
26.11.1999 Idioms.doc

Synchronization Patterns 1

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

1.1 Synchronization Patterns

The performance, responsiveness, and design of many applications
can benefit from the use of concurrency. For example, different ob-
jects or functions in an application can run concurrently in different
threads in order to block independently and simplify program struc-
ture. Moreover, if multiple processors are available, these threads can
exploit true parallelism.

Concurrent programming is often more challenging than sequential
programming, however. Many of these challenges arise from the need
to serialize access to shared resources. In particular, threads that run
concurrently can access the same other objects or variables simulta-
neously and potentially corrupt these objects' and variables' internal
state. Therefore, code that should not execute concurrently in objects
or functions can be serialized by a critical section. A critical section is
a sequence of instructions that obeys the following invariant: while
one thread or process is executing in the critical section, no other
thread or process can execute in the same critical section [Tan95].

The conventional way to implement a critical section in object-
oriented programs is to hard-code some type of lock object into a class
or component. For instance, a mutual exclusion (mutex) object is a
type of lock that must be acquired and released serially. Thus, if
multiple threads attempt to acquire the mutex simultaneously, only
one thread will succeed. The others must wait until the mutex is
released [Tan92], after which all waiting threads will compete again
for the lock. Other types of locks, such as semaphores and readers/
writer locks, use a similar acquire/release protocol [McK95b].

Unfortunately, the following two drawbacks arise from adhering to
such conventional programming techniques for critical sections.

• Error-prone. Explicitly acquiring a lock before entering a critical
section and explicitly releasing a lock when exiting a critical section
can be problematic. In particular, if a critical section has multiple
return paths, the lock must be released explicitly in all of them.
This use case is a common source of subtle programming errors,
because it is easy to forget to release a lock in one of the return
paths. If this happens, deadlock will occur when subsequent
threads entering the critical section block indefinitely.

2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

• Inflexible and inefficient. Depending on the environment in which
an application runs, performance requirements may necessitate
that different types of locks be used to implement critical sections.
For example, when running an application that originally used a
mutex on large-scale multi-processor platforms, performance may
be increased by changing the locking mechanism to a readers/
writer lock. This type of lock can improve performance by allowing
multiple reader threads to access a shared resource in parallel.

A number of patterns and language-specific idioms have been discov-
ered [McK95b] that provide solutions to these and other problems re-
lated to synchronizing concurrent objects and functions. This section
presents four common synchronization patterns and idioms. The first
two address fundamental aspects of locking, that is, effective lock ac-
quisition/release and flexible variation of locking strategies:

• The Scoped Locking C++ idiom (229), applies Bjarne Stroustrup’s
‘Object-Construction-is-Resource-Acquisition’ [Str98] technique to
ensure that a lock is acquired automatically when control enters a
scope and the lock is released automatically when control leaves
the scope, regardless of the return path out of the scope.

• The Strategized Locking pattern (237) is a specialization of the
Strategy pattern [GHJV95] that parameterizes the synchronization
mechanisms used in a component to protect its critical sections
from concurrent access.

When implemented in C++, the Strategized Locking pattern typically
exploits the Scoped Locking idiom. The other two patterns described
in this section help improve the robustness and efficiency of synchro-
nization mechanisms in the following ways:

• The Thread-Safe Interface pattern (249) minimizes locking
overhead and ensures that intra-component method calls do not
incur ‘self-deadlock’ by trying to reacquire a lock that is already
held by the component.

• The Double-Checked Locking Optimization pattern (257) reduces
contention and synchronization overhead whenever critical sec-
tions of code must acquire locks in a thread-safe manner just once
during program execution.

All four patterns and idioms are used to enhance the implementa-
tions of patterns presented in Section 2.6, Concurrency Patterns.

26.11.1999 Idioms.doc

Scoped Locking 3

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Scoped Locking

The Scoped Locking C++ idiom ensures that a lock is acquired when
control enters a scope and the lock is released automatically when
control leaves the scope.

