations

cidable problems. Despite recent advances in embedded systems’ analysis and abstraction techniques [25]
the generic verification of production-scale DRE systems is largely unsolved. Time-triggered systems offer
better analyzability [26], but increase the implementation complexity and resources needed to satisfy the
synchronization.

Figure 3 shows the proposed method for the real-time analysis of distributed embedded systems. This
method builds on the results of platform-based design [27] and model-integrated computing (MIC) [28].
Domain-specific modeling languages (DSMLs) play an essential role in the design and analysis process, and
can also be used to synthesize executable code, simulations, or documentation. We use model transfor-
mations in Dream to specify the link between the Boeing Bold Stroke modeling language, and the timed
automata formal model of computation, as shown in Figure 3. The analysis follows the model checking
approach [29] to prove QoS properties of DRE systems.

Designing an application that satisfies multiple QoS properties is a multi-step process in which the
domain-specific model is continually evolved until the underlying method verifies that the QoS properties
are satisfied. This evolution is performed by DRE system designers based on the feedback from the model
checking tool. The goal of the analysis is to aid DRE system development by choosing feasible design
alternatives.

When designing applications that require support for multiple QoS properties, the analysis often re-
quires multiple tools for the analysis. For example, one tool can be used to verify real-time properties,
while simulation can be used to predict the overall power consumption of the system. The DRE Semantic
Domain provides a common semantic domain that can capture multiple QoS properties of a generic class
of DRE systems, including Real-time CORBA applications. This common semantic domain provides the
basis for the analysis of the domain-specific model.

Simulators are often integrated into the analysis tools and use the same model of computation. When
the model checking tool finds an unsatisfied property the simulator can be used to simulate the execution
trace that yields this undesired behavior. For example, a model checker may find system deadlocks by
checking the formal model of computation generated from the domain-specific application model.

Since the DSML application models are semantically linked to the formal models of computation, the
simulator and the generator must produce the same execution traces for the same input data. We use
the DRE Semantic Domain as a common semantic domain for analyis in Dream. This domain has an
underlying timed automata semantic domain that can be checked for correctness by model checkers, such
as Uppaal, Kronos or the IF toolset.
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4.1 The Graph Transformation

Model transformations play an important role in Dream, where system designers can formalize their
transformation from the DRE systems’ modeling language to the formal model of computation used for
the analysis. The IF toolset presents a similar method for transforming UML [30] into the IF intermediate
format. Our method, however, uses domain-specific modeling languages instead of a single generic modeling
language. We believe that defining semantics to smaller modeling languages and their composition is more
likely to succeed than to define it for a large generic modeling language.

The current Dream design uses the Generic Modeling Environment (GME) [31] and Graph Rewriting
and Transformation (GReAT) [32] tools for the transformation. The implemented graph transformation is
an abstract syntax-level transformation, which takes Boeing Bold Stroke models as inputs and generates the
corresponding timed automata representation. The developed algorithm creates the set of timed automata,
and the corresponding communication channels and global (shared) variables. For example, the array en[
] used to signal the scheduler which tasks are enabled (denoted as the idle variable on Figure 2) is defined
as a global variable.

The transformation algorithm is relatively straightforward. We generate a Task timed automaton for
every invocation unit in Bold Stroke and a Channel timed automaton for every real-time event channel
in Bold Stroke. The graph transformation composes the timed automata representing the Bold Stroke
models. We use the Uppaal event channel mechanism to create the links between the elements of the
DRE Semantic Domain.

4.2 A Note on Property-Preserving Transformations

We illustrate how the timing properties are preserved by using the definition of timed languages as defined
in Section 3.2. We claim that any timed language corresponding to a schedulable (unschedulable) execution
trace is accepted (rejected) by the timed automata. Since the Boeing Bold Stroke execution framework
does not have a formal specification, we simply illustrate the correctness of the algorithm instead of a
proof.

The major advantage of model checking is that it covers every possible execution trace. The timed
automata models presented in this paper are a high-level abstraction of the underlying architecture that
capture key properties. To keep the system analyzable, however, they abstract out several details, such as
computations carried out by the tasks and their implementations.

