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Abstract

Providing end-to-end gigabit communication support for
bandwidth-intensive distributed applications requires high-
performance transport systems. This paper describes and
classifies transport system mechanisms that integrate oper-
ating system resources (such as CPU(s), virtual memory,
and network adapters) together with communication pro-
tocols (such as TCP/IP and XTP) to support applications
running on local and wide area networks. A taxonomy is
presented that compares and evaluates four widely available
transport systems in terms of their support for protocol pro-
cessing. The systems covered in this paper include System V
UNIX STREAMS, the BSD UNIX networking subsystem, the
x-kernel, and the Conduit framework from the Choices oper-
ating system. This paper is intended to help researchers navi-
gate through the transport system design space by describing
alternative mechanisms for developing transport systems.

1 Introduction

The demand for many types of distributed applications is
expanding rapidly, and application requirements and usage
patterns are undergoing significant changes. When coupled
with the increased channel speeds and services offered by
high-performance networks, these changes make it difficult
for existing transport systems to process application data at
network channel speeds.1 This paper examines transport
system mechanisms that support bandwidth-intensive mul-
timedia applications such as medical imaging, scientific vi-
sualization, full-motion video, and tele-conferencing. These
applications possess quality-of-service requirements that are

1A transport system consists of protocol functions (such as connection
management, end-to-end and layer-to-layer flow control, remote context
management, segmentation/reassembly,demultiplexing, message buffering,
error protection, and presentation conversions), operating system services
(such as message buffering, asynchronous event invocation, and process
management), and hardware devices (such as high-speed network adapters)
that support distributed applications.

significantly different from conventional data-oriented appli-
cations such as remote login, email, and file transfer.

Multimedia applications involve combinations of require-
ments such as extremely high throughput (full-motionvideo),
strict real-time delivery (manufacturing control systems),
low latency (on-line transaction processing), low delay jitter
(voice conversation), capabilities for multicast (collabora-
tive work activities) and broadcast (distributed name res-
olution), high-reliability (medical image transfer), tempo-
ral synchronization (tele-conferencing), and some degree of
loss tolerance (hierarchically-coded video). Applications
also impose different network traffic patterns. For instance,
some applications generate highly bursty traffic (variable bit-
rate video), some generate continuous traffic (constant bit-
rate video), and others generate short-duration, interactive,
request-response traffic (network file systems using remote
procedure calls (RPC)).

Application performance is affected by a variety of net-
work and transport system factors. Networks provide a
transmission framework for exchanging various types of in-
formation (such as voice, video, text, and images) between
gateways, bridges, and hosts. Example networks include
the Fiber Distributed Data Interface (FDDI), the Distributed
Queue Dual Bus (DQDB), the Asynchronous Transfer Mode
(ATM), X.25 networks, and IEEE 802 LANs. In general, the
lower-layer, link-to-link network protocols are implemented
in hardware.

Transport systems integrate higher-layer, end-to-end com-
munication protocols such as TCP, TP4, VMTP, XTP,
RPC/XDR, and ASN.1/BER together with the operating sys-
tem (OS) mechanisms provided by end systems. The tasks
performed by the transport system may be classified into sev-
eral levels of abstraction. The highest level provides an appli-
cation interface that mediates access to end-to-end communi-
cation protocols. These protocols represent an intermediate
level of abstraction that provides presentation and transport
mechanisms for various connectionless, connection-oriented,
and request-response protocols. These mechanisms are im-
plemented via protocol tasks such as connection manage-
ment, flow control, error detection, retransmission, encryp-
tion, and compression schemes. Both the application in-
terface and the protocols operate within an OS framework
that orchestrates various hardware resources (e.g., CPU(s),
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primary and secondary storage, and network adapters) and
software components (e.g., virtual memory, process architec-
tures, message managers, and protocol graphs) to support the
execution of distributed applications.

Performance bottlenecks are shifting from the underlying
networks to the transport system. This shift is occurring due
to advances in VLSI technology and fiber optic transmission
techniques that have increased network channel speeds by
several orders of magnitude. Increasing channel speeds ac-
centuate certain sources of transport system overhead such as
memory-to-memory copying and process management oper-
ations like context switching and scheduling. This mismatch
between the performance of networks and the transport sys-
tem constitutes a throughput preservation problem, where
only a portion of the available network bandwidth is actually
delivered to applications on an end-to-end basis.

In general, sources of transport system overhead are not
decreasing as rapidly as network channel speeds are increas-
ing. This results from factors such as improperly layered
transport system architectures [1, 2]. It is also exacerbated
by the widespread use of operating systems that are not well-
suited to asynchronous, interrupt-driven network communi-
cation. For example, many network adapters generate in-
terrupts for every transmitted and received packet, which
increases the number of CPU context switches [3, 4]. De-
spite increasing total MIPS, RISC-based computer architec-
tures exhibiting high context switching overhead that penal-
izes interrupt-driven network communication. This over-
head results from the cost of flushing pipelines, invalidating
CPU instruction/data caches and virtual memory translation-
lookaside buffers, and managing register windows [5].

Alleviating the throughput preservation problem and pro-
viding very high data rates to applications requires the modifi-
cation of conventional transport system architectures [6]. To
help system researchers navigate through the transport system
design space, this paper presents a taxonomy of six key trans-
port system mechanisms including the process architecture,
virtual remapping, and event management dimensions, as
well as the message management, multiplexing and demulti-
plexing, and layer-to-layer flow control dimensions. The tax-
onomy is used to compare and contrast four general-purpose
commercial and experimental transport systems (System V
STREAMS [7], the BSD UNIX network subsystem [8], the
x-kernel [2], and the Conduit framework from the Choices
operating system [9]). The intent of the paper is to explore
transport system design alternatives that support distributed
applications effectively.

The paper is organized as follows: Section 2 outlines the
general architectural components in a transport system; Sec-
tion 3 describes a taxonomy for classifying transport systems
according to their kernel and protocol family architecture di-
mensions; Section 4 provides a comparison of four represen-
tative transport systems; and Section 5 presents concluding
remarks.
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Figure 1: Protocol Graph for Internet and OSI Communica-
tion Models

2 Levels of Abstraction in a Transport
System Architecture

Transport system architectures provide a framework for im-
plementing end-to-end protocols that support distributed ap-
plications operating over local and wide area networks. This
framework integrates hardware resources and software com-
ponents used to implement protocol graphs [10]. A protocol
graph characterizes hierarchical relations between protocols
in communication models such as the Internet, OSI, XNS,
and SNA. Figure 1 depicts protocol graphs for the Internet
and OSI communication models. Each node in a protocol
graph represents a protocol such as RPC/XDR, TCP, IP, TP4,
or CLNP.

Protocol graphs are implemented via mechanisms pro-
vided by the transport system architecture. Transport systems
may be modeled as nested virtual machines that constitute dif-
ferent levels of abstraction. Each level of virtual machine is
characterized by the mechanisms it exports to the surround-
ing levels. The model depicted in Figure 2 represents an
abstraction of hardware and software mechanisms found in
conventional transport systems. Although certain transport
systems bypass or combine adjacent levels for performance
reasons [11, 12], Figure 2 provides a concise model of the
relationships between major transport system components.

The hierarchical relationships illustrated by the protocol
graph in Figure 1 are generally orthogonal to the levels of ab-
straction depicted by the transport system virtual machines
shown in Figure 2. In particular, protocol graphs in Fig-
ure 1 are implemented via the transport system mechanisms
shown in Figure 2. The following paragraphs summarize
the key levels in the transport system, which consist of the
application interface, session architecture, protocol family
architecture, and kernel architecture.

As shown by the shaded portions of Figure 2, this paper fo-
cuses on the kernel architecture (described in Section 3.1) and
the protocol family architecture (described in Section 3.2).
A thorough discussion of the application interface is beyond
the scope of this paper and topics involving the session archi-
tecture are discussed further in [13]. These two components
are briefly outlined below for completeness and to provide a
context for discussing the other levels.
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Figure 2: Abstract Architecture for a Transport System

2.1 Application Interface

The application interface is the outermost-level of a trans-
port system. Since protocol software often resides within
the protected address space of an operating system kernel,
programs utilize this application interface to interact with
inner-level transport system mechanisms. The application
interface transfers data and control information between user
processes and the session architecture mechanisms that per-
form connection management, option negotiation, data trans-
mission control, and error protection. BSD UNIX sockets [8]
and System V UNIX TLI [14] are widely available examples
of application interfaces.

Performance measurements indicate that conventional ap-
plication interfaces constitute 30 to 40 percent of the overall
transport system overhead [2, 15]. Much of this overhead
results from the memory-to-memory copying and process
synchronization that occurs between application programs
and the inner-level transport system mechanisms. The func-
tionality and performance of several application interfaces is
evaluated in [16, 17].

2.2 Session Architecture

The next level of the transport system is the session archi-
tecture, which performs “end-to-end” network tasks. Ses-
sion architecture mechanisms are associated with local end-
points of network communication, often referred to as pro-
tocol sessions.2 A session consists of data structures that
store context information and subroutines that implement the
end-to-end protocol state machine operations.

2The term “session” is used in this paper in a manner not equivalent to
the ISO OSI term “session layer.”

Session architecture mechanisms help satisfy end-to-
end application quality-of-service requirements involving
throughput, latency, and reliability [18]. In particular,
quality-of-service is affected by session architecture mech-
anisms that manage connections (e.g., opening and closing
end-to-end network connections, and reporting and updating
connection context information), reliability (e.g., computing
checksums, detecting mis-sequenced or duplicated messages,
and performing acknowledgments and retransmissions), and
end-to-end flow and congestion (e.g., advertizing available
window sizes and tracking round-trip packet delays). In
addition, session architecture mechanisms also manage per-
connection protocol interpreters (e.g., controlling transitions
in a transport protocol’s state machine) and presentation
services (e.g., encryption, compression, and network byte-
ordering conversions). Various session architecture issues
are examined in [19, 20, 21, 13].

2.3 Protocol Family Architecture

The protocol family architecture3 provides intra- and inter-
protocol mechanisms that operate within and between nodes
in a protocol graph, respectively. Intra-protocol mechanisms
manage the creation and destruction of sessions that are
managed by the session architecture described above. Inter-
protocol mechanisms provide message management, multi-
plexing and demultiplexing, and layer-to-layer flow control.