The Bold Stroke models capture dependencies that are a partial ordering between tasks. We define a
timed automaton for each task and specify the same partial ordering by using the composition methods
described in Section 3. Each timed automaton is an abstract real-time model of its corresponding task
since we define the parameters of the timed automata by using the parameters of the Bold Stroke models.
Since the parameters and dependencies are the same, a schedulable execution trace in Bold Stroke will be
accepted by the timed automata, while unschedulable traces will be rejected.

4.3 Implementation in GReAT

To illustrate the graph matching pattern we chose a representative rule shown in Figure 4. Both the Bold
Stroke and TimedAutomata DSMLs are defined by the GME metamodel that define the abstract syntax
of the DSML. We use these metamodels to define the pattern matchings in GReAT.

A rule usually has multiple input and output ports. For example, Actions correspond to TimedAutomata
and Events correspond to Channels. We want to express that whenever an Action publishes an Event,
the corresponding TimedAutomaton should send an event to the corresponding Channel.

There are several methods to implement this simple rule. We can define the whole graph matching
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pattern we are looking for and simply define the pattern to be created in the target model. We try to
break up complex pattern rules into simple ones whenever feasible, however, since the performance of the
pattern matching is proportional to the “size” of the pattern.

Figure 4: The TA2Channel Rule

In the previous steps we create an empty timed automata model, a TimedAutomaton for every event-
driven Action, and a Channel for every Event that represents a real-time event channel in the middleware.
We have already created the TimedAutomata and Channel constructs during the previous steps of the trans-
formation. To create the appropriate links between a TimedAutomaton and Channel we need to find the
TimedAutomaton in the newly created model corresponding to the Action and the Channel corresponding
to the Event.

The transformation rule shown in Figure 4 takes 3 inputs and produces 2 outputs. The input shown
on the top of the figure is an Event. We define a graph matching pattern for the association between the
Event, PublishPort, and Action (we can navigate in both directions on an association). The concrete
syntax is shown with curvy arrows in Figure 4. The second input is the whole timed automata model
itself. The concrete syntax of these objects is also shown in Figure 4.

We add a Synchronization connection between the TimedAutomaton and the Channel objects. The
output of this rule will pass this newly created System model to the next rule. The third input, the
Wakeup object, is simply forwarded to the next rule, which is actually a Channel that was renamed to
avoid confusion between this and the other Channels used for the second input.
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4.4 Open-source Dream

The GME and GReAT tools provide the foundation of the model-based verification architecture of
Dream. The transformation from the Boeing Bold Stroke modeling language to timed automata is
an abstract syntax-level graph transformation specified by the GReAT transformation language. We
have recently been released a platform-independent ANSI-C++ open-source implementation of Dream
(dre.sourceforge.net) to promote the application of analysis tools to resource-constrained DRE sys-
tems. The open-source Dream is a lightweight implementation of the GME tool-chain that includes a
discrete event simulator - but has a continuous time model - and provides a way for the runtime analysis
of a generic class of DRE systems. It is therefore able to provide a formal proof for the correctness of a
general class of DRE systems.

The open-source Dream tool also has an eXtensible Markup Language XML [33] interface with schema
validation for the DRE Semantic Domain. The model transformations are internally represented as
template-based data generation and the XML format allows the use of XSL Transformations [34] to the
DRE Semantic Domain.

4.5 Verification of the Timed Automata Using Model Checking

To show that the Bold Stroke application is correct, we checked that the corresponding timed automata
model is deadlock-free by using the A[] not deadlock Uppaal macro. This macro checks that eventually
every task does not deadlock, i.e., reach a state from which no transition is possible and time cannot
progress. We also need to show that all invocation units meet their deadlines, which requires no additional
checking of properties beyond checking for deadlocks.

To reduce the state space, we set the error location to be committed. By using this constraint in the
system we also introduced a nice side-effect, i.e., whenever a timed automaton reaches the error location
time cannot advance in that automaton. Since we cannot leave that location, the timed automata model
will deadlock. If the above reachability macro evaluates to true, therefore, we have proved that there are
no deadlocks in the system and every action always finishes its execution before the deadline. We also
prove that every published event is consumed properly in the system and the event channels operate with
limited buffer size.

Additional timed properties can also be checked because all timing properties (such as deadlines,
execution times, and dependencies) are captured in the timed automata models. Our model-based Dream
verification can be used to verify the correctness of non-preemptive scheduling and pinpoint components
that have frame overrun conditions. Our results show that the deadline is not a function of the period and
using slower timer components may produce the same properties in the system, thereby allowing better
resource allocation and performance gain.