The primary difference between the session architecture
and the protocol family architecture is that session architec-

3A protocol family is a collection of network protocols that share related
communications syntax (e.g., addressing formats), semantics (e.g., interpre-
tation of standard control messages), and operations (e.g., demultiplexing
schemes and checksum computation algorithms). A wide range of protocol
families exist such as SNA, TCP/IP, XNS, and OSI.
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Category Dimension Subdimension Alternatives

Process (1) Concurrency Models single-threaded, HWP, LWP, coroutines
Kernel Architecture (2) Process Architectures message-based, task-based, hybrid
Architecture VM Remapping outgoing and/or incoming
Dimensions Event (1) Search Structure array, linked list, heap

Management (2) Time Relationships relative, absolute

Message Management (1) Memory Management uniform, non-uniformperformance
Protocol (2) Memory Copy Avoidance list-based, DAG-based data structure
Family Muxing and (1) Synchronization synchronous, asynchronous
Architecture Demuxing (2) Layering layered, de-layered
Dimensions (3) Searching indexing, sequential search, hashing

(4) Caching single-item, multiple-item
Layer-to-layer Flow Control per-queue, per-process

Table 1: Transport System Taxonomy Template

ture mechanisms manage the end-to-end processing activities
for network connections, whereas protocol family architec-
ture mechanisms manage the layer-to-layer processing activ-
ities that occur within multi-layer protocol graphs. In some
cases, these activities are entirely different (e.g., the pre-
sentation services provided by the session architecture such
as encryption, compression, and network byte-ordering are
unnecessary in the protocol family architecture). In other
cases, different mechanisms are used to implement the same
abstract task.

The latter point is exemplified by examining several mech-
anisms commonly used to implement flow control. End-to-
end flow control is a session architecture mechanism that
employs sliding window or rate control schemes to synchro-
nize the amount of data exchanged between sender(s) and
receiver(s) communicating at the same protocol layer (e.g.,
between two TCP connection end-points residing on differ-
ent hosts). Layer-to-layer flow control, on the other hand, is
a protocol family architecture mechanism that regulates the
amount of data exchanged between adjacent layers in a proto-
col graph (e.g., between the TCP and IP STREAM modules in
System V STREAMS). In general, end-to-end flow control
requires distributed context information, whereas layer-to-
layer flow control does not.

Mechanisms in the protocol family architecture are of-
ten reusable across a wide-range of communication proto-
cols. In contrast, session architecture mechanisms tend to be
reusable mostly within a particular class of protocols. For
instance, most communication protocols require some form
of message buffering support (which is a protocol family
architecture mechanism). However, not all communication
protocols require retransmission, flow control, or connection
management support. In addition, certain protocols may only
work with specific session architecture mechanisms (such as
the standard TCP specification that requires sliding-window
flow control and cumulative acknowledgment).

2.4 Kernel Architecture

The kernel architecture4 provides mechanisms that manage
hardware resources such as CPU(s), primary and secondary
storage, and various I/O devices and network adapters. These
mechanisms support concurrent execution of multiple proto-
col tasks on uni- and multi-processors, virtual memory man-
agement, and event handling. It is crucial to implement
kernel architecture mechanisms efficiently since the applica-
tion interface and session and protocol family architectures
ultimately operate by using these mechanisms. The primary
distinction between the protocol family architecture and the
kernel architecture is that kernel mechanisms are also uti-
lized by user applications and other OS subsystems such as
the graphical user interface or file subsystems. In contrast,
protocol family architecture mechanisms are concerned pri-
marily with the communication subsystem.

3 A Taxonomy of Transport System Ar-
chitecture Mechanisms

Table 1 presents a taxonomy of six key kernel architecture
and protocol family architecture mechanisms that support
the layer-to-layer computing requirements of protocol graphs
end systems. The following section describes the transport
system mechanisms presented in Table 1.

3.1 Kernel Architecture Dimensions

As described below, the kernel architecture provides the pro-
cess architecture, virtual memory remapping, and event man-
agement mechanisms utilized by the session and protocol
family architectures.

3.1.1 The Process Architecture Dimension

A process is a collection of resources (such as file descriptors,
signal handlers, a run-time stack, etc.) that may support

4The term “kernel architecture” is used within this paper to identify
mechanisms that form the “nucleus” of the transport system. However,
protocol and session architecture components may reside within an OS
kernel (BSD UNIX [8], and System V UNIX [7]), in user-space (Mach [22]
and the Conduit [9]), in either location (the x-kernel [2]), or in off-board
processors (Nectar [23] and VMP [4]).
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the execution of instructions within an address space. This
address space may be shared with other processes. Other
terms (such as threads [24]) are often used to denote the
same basic concept. Our use of the term process is consistent
with the definition adopted in [25].

A process architecture represents a binding between var-
ious units of communication protocol processing (such as
layers, functions, connections, and messages) and various
structural configurations of processes. The process architec-
ture selected for a transport system is one of several factors
(along with protocol designs/implementationsand bus, mem-
ory, and network interface characteristics) that impact overall
application performance. In addition, the choice of process
architecture also influences demultiplexing strategies [26]
and protocol programming techniques [2, 27].

Several concurrency models are outlined below. These
models form the basis for implementing the alternative pro-
cess architectures that are examined in detail following con-
currency model discussion. In order to produce efficient
transport systems, it is important to match the selected pro-
cess architecture with the appropriate concurrency model.

(1) Concurrency Models: Heavy-weight processes, light-
weight processes, and coroutines are concurrency models
used to implement process architectures. Each model ex-
hibits different performance characteristics and allows dif-
ferent levels of control over process management activi-
ties such as scheduling and synchronization. The following
paragraphs describe key characteristics of each concurrency
model:

� Heavy-Weight Processes: A heavy-weight process
(HWP) typically resides in a separate virtual address space
managed by the OS kernel and the hardware memory man-
agement unit. Synchronizing, scheduling, and exchanging
messages between HWPs involves context switching, which
is a relatively expensive operation in many operating sys-
tems. Therefore, HWPs may not be an appropriate choice
for executing multiple interacting protocol processing activ-
ities concurrently.

� Light-Weight Processes: Light-weight processes
(LWPs) differ from HWPs since multiple LWPs generally
share an address space by default. This sharing reduces the
overhead of LWP creation, scheduling, synchronization, and
communication for the following reasons:

� Context switching between LWPs is less time consum-
ing than HWPs since there is less context information
to store and retrieve

� It may not be necessary to perform a “mode switch”
between kernel- and user-mode when scheduling and
executing an LWP [28]

� Communication between LWPs may use shared memory
rather than message passing

Note that LWPs may be implemented in kernel-space, user-
space, or some hybrid configuration [29].

� Coroutines: In the coroutine model, a developer
(rather than an OS scheduler) explicitly chooses the next
coroutine to run at a particular synchronization point. When
a synchronization point is reached, the coroutine suspends
its activities to allow another coroutine to execute. At some
later point, the second coroutine may resume control back
to the first coroutine. Coroutines provide developers with
the flexibility to schedule and execute tasks in any desired
manner. However, developers also assume responsibility for
handling all scheduling details, as well as avoiding starvation
and deadlock.

Executing protocol and session mechanisms via multi-
ple processes is often less complicated and error-prone than
synchronizing and scheduling these mechanisms manually
via coroutines. In addition, coroutines support only inter-
leaved process execution, which limits the benefits of multi-
processing since only one process may run at any given time.
In general, it appears that LWPs are a more appropriate mech-
anism for implementing process architectures than HWPs
since minimizing context switching overhead is essential for
high-performance [2]. Even with LWPs, however, to it is still
important to perform concurrent processing efficiently to re-
duce the overhead from (1) preempting, rescheduling, and
synchronizing executing processes and (2) serializing access
to shared resources must be minimized.

(2) Process Architecture Alternatives: Three primary
process architecture components in a communication sub-
system include (1) the processing elements (CPUs), which
are the underlying execution agents for both protocol and
application code, (2) data and control messages, which are
typically sent and received from one or more applications and
network devices, and (3) protocol processing tasks, which
perform protocol-related functions upon messages as they
arrive and depart. Based upon this classification, two basic
categories of process architecture may be distinguished: task-
based and message-based. Each category is characterized by
alternative methods for structuring and composing the three
communication subsystem components outlined above. In
general, task-based process architectures structure multiple
CPUs according to units of protocol functionality. Con-
versely, message-based process architectures structure the
CPUs according to the protocol control and data messages
received from applications and network interfaces.

In terms of functionality, protocol suites (such as the Inter-
net and ISO OSI reference models) may be implemented us-
ing either task-based or message-based process architectures.
However, each category of process architecture exhibits dif-
ferent structural and performance characteristics. The struc-
tural characteristics differ according to (1) the granularity of
the unit(s) of protocol processing (e.g., layer or function vs.
connection or message) that execute in parallel, (2) the degree
of CPU scalability (i.e., the ability to effectively use only a
fixed number of CPUs vs. a dynamically scalable amount),
(3) task invocation semantics (e.g., synchronous vs. asyn-
chronous execution) and (4) the effort required to design and
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Figure 3: Task-based Process Architectures

implement conventional and experimental protocols and ser-
vices via a particular process architecture [27]. In addition,
different configurations of application requirements, operat-
ing system (OS) and hardware platforms, and network char-
acteristics interact with the structural characteristics of pro-
cess architectures to yield significantly different performance
results. For instance, on certain general-purpose OS plat-
forms (such as the System V STREAMS framework on multi-
processor versions of UNIX), fine-grained task-based paral-
lelism results in prohibitively high levels of synchronization
overhead [30]. Likewise, asynchronous, rendezvous-based
task invocation semantics often result in high data movement
and context switching overhead [31].

The remainder of this section summarizes the basic process
architecture categories, classifies related work accordingly
to these categories, and identifies several key factors that
influence process architecture performance.

� Task-based Process Architectures: Task-based pro-
cess architectures associate OS processes with protocol lay-
ers or protocol functions. Two common task-based process
architectures are Layer Parallelism and Functional Paral-
lelism. The primary difference between these two models
involves the granularity of the protocol processing tasks.
In general, layers are more “coarse-grained” than functions
since they cluster multiple protocol tasks together to form a
composite service.

� Layer Parallelism – Layer Parallelism is a relatively
coarse-grained task-based process architecture that as-
sociates a separate process with each layer (e.g., the pre-
sentation, transport, and network layers) in a protocol
stack. Certain protocol header and data fields in outgo-
ing and incoming messages may be processed in parallel
as they flow through the “layer pipeline” (shown in Fig-
ure 3 (1)). Intra-layer buffering, inter-layer flow control,

and stage balancing are generally necessary since pro-
cessing activities in each layer may execute at different
rates. In general, strict adherence to the layer bound-
aries specified by conventional communication models
(such as the ISO OSI reference model) complicates stage
balancing.

An empirical study of the performance characteristics of
several software architectures for implementing Layer
Parallelism is presented in [31]. Likewise, the XINU
TCP/IP implementation [32] uses a variant of this ap-
proach to simplify the design and implementation of its
communication subsystem.

� Functional Parallelism – Functional Parallelism is a
more fine-grained task-based process architecture that
applies one or more processes to execute protocol func-
tions (such as header composition, acknowledgement,
retransmission, segmentation, reassembly, and routing)
in parallel. Figure 3 (2) illustrates a typical Functional
Parallelism design [33], where protocol functions are
encapsulated within parallel finite-state machines that
communicate by passing control and data messages to
each other. Functional Parallelism is often associated
with “de-layered” communication models [3, 34] that
simplify stage balancing by relaxing conventional lay-
ering boundaries in order to minimize queueing delays
and “pipeline stalls” within a protocol stack.

Several variants of Functional Parallelism are illustrated
in Figure 3 (3) and Figure 3 (4). Figure 3 (3) illustrates a
temporal parallelism configuration [34], where several
cooperating processes are pipelined to execute clusters
of protocol functions on messages flowing through the
sender-side of a connection. Figure 3 (4) illustrates an-
other variant known as spacial parallelism, where mul-
tiple protocol functions (such as retransmission, flow
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control, congestion control, and presentation layer con-
versions) are performed in parallel on fields in each
message (the final results may be discarded if errors
are detected at intermediate stages). The Horizontally-
Oriented Protocol Structure (HOPS) architecture [3] and
the Multi-Stream Protocol (MSP) [35] exemplify this
latter approach.

Implementing pipelined, task-based process architectures
is relatively straight-forward since they typically map onto
conventional layered communication models using well-
structured “producer/consumer” designs [27]. Moreover,
minimal concurrency control mechanisms are necessary
within a layer or function since multi-processing is typically
serialized at a service access point (such as the transport or
application layer interface). However, performance experi-
ments [31] indicate that task-based process architectures are
susceptible to high process management and communica-
tion overhead. This becomes particularly problematic if the
number of protocol tasks exceeds the number of CPUs, due to
the context switching and rescheduling operations performed
when transfering messages between protocol tasks. More-
over, task-based variants provide minimal support for load
balancing since processes are dedicated to specific protocol
layers or functions. In addition, the effectiveness of temporal
or spacial parallelism is highly dependent upon characteris-
tics of the multi-processor hardware platform (such as the
presence of high-speed I/O interconnection hardware [33]
and/or lack of rapid access to shared memory) and the net-
work protocols (such as the capability to process mis-ordered
data [36]).

� Message-based Process Architectures: Message-
based process architectures associate processes with connec-
tions or messages rather than protocol layers or functions.
Two common message-based process architectures are Con-
nectional Parallelism and Message Parallelism. The primary
difference between these approaches involve (1) the class of
protocols that may be supported (e.g., Connectional Paral-
lelism does not directly apply to connectionless protocols)
and (2) the granularity at which messages are demultiplexed
onto processes. For example, Connectional Parallelism typ-
ically demultiplexes all messages bound for the same con-
nection onto the same process, whereas Message Parallelism
may demultiplex messages onto any suitable process. In gen-
eral, various scheduling disciplines such as round-robin [5],
adaptive load balancing, and cache affinity [37] preserving
techniques may be used when selecting a suitable process.

� Connectional Parallelism – Connectional Parallelism is
a relatively coarse-grained message-based process ar-
chitecture that associates a separate process with every
open connection. Figure 4 (1) illustrates this approach,
where connections C1; C2; C3, and C4 execute in sepa-
rate processes that perform the requisite protocol func-
tions on all messages associated with their connection.
Within a connection, multiple protocol processing func-
tions are invoked serially on each message as it flows
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Figure 4: Message-based Process Architectures

through a protocol stack. Outgoing messages typically
borrow the thread of control from the application pro-
cess and use it to shepard one or more messages down
a protocol stack [38]. For incoming messages, a device
driver or packet filter [39] typically performs demulti-
plexing operations to determine the correct process for
each message. In general, Connectional Parallelism is
well-suited for protocols that demultiplex early in their
protocol stack since it is difficult to maintain a strict
process-per-connection association across demultiplex-
ing boundaries [26].

Connectional Parallelism is relatively simple to imple-
ment if an OS allows multiple independent system calls,
device interrupts, and daemon processes to operate in
parallel [38]. Moreover, if the number of CPUs is
greater than or equal to the number of active connec-
tions, Connectional Parallelism also exhibits low com-
munication, synchronization, and process management
overhead [30] since all connection context information
is localized within a particular process address space.
This localization is beneficial since (1) pointers to mes-
sages may be passed between protocol layers via simple
procedure calls (rather than using more complicated and
costly interprocess communication mechanisms) and (2)
cache affinity properties may be preserved since mes-
sages are processed largely within a single CPU cache.
The primary limitation of Connectional Parallelism is
that it only utilizes multi-processing to improve aggre-
gate end-system performance since each individualcon-
nection still executes sequentially.

Figure 4 (2) illustrates a variation called Directional
Parallelism that associates a separate process with the
sender-side and the receiver-side of a single connec-
tion [40] in order to improve the utilization of available
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CPUs. To be most effective, Directional Parallelism
requires a high degree of independence between the
sender and receiver portions of a protocol, as well as a
bi-directional flow of application control and data mes-
sages [33]. In general, load balancing across multiple
processes is difficult with both Connectional and Direc-
tional Parallelism since highly active connections may
swamp their processes with messages, leaving other pro-
cessing resources tied up at less active or idle connec-
tions.

� Message Parallelism – Message Parallelism is a fine-
grained message-based process architecture that asso-
ciates a separate process with every incoming or outgo-
ing message. As illustrated in Figure 4 (3), a process
receives a message from an application or network inter-
face and performs most or all of the protocol processing
functions on that message. As with Connectional Paral-
lelism, outgoing messages typically borrow the thread
of control from the application that initiated the mes-
sage transfer. A number of projects have discussed,
simulated, or utilized Message Parallelism as the basis
for their process architecture [5, 41, 2, 42, 25].

Performance experiments [42] indicate that Message
Parallelism scales quite well for connectionless proto-
cols that possess minimal interdependencies between
consecutively arriving or departing messages. More-
over, processing loads may be balanced more evenly
among processes since each incoming message may be
dispatched to an available CPU. The primary disadvan-
tages of Message Parallelism involve overhead resulting
from (1) resource management and scheduling support
necessary to associate a process with each message, (2)
maintaining proper sequencing for messages that must
be processed in-order [41, 36], and (3) serializing access
to resources (such as protocol control blocks that store
information such as round-trip time estimates, retrans-
mission queues, and addressing information) shared be-
tween messages destined for the same connection. For
connection-oriented protocols (such as TCP or TP4),
this synchronization overhead may significantly limit
speedups obtainable from multiple CPUs [42] and in-
crease variance in message processing delay.

Compared with task-based approaches, message-based
process architectures are characterized by the potential for
more dynamic process utilization. In general, a large degree
of potential parallelism exists with these approachs, depend-
ing on dynamic characteristics (such as messages or connec-
tions), rather than on relatively static characteristics (such
as the number of layers or protocol functions). Depending
on other communication subsystem factors such as memory
and bus bandwidth [43], this dynamism may enable message-
based process architectures to scale up to a larger number of
CPUs. On the other hand, scalability may be of limited value
if a platform possesses a small number of CPUs, which is typ-
ically the case for modern workstations and high-end PCs. In

addition, the increased dynamism of message-based process
architectures also entails more sophisticated, and potentially
less efficient, resource allocation and process management
facilities. For example, a Message Parallelism-based pro-
cess architecture may require more elaborate OS scheduling
mechanisms.

Process Architecture Performance Factors: The perfor-
mance of the process architectures described above is in-
fluenced by various external and internal factors. External
factors include (1) application characteristics – e.g., the num-
ber of simultaneously active connections, the class of service
required by applications (such as reliable/non-reliable and
real-time/non-real-time), the direction of data flow (i.e., uni-
directional vs. bi-directional), and the type of traffic gener-
ated by applications (e.g., bursty vs. continuous), (2) protocol
characteristics – e.g., the class of protocol (such as connec-
tionless, connection-oriented, and request/response) used to
implement application and communication subsystem ser-
vices, and (3) network characteristics – e.g., attributes of
the underlying network environment (such as the delivery
of mis-ordered data due to multipath routing [36]). Internal
factors, on the other hand, represent hardware- and software-
dependent communication subsystem implementation char-
acteristics such as:

� Process Management Overhead – Process architectures
exhibit different context switching and scheduling costs
related to (1) the type of scheduling policies employed
(e.g., preemptive vs. non-preemptive), (2) the protec-
tion domain (e.g., user-mode vs. kernel-mode) in which
tasks within a protocol stack execute, and (3) the number
of available CPUs. In general, a context switch is trig-
gered when (1) one or more processes must sleep await-
ing certain resources (such as memory buffers or I/O de-
vices) to be come available, (2) preemptive scheduling
is used and a higher priority process becomes runnable,
or (3) when a currently executing process exceeds its
time slice. Depending on the underlying OS and hard-
ware platform, a context switch may be relatively time
consuming due to the flushing of register windows,
instruction and data caches, instruction pipelines, and
translation look-aside buffers [44].