Model checking can express DRE system behavior, which enables fine-grained evaluation of QoS proper-
ties, such as end-to-end deadlines, graceful degradation and dependability. For example, we can use model
checking to show the graceful degradation of a DRE system by increasing the WCETs according to the
increased system load. Dependability can be checked by introducing faults in the system models. Model
checking techniques thus help evaluate DRE systems in real-world scenarios, as discussed in Section 5.

5 Case Study

To illustrate the model-based verification capabilities of Dream, we examine a case study of a DRE system
from the domain of avionics mission computing. Figure 5 shows the component-based architecture of this
system, which is built upon the Boeing Bold Stroke real-time middleware described in Section 2. This
application is deployed on a non-preemptive multiprocessor platform.
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Figure 5: The Bold Stroke Application Model

As shown in Figure 5, this application is driven by five Timer components deployed on five CPUs. The
GPS and AIRFRAME components are deployed on CPU 1. When the 1Hz Timer component pushes an event
the GPS component will be notified, and scheduled for execution by the OS (operating system) scheduler.
The GPS component then pushes an event to the AIRFRAME component. The OS scheduler schedules the
AIRFRAME component for execution, which calls back to the GPS component’s facet using its receptacle
to get the actual data required for execution. The AIRFRAME component pushes an event to each of the
NAV STEERING, ROUTES, TACTICAL STEERING, and NAV DISPLAY components. Since these components are
deployed on different processors they are presented in lighter colors in the 1Hz Timer’s band.

Computations on different processors are driven by their respective timers. Components do not neces-
sarily execute with the timer’s rate, however, as seen in the NAV DISPLAY component’s case. It is executed
more often to serve remote requests than to serve local requests on CPU 3. We observe the following key
challenges in the Bold Stroke example:

• Event flow, buffering. Event propagations require buffering of the events (i.e., for the AIRFRAME
component) and concurrency management between event channels that are publishing to the same
component (i.e., between the event channels that publish events to AIRFRAME).

• Delays. Communication between processors incur delays in the message propagation. Since the
delays are not constant, race conditions may occur when a lower priority task receives an event
earlier than a higher priority task, which can result in priority inversion.

• Composition. The problems above can be summarized as composition challenges, i.e., the schedula-
bility of individual threads does not guarantee the overall schedulability of the system.

5.1 Abstractions Based on the Threading Model

The publish/subscribe architecture used in the the Boeing Bold Stroke execution framework defines two
types of mechanisms for data exchange and dependencies.

• Remote method invocations follow conventional two-way function call semantics when a component
issues a call from its receptacle to the target component’s facet. These two-way facet/receptacle
method calls will block if the called process is already executing, which can degrade performance
significantly.
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Component CPU Sub-priority WCET Deadline
GPS CPU 1 VERY HIGH 21 22

AIRFRAME CPU 1 HIGH 53 54
PILOT WAYPOINTS CPU 2 VERY HIGH 37 38

ROUTES CPU 2 VERY LOW 18 19
NAVIGATOR NAVSTEERING POINTS CPU 3 VERY HIGH 32 65

NAV STEERING CPU 3 HIGH 49 50
DISPLAY DEVICE CPU 4 VERY HIGH 26 41

AF MONITOR CPU 4 HIGH 33 34
NAV DISPLAY CPU 4 MEDIUM 14 74
PILOT CONTROL CPU 5 VERY HIGH 23 66

TACTICAL STEERING CPU 5 HIGH 58 59

Channel Buffer Size Worst-case Delay Best Case Delay
nav steering lc 2 0 0

routes lc 2 0 0
tactical steering lc 2 0 0

nav display lc 2 0 0
af monitor lc 2 0 0
nav steering rc 2 2 1

routes rc 2 2 1
tactical steering rc 2 3 1

nav display rc1 2 3 1
nav display rc2 2 3 1
nav display rc3 2 2 1

Table 1: Parameters for the Bold Stroke Application Shown in Figure 5

• Event propagations provide a more efficient asynchronous data flow semantics from event sources to
event sinks supported by event channels. The event channel is built on the asynchronous method
invocation (AMI) [35] feature of the CORBA specification. The event channel is the implementation
of an agent that manages the event passing between tasks. The caller thread A issues the method
call on the event channel and resumes its execution, rather than waiting for the called thread B to
process the event. When the called thread B finishes the execution it notifies the event channel,
which issues the remote method on thread B as thread A’s agent.

We assume a time interval for the delivery of the events that is independent for each processor, and is
specified by best case delay and worst-case delay. The event passing between different processors is managed
by the remote real-time event channel. They are modeled by the Channel modeling construct in the DRE
Semantic Domain. Race conditions may occur in remote event passing and are an important issue to be
solved by analysis. Event passing on the same processor (same address space) is managed by local real-time
event channels. They are modeled by the Buffer modeling construct in the DRE Semantic Domain. In
this scenario the ORB delivers the event by invoking local functions - without marshaling/demarshaling
the requests. This technique is called a collocation optimization [36] and is implemented in most CORBA
ORBs, including TAO.

Collocated event passing does not follow the strict event passing semantics since a single thread is
used to manage both the event sources and event channels. We therefore assume that the event channel
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notifies every task before the scheduler is invoked, thus there are no race conditions within a thread. This
mechanism helps to enforce fixed priority scheduling for tasks that receive events at the same time and are
deployed on the same thread.

Method invocations inherit the QoS execution semantics from the invoking task and do not interact
with the runtime scheduler. If the caller and invoked tasks are deployed in the same address space of
a processor, the invoked task executes within the same thread - the dispatcher (worker) thread - as the
caller task. If the two tasks are deployed on separate machines the ORB uses a thread to transparently
forward the method call to a task on the remote machine. This mechanism separates the scheduling of the
dispatcher (worker) thread - which schedules tasks invoked by event propagations - and the ORB thread -
which simply executes remotely invoked tasks.

The threading model described above provides a way to agressively abstract out remote method calls
from the model. For local method calls we simply add the WCET of the called and caller tasks. For
remote method calls we also add the worst-case delay of the channel to the WCET of the call chain. This
approach assumes that the ORB thread is always ready to serve requests. Although this assumption is
overly optimistic in some cases, we can always add more ORB threads or let the ORB’s Portable Object
Adapter (POA) manage dynamic number of threads in the thread pool.

5.2 Compositional Analysis Using Uppaal

We use the Uppaal model checker tool to check whether various properties hold such as deadlock-freedom,
bounded buffer sizes, and whether all deadlines are met. In addition to simulation, Uppaal provides built-
in support for manual and automatic simulation. To improve efficiency, the model checking algorithms in
Uppaal are based on clock constraints equivalence rather than state equivalence. Systems in Uppaal are
modeled as a slightly modified variant of timed automata and the specification is expressed in a restricted
version of the timed computational tree logic (TCTL) [37], which is temporal logic that can formalize
statements about system models. The Uppaal semantic domain combines timed automata with dataflow
semantics that can be used to express interactions between the automata.

Figure 6 shows a subset of the Bold Stroke system as modeled in the Uppaal model checker tool.
The application consits of 11 task components and 11 event channels, which 5 are local, and used only for
buffering. The application is deployed on 5 processors. The Timer components are a simple rate generators
which publishes events at a predefined rate. We model them using Timers in the DRE Semantic Domain.

To satisfy real-time constraints and avoid unnecessary thread spawn delays, the PRISM component
middleware requires dedicated threads for each real-time event channel. In the DRE Semantic Domain,
however, we can abstract out some of these threads to reduce the number of event channels and thus the
state space. We have to model event channels explicitly (1) when we have to buffer events or (2) on remote
event channels which have measureable delays. All the event channels satisfy one of the above conditions,
except the timer’s event channels that have been abstracted out in the model.

The scheduling policies are represented by Schedulers in the DRE Semantic Domain. We define 5
schedulers since the Bold Stroke application is deployed on a 5-processor architecture. We illustrate the
scheduler of CPU 4 as shown on Figure 6. The schedulers get more complex according to the scheduling
policies. The automatic generation of the models provides a safe way to ensure the correct guard conditions
and assignments.