� Synchronization Overhead – Implementing communica-
tion protocols that execute correctly on multi-processor
platforms requires synchronization mechanisms that se-
rialize access to shared objects such as messages, mes-
sage queues, protocol context records, and demulti-
plexing tables. Certain protocol and process architec-
ture combinations (such as implementing connection-
oriented protocols via Message Parallelism) may incur
significant synchronization overhead from managing
locks associated with these shared objects [42]. In ad-
dition to reducing overall throughput, synchronization
bottlenecks resulting from lock contention lead to un-
predictable response times that complicate the delivery
of constrained-latency applications. Other sources of
synchronization overhead involve contention for shared
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hardware resources such as I/O buses and global mem-
ory [43]. In general, hardware contention represents an
upper limit on the benefits that may accrue from multi-
processing [31].

� Communication Overhead – Task-based process ar-
chitectures generally require some form of interpro-
cess communication to exchange messages between
protocol processing components executing on sepa-
rate CPUs. Communication costs are incurred by
memory-to-memory copying, message manipulation
operations (such as checksum calculations and compres-
sion), and general message passing overhead resulting
from synchronization and process management opera-
tions. Common techniques for minimizing communica-
tion overhead involve (1) buffer management schemes
that minimize data copying [45] and attempt to preserve
cache affinity properties when exchanging messages be-
tween CPUs with separate instruction and data caches,
(2) integrated layer processing techniques [11], and (3)
single-copy network/host interface adapters [46].

� Load Balancing – Certain process architectures (such
as Message Parallelism) have the potential for utiliz-
ing multiple CPUs equitably, whereas others (such as
Connectional, Layer, and Functional Parallelism) may
under- or over-utilize the available CPUs under certain
circumstances (such as bursty network and application
traffic patterns or improper stage balancing).

3.1.2 The Virtual Memory (VM) Remapping Dimension

Regardless of the process architecture, minimizing the
amount of memory-to-memory copying in a transport system
is essential to achieve high performance [47]. In general, data
copying costs provide an upper bound on application through-
put [11]. As described in Section 3.2.1 below, selecting an
efficient message management mechanism is one method for
reducing data copying overhead. A related approach de-
scribed in this section uses virtual memory optimizations to
avoid copying data altogether. For example, in situations
where data must be transferred from one address space to an-
other, the kernel architecture may remap the virtual memory
pages by marking their page table entries as being “copy-
on-write.” Copy-on-write schemes physically copy memory
only if a sender or receiver changes a page’s contents.

Page remapping techniques are particularly useful for
transferring large quantities of data between separate address
spaces on the same host machine. An operation that benefits
from this technique involves data transfer between user-space
and kernel-space at the application interface. Rather than
physically copying data from application buffers to kernel
buffers, the OS may remap application pages into kernel-
space instead.

Page remapping schemes are often difficult to implement
efficiently in the context of communication protocols, how-
ever. For example, most remapping schemes require the
alignment of data in contiguous buffers that begin on page

boundaries. These alignment constraints are complicated
by protocol operations that significantly enlarge or shrink
the size of messages. This operations include message de-
encapsulation (i.e., stripping headers and trailers as messages
ascend through a protocol graph), presentation layer expan-
sion [11] (e.g., uncompressing or decrypting an incoming
message), and variable-size header options (such as those
proposed to handle TCP window scaling for long-delay paths
[18]). Moreover, remapping may not be useful if the sender
or receiver writes on the page immediately since a separate
copy must be generated anyway [8]. In addition, for small
messages, more overhead may be incurred by remapping and
adjusting page table entries, compared with simply copying
the data in the first place.

3.1.3 The Event Management Dimension

Event management mechanisms provided by the kernel ar-
chitecture support time-related services for user applications
and other mechanisms in a transport system. In general, three
basic operations are exported by an event manager:

1. Registering subroutines (called “event handlers”) that
will be executed at some user-specified time in the future

2. Canceling a previously registered event handler

3. Invoking an event handler when its expiration time oc-
curs

The data structures and algorithms that implement an event
manager must be selected carefully so that all three types of
operationsare performed efficiently. In addition, the variance
among different event handler invocation times should be
minimized. Reducing variance is important for constrained
latency applications, as well as for transport systems that
register and execute a large number of event handlers during
a given time period.

At the session architecture level, protocol implementa-
tions may use an event manager to perform certain time-
related activities on network connections. In this case, a
reliable connection-oriented protocol implementation regis-
ters a “retransmission-handler” with the event manager when
a protocol segment is sent. The expiration time for this event
is usually based on a time interval calculated from the round-
trip packet estimate for that connection. If the timer expires,
the event manager invokes the handler to retransmit the seg-
ment. The retransmission event handler will be canceled if
an acknowledgement for the segment arrives before the timer
expires.

Alternative mechanisms for implementing event managers
include delta lists [32], timing wheels [48], and heap-based
[49] and list-based [8] callout queues. These mechanisms are
built atop a hardware clock mechanism. On each “clock-tick”
the event manager checks whether it is time to execute any
of its registered events. If one or more events must be run,
the event manager invokes the associated event handler. The
different event manager mechanisms may be distinguished
by the following two dimensions:
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(1) Search Structure: Several search structures are com-
monly used to implement different event management mech-
anisms. One approach is to sort the events by their time-to-
execute value and store them in an array. A variant on this
approach (used by delta lists and list-based callout queues)
replaces the array with a sorted linked list to reduce the over-
head of adding or deleting an event [32]. Another approach
is to use a heap-based priority queue [49] instead of a sorted
list or array. In this case, the average- and worst-case time
complexity for inserting or deleting an entry is reduced from
O(n) toO(lgn). In addition to improving average-case per-
formance, heaps also reduce the variance of event manager
operations.

(2) Time Relationships: Another aspect of event manage-
ment involves the “time relationships,” (i.e., absolute vs.
relative time) that are used to represent an event’s execu-
tion time. Absolute time is generally computed in terms of
a value returned by the underlying hardware clock. Heap-
based search structures typically use absolute time due to
the comparison properties necessary to maintain a heap as a
partially-ordered, almost-complete binary tree. In contrast,
relative-time may be computed as an offset from a particular
starting point and is often used for a sorted linked list imple-
mentation. For example, if each item’s time is stored as a
delta relative to the previous item, the event manager need
only examine the first element on every clock-tick to deter-
mine if it should execute the next registered event handler.

3.2 Protocol Family Architecture Dimensions

Protocol family architecture mechanisms pertain primarily to
network protocols and distributed applications. In contrast,
kernel architecture mechanisms are also utilized by many
other applications and OS subsystems. The protocol family
architecture provides intra-protocol and inter-protocol mech-
anisms that may be reused by protocols in many protocol
families. Intra-protocol mechanisms involve the creation and
deletion of sessions, whereas inter-protocol mechanisms in-
volve message management, multiplexing and demultiplex-
ing of messages, and layer-to-layer flow control. This section
examines the inter-protocol mechanisms.

3.2.1 The Message Management Dimension

Transport systems provide mechanisms for exchanging data
and control messages between communicating entities on lo-
cal and remote end systems. Standard message management
operations include (1) storing messages in buffers as they are
received from network adapters, (2) adding and/or removing
headers and trailers from messages as they pass through a
protocol graph, (3) fragmenting and reassembling messages
to fit into network maximum transmission units, (4) stor-
ing messages in buffers for transmission or retransmission,
and (5) reordering messages received out-of-sequence [5].
To improve efficiency, these operations must minimize the
overhead of dynamic memory management and also avoid

unnecessary data copying, as described in the followingpara-
graphs:

(1) Dynamic Memory Management: Traditional data net-
work traffic exhibits a bi-modal distribution of sizes, ranging
from large messages for bulk data transfer to small mes-
sages for remote terminal access [50]. Therefore, mes-
sage managers must be capable of dynamically allocating,
deallocating, and coalescing fixed-sized and variable-sized
blocks of memory efficiently. However, message manage-
ment schemes are often tuned for a particular range of mes-
sage sizes. For instance, the BSD UNIX message manage-
ment facility divides its buffers into 112 byte and 1,024 byte
blocks. This leads to non-uniform performance behavior
when incoming and outgoing messages vary in size between
small and large blocks. As discussed in [2], more uniform
performance is possible if message managers support a wide
range of message sizes as efficiently as they support large
and/or small messages.

(2) Memory-to-memory Copy Avoidance: As mentioned
in Section 3.1.2, memory-to-memory copying is a signifi-
cant source of transport system overhead. Naive message
managers that physically copy messages between each pro-
tocol layer are prohibitively expensive. Therefore, more so-
phisticated implementations avoid or minimize memory-to-
memory copying via techniques such as buffer-cut-through
[51, 52] and lazy-evaluation [45]. Buffer-cut-through passes
messages “by reference” through multiple protocol layers to
reduce copying. Likewise, lazy-evaluation techniques use
reference counting and buffer-sharing to minimize unneces-
sary copying. These schemes may be combined with the
virtual memory remapping optimizations described in Sec-
tion 3.1.2.

Message managers use different methods to reduce data
copying and facilitate buffer sharing. For instance, BSD
and System V UNIX attach multiple buffers together to form
linked-lists of message segments. Adding data to the front
or rear of a buffer list does not require any data copying
since it only relinks pointers. An alternative approach uses
a directed-acyclic-graph (DAG)-based data structure [45].
A DAG allows multiple “parents” to share all or part of a
message stored in a single “child.” Therefore, this method
improves data sharing between layers in a highly-layered
protocol graph. This is important for reliable protocols (such
as RPC or TCP) that maintain “logical” copies of messages
at certain protocol layers in case retransmission is necessary.

3.2.2 The Multiplexing and Demultiplexing Dimension

Multiplexing (muxing) and demultiplexing (demuxing) se-
lect which of the sessions in an adjacent protocol layer will
receive an incoming or outgoingmessage. A sender typically
performs multiplexing, which directs outgoingmessages em-
anating from some number of higher-layer sessions onto a
smaller number of lower-layer sessions [12]. Conversely,
a receiver performs demultiplexing, which directs incoming
messages up to their associated sessions. Multiplexing and
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demultiplexing are orthogonal to data copying; depending
on the message management scheme, messages need not be
copied as they are multiplexed and demultiplexed throughout
a protocol graph [45].

Since senders generally possess knowledge of their en-
tire transfer context (such as message destination address(es)
like connection identifiers, port numbers, and/or Internet IP
addresses [11], as well as which network interfaces to use)
multiplexing may be less costly than demultiplexing. In con-
trast, when a network adapter receives an incoming message
it generally has no prior knowledge of the message’s validity
or eventual destination. To obtain this information, a receiver
must inspect the message header and perform demultiplexing
operations that select which higher-layer protocol session(s)
should receive the message.

Multiplexing and demultiplexing may be performed sev-
eral times as messages move to and from network adapters,
protocol layers, and user applications. Depending on the pro-
cess architecture selected for a transport system, multiplexing
and demultiplexingactivities may incur high synchronization
and context switching overhead since one or more processes
may need to be awakened, scheduled, and executed.

As described below, four key multiplexing and de-
multiplexing dimensions include synchronization, layering,
searching, and caching:

(1) Synchronization: Multiplexing and demultiplexing
may occur either synchronously or asynchronously, depend-
ing primarily on whether the transport system uses a task-
based or message-based process architecture. For example,
message-based process architectures (such as the x-kernel)
typically use synchronous multiplexing and demultiplexing
since messages do not pass between separate process address
spaces. Therefore, intra-process upcalls and subroutine calls
are used to transfer messages up and down a protocol graph
rather than more expensive asynchronous inter-process com-
munication techniques such as message queues. In contrast,
task-based process architectures (such as F-CSS [53]) uti-
lize asynchronous multiplexing and demultiplexing. In this
scheme, message queues are used to buffer data passed be-
tween processes that implement a layered protocol graph.
Since message queues do not necessarily block the sender, it
is possible to concurrently process messages in each protocol
layer, which potentially increases throughput. However, this
advantage may be offset by the additional context switch-
ing and data movement overhead incurred to move messages
between separate CPUs [54].

(2) Layering: As shown in Figure 5 (1), multiplexing and
demultiplexing may occur multiple times as messages tra-
verse up or down a protocol graph. This layered approach
differs from the de-layered approach shown in Figure 5 (2).
In the de-layered approach, multiplexingand/or demultiplex-
ing is performed only once, usually at either the highest- or
lowest-layer of a protocol graph.

The use of layered multiplexing and demultiplexing pro-
vides several benefits [12]. First, it promotes modularity,
since the interconnected layer components interoperate only
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at well-defined “service access points” (SAPs). This en-
ables mechanisms offered at one layer to be developed in-
dependently from other layers. Second, it conserves lower-
layer resources like active virtual circuits by sharing them
among higher-layer sessions. Such sharing may be use-
ful for high-volume, wide-area, leased-line communication
links where it is expensive to reestablish a dedicated virtual
circuit for each transmitted message. Finally, layered multi-
plexing and demultiplexing may be useful for coordinating
related streams in multimedia applications (such as interac-
tive tele-conferencing) since messages synchronize at each
SAP boundary.

The primary disadvantages of layered multiplexing and
demultiplexing arise from the additional processing incurred
at each layer. For example, in a task-based process architec-
ture, multiple levels of demultiplexing may increase context
switching and synchronization overhead. This overhead also
enlarges packet latency variance (known as “jitter”), which
is detrimental to the quality-of-service for delay- and jitter-
sensitive multimedia applications such as interactive voice
or video.

De-layered multiplexing and demultiplexing generally de-
creases jitter since there is less contention for transport system
resources at a single lower-layer SAP from multiple higher-
layer data streams [12]. However, the amount of context
information stored within every intermediate protocol layer
increases since sessions are not shared [12]. In addition, de-
layering expands the degree of demultiplexing at the lowest
layer. This violates protocol layering characteristics found in
conventional communication models (such as the ISO OSI
reference model) since the lowest layer is now responsible for
demultiplexing on addresses (such as connection identifiers
or port numbers) that are actually associated with protocols
several layers above in a protocol graph. Packet filters [39]
are a technique used to address this issue. Packet filters allow
applications and higher-level protocols to “program” a net-
work interface so that particular types of incoming PDUs are
demultiplexed directly to them, rather than passing through
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a series of intervening protocol layers first.
Note that the use of de-layered multiplexing and demulti-

plexing interacts with the choice of process architecture. For
example, Connectional Parallelism is enhanced by protocols
that demultiplex early in their protocol stack since it is dif-
ficult to maintain a strict process-per-connection association
across demultiplexing boundaries [26].

(3) Searching: Some type of search algorithm is required to
implement multiplexing and demultiplexing schemes. Sev-
eral common search algorithms include direct indexing, se-
quential search, and hashing. Each algorithm uses an ex-
ternal identifier search key (such as a network address, port
number, or type-of-service field) to locate an internal iden-
tifier (such as a pointer to a protocol control block or a net-
work interface) that specifies the appropriate session context
record.

Transport protocols such as TP4 and VMTP pre-compute
connection identifiers during connection establishment to
simplify subsequent demultiplexing operations. If these
identifiers have a small range of values, a demultiplexing op-
eration may simply index directly into an array-based search
structure to locate the associated session context record. Al-
ternatively, a sequential search may be used if a protocol does
not support connection identifiers, or if the range of identifier
values is large and sparse. For example, BSD UNIX demulti-
plexes TCP and UDP associations by performing a sequential
search on external identifiers represented by a <source addr,
source port, destination port> tuple. Although sequential
search is simple to implement, it does not scale up well if the
transport system has hundreds or thousands of external iden-
tifiers representing active connections. In this case, a more
efficient search algorithm (such as bucket-chained hashing)
may be required.

(4) Caching: Several additional optimizationsmay be used
to augment the search algorithms discussed above. These op-
timizations include (1) single- or multiple-item caches and
(2) list reorganization heuristics that move recently accessed
control blocks to the front of the search list or hash bucket-
chain. A single-item cache is relatively efficient if the arrival
and departure of application data exhibit “message-train” be-
havior. A message-train is a sequence of back-to-back mes-
sages that are all destined for the same higher-level session.
However, single-item caching is insufficient if application
traffic behavior is less uniform [55]. When calculating how
well a particular caching scheme affects the cost of demulti-
plexing it is important to consider (1) the miss ratio, which
represents how many times the desired external identifier is
not in the cache and (2) the number of list entries that must be
examined when a cache miss occurs. In general, the longer
the search list, the higher the cost of a cache miss.

The choice of search algorithm and caching optimization
impacts overall transport system and protocol performance
significantly. When combined with caching, hashing pro-
duces a measurable improvement for searching large lists of
control blocks that correspond to active network connections
[2].

3.2.3 The Layer-to-Layer Flow Control Dimension

Layer-to-layer flow control regulates the rate of speed and
amount of data that is processed at various levels in a trans-
port system. For example, flow control is performed at the
application interface by suspending user processes that at-
tempt to send and/or receive more data than end-to-end ses-
sion buffers are capable of handling. Likewise, within the
protocol family architecture level, layer-to-layer flow con-
trol prevents higher-layer protocol components from flood-
ing lower-layers with more messages than they are equipped
to process and/or buffer.

Layer-to-layer flow control has a significant impact on
protocol performance. For instance, empirical studies [1]
demonstrate the importance of matching buffer sizes and
flow control strategies at each layer in the protocol family
architecture. Inefficiencies may result if buffer sizes are not
matched appropriately in adjacent layers, thereby causing
excessive segmentation/reassembly and additional transmis-
sion delays.

Two general mechanisms for controlling the layer-to-layer
flow of messages include the per-queue flow control and
per-process flow control schemes outlined below:

� Per-Queue Flow Control: Flow control may be im-
plemented by enforcing a limit on the number of messages
or total number of bytes that are queued between sessions in
adjacent protocol layers. For example, a task-based process
architecture may limit the size of the message queues that
store information passed between adjacent sessions and/or
user processes. This approach has the advantage that it en-
ables control of resource utilization at a fairly fine-grain level
(such as per-connection).

� Per-Process Flow Control: Flow control may also
be performed in a more coarse-grained manner at the per-
process level. This approach is typically used by message-
based process architectures. For example, in the x-kernel,
an incoming message is discarded at a network interface if a
light-weight process is not available to shepard an incoming
message up through a protocol graph. The advantage of this
approach is that it reduces queueing complexity at higher-
layers. However, it may unfairly penalize connections that
are not responsible for causing message congestion on an end
system.

4 Survey of Existing OS Transport Sys-
tem Architectures

A number of framework have emerged to simplify the de-
velopment and configuration of transport systems by inter-
connecting session and protocol family architecture com-
ponents. In general, these frameworks encourage the de-
velopment of standard communication-related components
(such as message managers, timer-based event dispatchers,
demultiplexors [45], and assorted protocol functions [13]) by
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decoupling protocol processing functionality from the sur-
rounding framework infrastructure. This section surveys the
transport system architectures for the System V UNIX, BSD
UNIX, x-kernel, and Choices operating systems. Unless oth-
erwise noted, the systems described include System V Re-
lease 4, BSD 4.3 Tahoe, x-kernel 3.2, and Choices 6.16.91.
Section 4.1 gives a brief summary of each system. Section 4.2
compares and contrasts each system using the taxonomy di-
mensions listed in Table 1.

4.1 System Overviews

This section outlines the primary software components and
process architectures for each surveyed transport system in
order to highlight the design decisions made by actual sys-
tems. In addition, a transport system profile corresponding
to the taxonomy depicted in Table 1 is presented along with
each overview (note that ND stands for “not defined”).

4.1.1 System V STREAMS

The System V STREAMS architecture emphasizes mod-
ular components that possess uniform interfaces. It was
initially developed for terminal drivers and was later ex-
tended to support network protocols and local IPC via mul-
tiplexor drivers and STREAM pipes, respectively [56]. The
Table 2 illustrates the transport system profile for System
V STREAMS. In the discussion below, the uppercase term
“STREAMS” refers to the overall System V transport system
mechanism, whereas the term “Stream” refers to a full-duplex
protocol processing and data transfer path between a user ap-
plication and a device driver.