The timed automata model illustrated in 6 corresponding to the Bold Stroke system shown in 5 has been
shown to be schedulable using Uppaal. We have checked the system for deadlocks and missed deadlines
by using A[] not deadlock Uppaal macro. We have checked whether the system operates with finite
buffer sizes with the TCTL formula A[] (Channel.bufferc < Channel.lambdac). Uppaal produces a
counter-example for invalid properties, which helps identifying the source of undesired behavior. Finally,
we checked that eventually every task will execute using the formula E<> Task.executing.
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Figure 6: Uppaal Timed Automata Models for CPU 4 (Partial Figure)

The performance of the verification depends largely on the number of non-deterministic branches in the
event flow, not the number of components. Uppaal uses powerful reduction techniques for deterministic
steps. The properties described above for the system shown in Figure 5 can be checked within 1-2 seconds
on a 1.6GHz Pentium 4-M processor with 768 MB memory running the Windows XP OS. Designers must
aim to ensure deterministic scheduling and behavior for critical system tasks. Our experiments confirm
that the complexity grows exponentially with respect to the state space size. Finding the right abstraction
is therefore crucial for tractable verification problems.

6 Related work

This section compares our research on model-based verification using Dream with related work.

Classic schedulability methods. Classic scheduling theory, such as Rate Monotonic Analysis (RMA) [18,
20] or Earliest Deadline First (EDF) [38], is widely used for the schedulability analysis of DRE systems.
Synchronization is often assumed, however, and dependencies between tasks are often neglected. Most of

17



the methods provide sufficient, but not necessary conditions for DRE system schedulability.
A holistic method is proposed for distributed preemptive scheduling [39] that provides sufficient con-

ditions for schedulability using a TDMA communication bus. The model is general enough to represent a
handful of real-time systems but is not suitable for DRE systems where tasks communicate in an unsyn-
chronized way. In contrast, Dream is capable of modeling asynchronous communications using the event
channel model.

Methods that consider task dependencies are usually extensions of the job shop scheduling problem,
which is NP-complete [40]. The Resource Constrained Project Scheduling Problem (RCPSP) is a prominent
extension for which the fastest solutions use genetic algorithms and metaheuristics [41].

Other authors [4,42,5,43] have used model-checking techniques and tools for dynamic analysis of DRE
systems. The underlying models are variants of the timed automata model. A generic form to analyze
scheduling behavior based on the timed automata model was proposed in [4] for single processor scheduling
using the Immediate Ceiling Priority protocol and the EDF algorithm. Other methods propose the use
of the stopwatch model to verify preemptive scheduling of real-time systems [22, 23]. Contrary to earlier
works, the Dream framework focuses on component-based DRE systems. Dream provides a conservative
approximation built on timed automata [24] to verify preemptive scheduling. This method requires further
research before it can be applied directly to DRE systems analysis. In contrast with the manual abstraction
of key properties in classical DRE system design, the proposed model-based verification uses automatic
model transformations to ensure proper analysis. Our experience developing DRE systems [44] suggests
that this aspect of the analysis phase is often overlooked.

A promising way to address timed automata composition using priorities is presented in the IF toolset [12].
Implementations should not use a predefined set of priority levels, however, because it constrains the compo-
sition and requires additional guards to express fixed-priority scheduling. The IF toolset presents a method
for transforming UML [30] into the IF intermediate format. Dream complements this work and focuses
on the component-based DRE systems domain providing an open-source implementation for design-time
and runtime analysis of DRE systems.

Model driven middleware. The FORGE project [45] is a framework for optimization of distributed
embedded systems software. Dream is part of the FORGE project and is tailored to analyze power-aware
resource-constrained mobile DRE systems.

The Component Synthesis using Model Integrated Computing (CoSMIC) [3] toolkit is an integrated
collection of DSMLs that support the development, configuration, deployment, and evaluation of DRE
systems based on CIAO, which is an implementation of the CORBA Component Model that is integrated
with Real-time CORBA [8]. The CoSMIC tools can be used to specify requirements, compose DRE systems
and their supporting infrastructure from the appropriate set of middleware components, synthesize the
metadata, collect data from application runs, and analyze the collected data to re-synthesize the required
metadata. CoSMIC currently does not support formal analysis of DRE systems therefore it could be
applied complementary to Dream in the design process.

MetaH www.htc.honeywell.com/metah is a commercially available domain-specific architecture de-
scription language (ADL) for developing reliable, real-time multiprocessor avionics system architectures.
A significant set of tools have been protoyped and used in the context of avionics applications. MetaH is a
very low level tool, however, since it is largely a language for assembling existing pieces of code. Dream, in
contrast focuses on a high-level abstraction of the system to obtain formal guarantees on system behavior.