As shown in Figure 6, the main components in the Sys-
tem V STREAMS architecture include STREAM heads,
STREAM modules, STREAM multiplexors, and STREAM
drivers. A STREAM head segments the user data into dis-
crete messages. These messages are passed “downstream”
from the STREAM head though zero or more STREAM mod-
ules and multiplexors to the STREAM driver, where they are
transmitted by a network adapter to the appropriate network.
Likewise, the driver also receives incoming messages from
the network. These messages are passed “upstream” through
the modules to the STREAM head, where a user process may
retrieve them. STREAM modules and multiplexors may be
inserted and/or removed dynamically between the head and
the driver. Each module or multiplexor implements pro-
tocol processing mechanisms like encryption, compression,
reliable message delivery, and routing. The following para-
graphs describe each STREAMS component:

� STREAM Heads: STREAM heads are situated on “top”
of a Stream, directly “below” the user process (as shown
in Figure 6). STREAM heads provide a queueing point for
exchanging data and control information between an appli-
cation (running as a user process) and a Stream (running in
the kernel). Each STREAM component is linked together
with its adjacent components via a pair of queues: one for
reading and the other for writing. These queues hold lists of
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messages sorted by up to 256 different priority levels. Since
the System V application interface does not use virtual mem-
ory remapping techniques, the STREAM head also performs
memory-to-memory copying to transfer data between a user
process and the kernel.

� STREAM Modules: Each STREAM module performs
its protocol processing operations on the data it receives be-
fore forwarding the data to the next module. In this way,
STREAM modules are analogous to “filter” programs in a
UNIX shell pipeline. Unlike a UNIX pipeline, however, data
is passed as discrete messages between modules, rather than
as a byte-stream. Applications may “push” and/or “pop”
STREAM modules on or off a Stream dynamically in “last-
in, first-out” (LIFO) order. Each read and write queue in a
module contains pointers to subroutines that (1) implement
the module’s protocol processing operations and (2) regulate
layer-to-layer message flow between modules.

Two subroutines associated with each queue are calledput
and service. The put subroutine typically performs syn-
chronous message processing when invoked by an adjacent
queue (e.g., when a user process sends a message downstream
or a message arrives on a network interface). It performs
protocol processing operations that must be invoked imme-
diately (such as handling high-priority TCP “urgent data”
messages).

The service subroutine, on the other hand, is used for
protocol operations that either do not execute in a short, fixed
amount of time (e.g., performing a three-way handshake to
establish an end-to-end network connection) or that will block
indefinitely (e.g., due to layer-to-layer flow control). The
service subroutines in adjacent modules generally interact
in a coroutine-like manner. For example, when a queue’s
service subroutine is run, it performs protocol processing
operations on all the messages waiting in the queue. When the
service subroutine completes, the messages it processed
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Process Architecture (1) coroutines, (2) task-based (process-per-module)
VM Remapping none
Event Management (1) absolute, (2) heap

Message Buffering (1) uniform, (2) list-based
Muxing/Demuxing (1) asynchronous, (2) layered, (3) ND, (4) ND
Flow Control per-queue

Table 2: STREAMS Profile

will have been passed to the appropriate adjacent STREAM
module in the Stream. Next, the service routine for any
STREAM modules that now have new messages in their
queue(s) is scheduled to run.

� STREAM Multiplexors: STREAM multiplexors may
be linked between a STREAM head and a STREAM driver,
similar to STREAM modules. Unlike a STREAM module,
however, a multiplexor driver is linked with multiple Streams
residing directly “above” or “below” it. Multiplexors are
used to implement network protocols such as TCP and IP
that receive data from multiple sources (e.g., different user
processes) and send data to multiple sources (e.g., different
network interfaces).

� STREAM Drivers: STREAM drivers are connected at
the “bottom” of a Stream. They typically manage hard-
ware devices, performing activities such as handling network
adapter interrupts and converting incoming packets into mes-
sages suitable for upstream modules and multiplexors.

� Messages: Data is passed between STREAMS compo-
nents in discrete chunks via an abstraction called a message.
Messages consist of a control block and one or more data
blocks. The control block typically contains bookkeeping
information such as destination addresses and length fields).
The data blocks generally contain the actual message con-
tents, i.e., its “payload.”

To minimize memory-to-memory copying costs, pointers
to message blocks are passed upstream and downstream. A
message is represented as a <message control block, data
control block, variable length data buffer> tuple. This tuple
minimizes memory-to-memory copying costs by sharing a
common <data buffer> among several <message control
block, data control block> portions.

The traditional System V STREAMS transport system sup-
ports a variant of the task-based process architecture known
as “process-per-module” that associates a “logical” process
with a STREAM module’s service subroutine. This
process-per-module approach is implemented by scheduling
and executing the service subroutines associated with the
read and write queues in a STREAM module. Originally, the
service procedures were run only at certain times (such
as just before returning from a system call and just before
a user process was put to sleep). Unfortunately, this design
made it difficult to support applications with isochronous or
constrained latency requirements since STREAM modules
were not scheduled to run with any precise real-time guar-
antees. In addition, these subroutines execute outside the

context of any kernel or user process, thereby avoiding the
standard UNIX kernel process scheduling mechanism. This
design represents an effort to (1) minimize the kernel state
information required for process management and (2) reduce
context switching overhead when moving messages between
module queues.

An increasing number of STREAMS implementations
[28, 38, 25, 30] utilize shared memory, symmetric multi-
processing capabilities within a multi-threaded kernel ad-
dress space. These implementations supports various lev-
els of STREAMS concurrency. These concurrency levels
range from relatively fine-grain parallelism (such as queue-
level with one light-weight process (LWP) for the STREAM
module read queue and one LWP for the STREAM module
write queue and queue-pair-level with one LWP shared by
a STREAM module queue pair) to more coarse-grained ap-
proaches (such as module-level with one LWP shared across
all instances of a STREAM module and module-class-level
with one LWP shared across a particular class of STREAM
modules).

4.1.2 BSD UNIX Network Subsystem

BSD UNIX provides a transport system framework that
supports multiple protocol families such as the Internet,
XNS, and OSI protocols [8]. BSD provides a general-
purpose application interface called sockets. Sockets allow
bi-directional communication of arbitrary amounts of data
between unrelated processes on local and remote hosts. Ta-
ble 3 illustrates the transport system profile for BSD UNIX.

The concept of a communication domain is central to
BSD’s multiple protocol family design. A domain speci-
fies both a protocol family and an address family. Each
protocol family implements a set of protocols corresponding
to standard socket types in the domain (e.g., SOCK STREAM
for reliable byte-stream communication and SOCK DGRAM
for unreliable datagram communication). An address fam-
ily defines an address format (e.g., the address size in bytes,
number and type of fields, and order of fields) and a set of
kernel-resident subroutines that interpret the address format
(e.g., to determine which subnet an IP message is intended
for). The standard BSD release supports address families for
the Internet domain, XEROX NS domain, OSI domain, and
UNIX domain (which only exchanges information between
sockets in processes on a local host).

There are three main layers in the BSD transport system
design: the socket layer, protocol layer, and network in-

14



Process Architecture (1) single-threaded, (2) hybrid message-based
VM Remapping incoming
Event Management (1) relative, (2) linked list

Message Buffering (1) non-uniform, (2) list-based
Muxing/Demuxing (1) hybrid, (2) layered, (3) sequential, (4) single-item
Flow Control ND

Table 3: BSD UNIX Profile

terface layer. Data are exchanged between these layers in
discrete chunks called mbufs. Socket layer mechanisms are
similar to System V STREAM heads. One difference is that
a STREAM head supports up to 256 levels of message pri-
ority, whereas sockets only provide 2 levels (“in-band” and
“out-of-band”). The protocol layer coordinates algorithms
and data structures that implement the various BSD protocol
families. The network interface layer provides a software ve-
neer for accessing the underlying network adapter hardware.
The following paragraphs describe the major BSD protocol
layer components in detail:

� The Socket Layer: A socket is a typed object that repre-
sents a bi-directional end-point of communication. Sockets
provide a queueing point for data that is transmitted and re-
ceived between user applications running as user processes
and the protocol layers running in the OS kernel. Open sock-
ets are identified via socket descriptors. These descriptors
index into a kernel table containing socket-related informa-
tion such as send and receive buffer queues, the socket type,
and pointers to the associated protocol layer. When a socket
is created, a new table slot is initialized based on the speci-
fied “socket type” (e.g., SOCK STREAM or SOCK DGRAM).
Socket descriptors share the same name space as UNIX file
descriptors. This allows many UNIX applications to com-
municate transparently using different kinds of devices such
as remote network connections, files, terminals, printers, and
tape drives.

�The Protocol Layer: BSD’s protocol layer contains mul-
tiple components organized using a dispatch table format.
Unlike STREAMS, the BSD network architecture does not
allow arbitrary configuration of protocol components at run-
time. Instead, protocol families are created by associating
certain components with one another when a kernel image is
statically linked.

In the Internet protocol family, the TCP component is
linked above the IP component. Each protocol component
stores session context information in control blocks that rep-
resent open end-to-end network sessions. Internet domain
control blocks include the inpcb (which stores the source
and destination host addresses and port numbers) and the
tcpcb (which stores the TCP state machine variables such
as sequence numbers, retransmission timer values, and statis-
tics for network management). Each inpcb also contains
links to sibling inpcbs (which store information on other
active network sessions in the protocol layer), back-pointers

to the socket data structure associated with the protocol ses-
sion, and other relevant information such as routing-table
entries or network interface addresses.

� The Network Interface Layer: Messages arriving on
network interfaces are handled by a software interrupt-based
mechanism, as opposed to dedicating a separate kernel “pro-
cess” to perform network I/O. Interrupts are used for two
primary reasons: (1) they reduce the context switching over-
head that would result from using separate processes and (2)
the BSD kernel is not multi-threaded. There are two levels
of interrupts: SPLNET and SPLIMP. SPLNET has higher
priority and is generated when a network adapter signals
that a message has arrived on an interface. However, since
hardware interrupts cannot be masked for very long without
causing other OS devices to timeout and fail, a lower priority
software interrupt level named SPLIMP actually invokes the
higher-layer protocol processing.