Boeing Bold Stroke analysis tools. Several tools have been developed for the model-based design,
optimization, analysis and verification of distributed real-time embedded (DRE) systems. The NSF ITR
(Information Technology Research), DARPA MoBIES (Model-Based Integration of Embedded Systems),
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and DARPA PCES (Program Composition for Embedded Systems) projects focus on the integration of
these tools. Results of the research on Bold Stroke scheduling and verification are the VEST, AIRES,
Cadena, and Time Weaver - TimeWiz R© tools.

The Virginia Embedded Systems Toolkit (VEST) [46] is a framework designed for the reliable and
configurable composition and analysis of component-based embedded systems from COTS libraries. The
modeling environment uses the GME [31] tool. VEST applies key checks and analysis but - unlike Dream
- does not support formal proof of correctness.

The Automatic Integration of Reusable Embedded Systems (AIRES) tool extracts system-level de-
pendency information from the application models, including event- and invocation-dependencies, and
constructs port- and component-level dependency graphs. Various polynomial-time analysis tasks are
supported such as checking for dependency cycles as well as forward/backward slicing to isolate relevant
components. It performs real-time analysis [47] using Rate Monotonic Analysis techniques. The authors
also present a method [48] to verify the preemptive scheduling of Bold Stroke applications on a single
processor. Their method uses constant execution times for tasks and composes the verification results of
individual threads/priority bands to obtain a proof for the whole system. The safe composition requires
restrictions on the communication between priority bands, otherwise the system load can increase in in-
dividual threads thus turning the system unschedulable. In contrast, Dream presents a method to verify
non-preemptive scheduling on distributed systems with unrestricted communication model, execution in-
tervals for tasks and delays as well, and also captures the half sync-half async architecture of Bold Stroke
by using the event channel model.

The Cadena [49] framework is an integrated environment for building and analyzing CORBA Com-
ponent Model (CCM) based systems. Its main functionality includes CCM code generation in Java,
dependency analysis, and model-checking. The emphasis of verification in Cadena is on software logical
properties. The generated transition system does not represent time explicitly and requires the modeling
of logical time that does not allow quantitative reasoning. In contrast, Dream represents time explicitly
and allows quantitative reasoning.

Time Weaver (Geodesic) [50] is a component-based framework that supports the reusability of
components across systems with different para-functional requirements. It supports code generation, as
well as automated analysis. Time Weaver also builds a response chain model [20] of the system to verify
timing properties. This model is used by real-time analysis tools, such as the TimeWiz R© model-checker,
to build a task set that can be analyzed with RMA techniques. In contrast, Dream does not assume a
synchronized system and captures task dependencies explicitly.

7 Concluding Remarks

This paper presents the Dream model-based verification and analysis framework. Dream uses formal
methods to capture and verify properties of non-preemptive, event-driven component-based DRE systems
that use the publish/subscribe communication pattern. Its verification is automatic, exhaustive, and
capable of producing counter-examples that help pinpoint sources of undesired behavior.

We have applied Dream to Boeing Bold Stroke avionics mission computing platform, which is repre-
sentative of state-of-the-practice DRE systems based on QoS-enabled component middleware. The Bold
Stroke event-driven component-based DRE system platform is built atop the TAO Real-time CORBA ORB
and the TAO Real-time Event Service. The goal of this paper was to verify QoS properties that express
the behavior of this DRE system, such as end-to-end deadlines, graceful degradation, and dependability.

Our results showed that Dream captures the reactive behavior, as well as the non-determinism present
in DRE systems like Bold Stroke. We also demonstrated that timed automata can represent component
interactions and asynchronous event passing allowing the verification of quantitative dense time properties.
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Key challenges for the Dream framework include the integration of frameworks tailored towards model-
driven development, such as CoSMIC [3], integration of various model checkers such as Spin [51], and the IF
toolset, and the use of heuristics for optimizations in resource-constrained mobile environments. Extending
the Dream framework is a key part of our future work, which focuses on expressing the formal, hetero-
geneous composition of semantic domains to support better and more robust DRE systems development.
The open-source Dream implementation is available for download at dre.sourceforge.net.
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