For example, when an SPLNET hardware interrupt occurs,
the incoming message is placed in the appropriate network
interface protocol queue (e.g., the queue associated with the
IP protocol). Next, an SPLIMP software interrupt is posted,
informing the kernel that higher-layer protocols shouldbe run
when the interrupt priority level falls below SPLIMP. When
the SPLIMP interrupt handler is run, the message is removed
from the queue and processed to completion by higher-layer
protocols. If a message is not discarded by a protocol (e.g.,
due to a checksum error) it typically ends up in a socket
receive queue, where a user process may retrieve it.

� Mbufs: BSD UNIX uses the mbuf data structure to man-
age messages as they flow between levels in the network
subsystem. An mbuf’s representation and its associated op-
erations are similar to the System V STREAMS message
abstraction. Mbuf operations include subroutines for allocat-
ing and freeing mbufs and lists of mbufs, as well as for adding
and deleting data to an mbuf list. These subroutines are de-
signed to minimize memory-to-memory coping. Mbufs store
lists of incoming messages and outgoing protocol segments,
as well as other dynamically allocated objects like the socket
data structure. There are two primary types of mbufs: small
mbufs, which contain 128 bytes (112 bytes of which are used
to hold actual data), and cluster mbufs, which use 1 kbyte
pages to minimize fragmentation and reduce copying costs
via reference counting.

BSD uses a single-threaded, hybrid message-based process
architecture residing entirely in the kernel. User processes
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enter the kernel when they invoke a socket-related system
call. Due to flow control, multiple user processes that are
sending data to “lower” protocol layers residing in the kernel
may be blocked simultaneously at the socket layer. Blocked
processes are suspended from sending messages down to the
network interface layer until flow control conditions abate.
In contrast, since the BSD kernel is single-threaded, only one
thread of control executes to process incoming messages up
through the higher protocol layers.

4.1.3 x-kernel

The x-kernel is a modular, extensible transport system kernel
architecture designed to support prototyping and experimen-
tation with alternative protocol and session architectures [2].
It was developed to demonstrate that layering and modular-
ity are not inherently detrimental to network protocol per-
formance [2]. The x-kernel supports protocol graphs that
implement a wide range of standard and experimental proto-
col families, including TCP/IP, Sun RPC, Sprite RCP, VMTP,
NFS, and Psync [57]. Unlike BSD UNIX, whose protocol
family architecture is characterized by a static, relatively
monolithic protocol graph, the x-kernel supports dynamic,
highly-layered protocol graphs. Table 4 illustrates the trans-
port system profile for the x-kernel.

The x-kernel’s protocol family architecture provides highly
uniform interfaces to its mechanisms, which manage three
communication abstractions that comprise protocol graphs
[2]: protocol objects, session objects, and message objects.
These abstractions are supported by other reusable software
components that include a message manager (an abstract data
type that encapsulates messages exchanged between session
and protocol objects), a map manager (used for demulti-
plexing incoming messages between adjacent protocols and
sessions), and an event manager (based upon timing wheels
[48] and used for timer-driven activities like TCP’s adaptive
retransmission algorithm). In addition, the x-kernel provides
a standard library of micro-protocols. These are reusable,
modular software components that implement mechanisms
common to many protocols (such as include sliding window
transmission and adaptive retransmission schemes, request-
response RPC mechanisms, and a “blast” protocol that uses
selective retransmission to reduce channel utilization [10]).
The following paragraphs describe the x-kernel’s primary
software components:

� Protocol Objects: Protocol objects are software abstrac-
tions that represent network protocols in the x-kernel. Pro-
tocol objects belong to one of two “realms,” either the asyn-
chronous realm (e.g., TCP, IP, UDP) or the synchronous realm
(e.g., RPC). The x-kernel implements a protocol graph by
combining one or more protocol objects. A protocol object
contains a standard set of subroutines that provide uniform
interfaces for two major services: (1) creating and destroy-
ing session objects (which maintain a network connection’s
context information) and (2) demultiplexing message objects
up to the appropriate higher-layer session objects. The x-

kernel uses its map manager abstraction to implement effi-
cient demultiplexing. The map manager associates external
identifiers (e.g., TCP port numbers or IP addresses) with in-
ternal data structures (e.g., session control blocks). It is im-
plemented as a chained-hashing scheme with a single-item
cache.

� Session Objects: A session object maintains context in-
formation associated with a local end-point of a connection.
For example, a session object stores the context information
for an active TCP state machine. Protocol objects create
and destroy session objects dynamically. When an applica-
tion opens multiple connections, one or more session objects
will be created within the appropriate protocol objects in a
protocol graph. The x-kernel supports operations on ses-
sion objects that involve “layer-to-layer” activities such as
exchanging messages between higher-level and lower-level
sessions. However, the x-kernel’s protocol family architec-
ture framework does not provide standard mechanisms for
“end-to-end” session architecture activities such as connec-
tion management, error detection, or end-to-end flow control.
A related project, Avoca, builds upon the basic x-kernel fa-
cilities to provide these end-to-end session services [10].

� Message Objects: Message objects encapsulate control
and user data information that flows “upwards” or “down-
wards” through a graph of session and protocol objects.
In order to decrease memory-to-memory copying and to
implement message operations efficiently, message objects
are implemented using a “directed-acyclic-graph” (DAG)-
based data structure. This DAG-based scheme uses “lazy-
evaluation” to avoid unnecessary data copying when passing
messages between protocol layers [45]. It also stores mes-
sage headers in a separate “header stack” and uses pointer
arithmetic on this stack to reduce the cost of prepending or
stripping message headers.

The x-kernel employs a “process-per-message” message-
based process architecture that resides in either the OS kernel
or in user-space. The kernel implementation maintains a pool
of light-weight processes (LWPs). When a message arrives
at a network interface, a separate LWP is dispatched from
the pool to shepard the message upwards through the graph
of protocol and session objects. In general, only one context
switch is required to shepard a message through the proto-
col graph, regardless of the number of intervening protocol
layers. The x-kernel also supports other context switch op-
timizations that (1) allow user processes to transform into
kernel processes via system calls when sending message and
(2) allow kernel processes to transform into user processes
via upcalls when receiving messages [58].

4.1.4 The Conduit Framework

The Conduit provides the protocol family architecture, ses-
sion architecture, and application interface for the Choices
operating system [59]. Choices was developed to investigate
the suitability of object-oriented techniques for designing
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Process Architecture (1) LWP, (2) message-based
VM Remapping incoming/outgoing
Event Management (1) relative, (2) linked list

Message Buffering (1) uniform, (2) DAG-based
Muxing/Demuxing (1) synchronous, (2) layered, (3) hashing, (4) single-item
Flow Control per-process

Table 4: x-kernel Profile

and implementing OS kernel and networking mechanisms.5

For example, the design of ZOOT (the Choices TCP/IP im-
plementation) uses object-oriented language constructs and
design methods such as inheritance, dynamic binding, and
delegation [60] to implement the TCP state machine in a
highly modular fashion. Together, Choices and the Conduit
provide a general-purpose transport system. Table 5 illus-
trates the transport system profile for the Choices Conduit.
In the discussion below, the term “Conduit” refers to the over-
all transport system, whereas a “Conduit” corresponds to
an abstract data type used to construct and coordinate various
network protocols.

There are three major components in the Con-
duit: Conduits, Conduit Messages, and Conduit
Addresses. A Conduit is a bi-directional communica-
tion abstraction, similar to a System V STREAM module.
It exports operations that allow Conduits (1) to link to-
gether and (2) to exchange messages with adjacently linked
Conduits. Conduit Messages are typed objects ex-
changed between adjacent Conduits in a protocol graph.
Conduit Addresses are utilized by Conduits to de-
termine where to deliver Conduit Messages. All three
components are described in the following paragraphs:

� The Conduit Base Class and Subclasses: A Conduit
provides the basis for implementing many types of network
protocols including connectionless (e.g., Ethernet, IP, ICMP,
and UDP), connection-oriented (e.g., TCP and TP4), and
request-response (e.g., RPC and NFS) protocols. It is rep-
resented as a C++ base class that provides two types of op-
erations that are inherited and/or redefined by derived sub-
classes. One type of operation composes protocol graphs
by connecting and disconnecting Conduits instances. The
other type of operation inserts messages into the “top” and/or
“bottom” of a Conduit. Each Conduit has two ends for
processing data and control messages: the top end corre-
sponds to messages flowing down from an application; the
bottom end corresponds to messages flowing up from a net-
work interface.

The Conduit uses C++ mechanisms such as inheritance
and dynamic binding to express the commonality between
the Conduit base class and its various subclasses. These
subclasses represent specializations of abstract network pro-
tocol classes that provide Virtual Circuit and Datagram ser-
vices. For instance, the Virtual Circuit Conduit

5Choices and the Conduit are written using C++. All the other surveyed
systems are written in C.

and Datagram Conduit are standard Conduit sub-
classes. Both subclasses export the “connect, discon-
nect, and message insertion” mechanisms inherited from
the Conduit base class. In addition, they also ex-
tend the base class interface by supplying operations that
implement their particular mechanisms. For example, a
Virtual Circuit Conduit provides an interface for
managing end-to-end “sliding window” flow control. It also
specifies other properities associated with virtual circuit pro-
tocols such as reliable, in-order, unduplicated data delivery.
These two subclasses are themselves used as base classes
for further specializations such as the TCP Conduit and
Ethernet Conduit subclasses, respectively.

� Conduit Messages: All messages that flow between
Conduits have a particular type. This type indicates
the contents of a message (e.g., its header and data for-
mat) and specifies the operations that may be performed on
the message. Messages are derived from a C++ base class
that provides the foundation for subsequent inherited sub-
classes. Different message subclasses are associated with
the different Conduit subclasses that represent different
network protocols. For example, the IP Message and
TCP Message subclasses correspond to theIP Conduits
and TCP Conduits, respectively. Conduit Message
subclasses may also encapsulate other messages. For in-
stance, an IP message may contain a TCP, UDP, or ICMP
message in its data portion.

� Conduit Addresses: Conduit Addresses indicate
where to deliver Conduit Messages. The three main
types of Conduit Addresses are explicit, implicit, and
embedded. Explicit addresses identify entities that have a
“well-known” format (such as IP addresses). Implicit ad-
dresses, on the other hand, are “keys” that identify particular
session control blocks associated with active network con-
nections. For example, a socket descriptor in BSD UNIX is
an implicit address that references a session control block.
Finally, an embedded address is an explicit address that forms
part of a message header. For example, the fixed-length, 14
byte Ethernet headers are represented as embedded addresses
since passing a separate explicit address object is neither time
nor space efficient.

The Conduit is implemented in user-space and the relation-
ship of processes toConduits andConduit Messages
is a hybrid between message-based and task-based process
architectures. Messages are escorted through the Conduit
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Process Architecture (1) LWP, (2) hybrid (process-per-buffer)
VM Remapping none
Event Management ND

Message Buffering (1) uniform, (2) list-based
Muxing/Demuxing (1) ND, (2) layered, (3) ND, (4) ND
Flow Control ND

Table 5: Conduit Profile

protocol graph via “walker-processes,” which are similar to
the x-kernel “process-per-message” mechanism. Depending
on certain conditions, a walker process escorts outgoing mes-
sages most of the way up or down a protocol graph. However,
when a message crosses an address space boundary or must
be stored in a buffer due to flow control, it remains there
until it is moved to an adjacent Conduit. This movement
may result from either (1) a daemon process residing in the
Conduit that buffered the message or (2) another process
that knows how to retrieve the message from the flow control
buffer. In general, the number of processes required to escort
a message through the chain of Conduits corresponds to the
number of flow control buffers between the application and
network interface layer.

4.2 Transport System Comparisons

This section compares and contrasts the four surveyed trans-
port systems using the taxonomy dimensions and alterna-
tives presented in Table 1. Section 4.2.1 focuses on the
kernel architecture dimensions described in Section 3.1 and
Section 4.2.2 focuses on the protocol family architecture di-
mensions described in Section 3.2.

4.2.1 Comparison of Kernel Architecture Dimensions

The Process Architecture Dimension: The surveyed
transport systems exhibit a range of process architectures.
The conventional System V STREAMS implementation uses
a variant of the task-based process architecture known as a
“process-per-module” approach. However, as described in
Section 4.1.1, the standard System V STREAMS approach
does not associate a heavy-weight OS process per module in
an effort to reduce context switching overhead and minimize
kernel state information required for process management.

The x-kernel and BSD UNIX utilize variants of a message-
based process architecture. The x-kernel supports highly-
layered protocol graphs that use a “process-per-message” ap-
proach that is tuned to avoid excessive context switching and
IPC overhead. BSD UNIX uses a message-based approach
that behaves differently depending on whether messages are
flowing “up” or “down” through a protocol graph. For ex-
ample, BSD allows multiple processes into the kernel for
outgoing messages, but permits only one process to handle
incoming messages.

The Conduit uses a “process-per-buffer” approach, which

is a hybrid between “process-per-message” and “process-per-
module.” Each Conduit containing a flow control buffer
may be associated with a separate light-weight process.

The Virtual Memory Remapping Dimension: Recent
versions of x-kernel provide virtual memory remapping [45]
for transferring messages between application process and
the kernel. The Conduit, System V STREAMS and BSD
UNIX, on the other hand, do not generally provide this sup-
port.

The Event Management Dimension: BSD UNIX stores
pointers to subroutines in a linked-list callout queue. These
preregistered subroutines are called when a timer expires.
System V, on the other hand, maintains a heap-based callout
table, rather than a sorted list or array. The heap-based imple-
mentation outperforms the linked-list approach under heavy
loads [49]. The x-kernel uses timing wheels [48] instead of
callout lists or heaps.

4.2.2 Comparison of Protocol Family Architecture Di-
mensions

Compared with the other surveyed transport systems, the
x-kernel is generally more comprehensive in supplying the
interfaces and mechanisms for its protocol family architec-
ture components. For example, it provides uniform interfaces
for operations that manage the protocol, session, and mes-
sage objects comprising its highly-layered protocol graphs.
In addition, it also specifies mechanisms for event manage-
ment and multiplexingand demultiplexingactivities. System
V STREAMS specifies interfaces for the primary STREAM
components, along with certain operations involving layer-
to-layer flow control. BSD UNIX and the Conduit, on the
other hand, do not systematically specify the session, de-
multiplexing, and flow control mechanisms in their protocol
family architecture.

The Message Management Dimension: Both System V
STREAMS messages and BSD mbufs use a linear-list-based
approach. In contrast, the x-kernel uses a DAG-based ap-
proach that separates messages into “header stacks” and “data
graphs.” The x-kernel uses this more complex DAG-based
message manager to handle certain requirements of highly-
layered protocol graphs (such as minimizing the amount of
memory-to-memory copying between protocol layers).

The Multiplexing and Demultiplexing Dimension: The
four surveyed transport systems possess a wide range of mul-
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tiplexing and demultiplexing strategies. The x-kernel pro-
vides the most systematic support for these operations. It
provides a map manager that uses a hash table mechanism
with a single-item cache. The other transport systems provide
less systematic and non-uniform mechanisms.

In particular, System V STREAMS and the Conduit do
not define a standard multiplexing and demultiplexing inter-
face. Moreover, for outgoingmessages, the Conduit involves
an extra multiplexing operation compared to the x-kernel
scheme. In the x-kernel, a single operation transfers out-
going messages from a higher-layer session object down to
lower-layer session object. A Conduit, on the other hand,
requires two operations to send a message: (1) it locates the
appropriate session connection descriptor associated with the
lower-level Conduit and (2) then passes the message down
to that associated Conduit.

The BSD UNIX multiplexing and demultiplexing mech-
anisms differ depending on which protocol component and
protocol family are involved. For instance, its IP imple-
mentation uses the 8-bit IP message type-of-service field to
index into an array containing 256 entries that correspond to
higher-layer protocol control structures. On the other hand,
its TCP implementation uses sequential search with a one-
item cache to demultiplex incoming messages to the appro-
priate connection session. As described in Section 3.2.2, this
implementation is inefficient when application data arrival
patterns do not form message-trains [55].

The Layer-to-Layer Flow Control Dimension: With the
exception of System V STREAMS, the surveyed transport
systems do not provide uniform layer-to-layer flow control
mechanisms. Each STREAM module contains high- and
low-watermarks that manage flow control between adjacent
modules. Downstream flow control operates from the “bot-
tom up.” If all STREAM modules on a Stream cooperate,
it is possible to control the amount and the rate of messages
by exerting “back-pressure” up a stack of STREAM modules
to a user process. For example, if the network becomes too
congested to accept new messages (or if messages are being
sent by a process faster than they are transmitted), STREAM
driver queues fill up first. If messages continue flowing from
upstream modules, the first module above the driver that has
a service subroutine will fill up next. This back-pressure
potentially propagates all the way up to the STREAM head,
which then blocks the user process.

In BSD UNIX, flow control occurs at several locations in
the protocol family architecture. The socket level flow con-
trol mechanism uses the high- and low-watermarks stored in
the socket data structure. If a process tries to send more
data than is allowed by a socket’s highwater mark, the BSD
kernel puts the process to sleep. Unlike System V, however,
BSD UNIX has no standard mechanism for applying back-
pressure between protocol components such as TCP and IP.
At the network interface layer, queues are used to buffer
messages between the network adapters and the lowest-level
protocol (e.g., IP, IDP, or CLNP). The queues have a max-
imum length that serves as a simple form of flow control.

Subsequent incoming messages are dropped if these queues
become full.

The x-kernel and the Conduit provide less systematic flow
control support. The x-kernel uses a coarse-grained, per-
process flow control by discarding incoming messages if
there are no light-weight processes available to shepard them
up the protocol graph. The Conduit does not provide a stan-
dard mechanism to manage flow control between modules
in a given stack of Conduits. Each Conduit passes a
message up or down to its neighbor. If the neighbor is unable
to accept the message, the operation either blocks or returns
an error code (in which case the caller may either discard
the message or retain it for subsequent retransmission). This
approach allows each Conduit to determine whether it is a
“message-discarding” entity or a “patiently-blocking” entity.

5 Summary

This paper examines the major levels of abstraction in the
transport system architecture. A taxonomy of six key trans-
port system mechanisms is presented and used to compare
different design alternatives found in four existing commer-
cial and experimental operating systems. Our research group
at University of California, Irvine is currently using this tax-
onomy to guide the development of a highly modular trans-
port system development environment called called ADAP-
TIVE [61].

ADAPTIVE is an integrated collection of communication-
related C++ components [62] that may be combined via inher-
itance, template instantiation, and object composition. These
components help control for factors (such as concurrency
control schemes, protocol functionality, and application traf-
fic characteristics) that significantly affect transport system
performance in a shared memory, symmetric multi-processor
environment [54]. We are building ADAPTIVE to facilitate
experimentation with various strategies for developing trans-
port systems that operate efficiently across high-performance
networks.

Based upon our experience with transport systems, com-
bined with our survey of research literature and existing sys-
tems, we view the following as important open research is-
sues pertinent to the development of transport system archi-
tectures:

� Which transport system levels (e.g., application inter-
face, session architecture, protocol family architecture,
kernel architecture) incur the most communication per-
formance overhead?

� Which choices from among the taxonomy dimensions
and alternatives improve the overall communication per-
formance? For example, which process architectures re-
sult in the highest performance? Likewise, what combi-
nations of application requirements and network charac-
teristics are most suitable for different transport system
profiles?
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� How will the performance bottlenecks shift as the
boundary between hardware and software changes? For
instance, the high cost of message management oper-
ations such as fragmentation and reassembly may be
greatly reduced if they are performed in hardware, as
proposed for ATM.

� Which transport system profiles are best suited for mul-
timedia applications running in high-performance net-
work environments? Moreover, what are the appro-
priate design strategies and implementation techniques
required to provide integrated support for multimedia
applications that run on general-purpose workstation
operating systems?

Much additional empirical research is necessary to address
these research questions adequately. We hope this paper helps
to clarify essential issues and relationships that arise when
designing high-performance transport system architectures.
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