Also Known As Synchronized Block, Object-Construction-is-Resource-Acquisition
[Str98]1, Guard

Example Commercial Web servers typically maintain a ‘hit count’ component
that records how many times each URL is accessed by clients over a
period of time. To reduce latency, a Web server process does not
maintain the hit counts in a file on disk but rather in a memory-
resident table. Moreover, to increase throughput, Web server
processes are often multi-threaded [HS98]. Therefore, public
methods in the hit count component must be serialized to prevent
threads from corrupting the state of its internal table as hit counts
are updated concurrently.

One way to serialize access to a hit count component is to acquire and
release a lock in each public method explicitly. For instance, the
following example uses the Thread_Mutex defined in the Wrapper
Facade pattern (25) to serialize access to critical sections in the
methods of a C++ Hit_Counter class that implements a Web server’s
hit count component.

class Hit_Counter {
public:

// Increment the hit count for a URL pathname.
int increment (const char *pathname) {

// Acquire lock to enter critical section.
lock_.acquire ();
Table_Entry *entry = lookup_or_create (pathname);
if (entry == 0) {

// Something’s gone wrong, so bail out.
lock_.release ();

1. The Scoped Locking idiom is a specialization of Stroustrup’s ‘Object-
Construction-is-Resource-Acquisition’ idiom [Str98] that is applied to locking. We
include this idiom here to keep the book self-contained and to illustrate how
Stroustrup’s idiom can be applied to concurrent programs.

4

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

// Return a ‘failure’ value.
return -1;

}
else

// Increment the hit count for this pathname.
entry->increment_hit_count ();

// Release lock to leave critical section.
lock_.release ();
// ...

}
// Other public methods omitted.

private:
// Lookup the table entry that maintains the hit count
// associated with <pathname>, creating the entry if
// it doesn’t exist.
Table_Entry * lookup_or_create (const char *pathname);

// Serialize access to the critical section.
Thread_Mutex lock_;

};

Although the C++ code example shown above works, the Hit_Count
implementation is unnecessarily hard to develop and maintain. For
instance, maintenance programmers may forget to release the lock_
on all return paths out of the increment() method. Moreover,
because the implementation is not exception-safe, lock_ will not be
released if a later version throws an exception or calls a helper
method that throws an exception [Mue96]. The first source of errors
could occur if a maintenance programmer revises the else branch of
the increment() method to check for a new failure condition, as
follows:

else if (entry->increment_hit_count () == -1)
return -1; // Return a ‘failure’ value.

Likewise, the lookup_or_create() method also might be changed to
throw an exception if an error occurs. Unfortunately, both of these
modifications will cause the increment() method to return to its
caller without releasing the lock_ . If the lock_ is not released,
however, the Web server process will hang when other threads block
indefinitely trying to acquire the lock_ . Moreover, if these error cases
occur infrequently, the problems with this code may not show up
during system testing.

Context A concurrent application containing shared resources that are
manipulated concurrently by multiple threads.

26.11.1999 Idioms.doc

Scoped Locking 5

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Problem Locks should always be acquired and released properly when control
enters and leaves critical sections, respectively. If programmers must
acquire and release locks explicitly, however, it is hard to ensure the
locks are released in all paths through the code. For instance, in C++
control can leave a scope due to return, break, continue, or goto
statements, as well as from an unhandled exception being propagated
out of the scope.

Solution Define a guard class whose constructor automatically acquires a lock
when control enters a scope and whose destructor automatically
releases the lock when control leaves the scope. Instantiate instances
of the guard class to acquire/release locks in method or block scopes
that define critical sections.

Implementation The implementation of the Scoped Locking idiom is straightforward.

Define a guard class that acquires and releases a particular type of
lock automatically within a method or block scope. The constructor of
the guard class stores a pointer or reference to the lock and then
acquires the lock before the critical section is entered. The destructor
of this class uses the pointer or reference stored by the constructor to
release the lock automatically when leaving the scope of the critical
section. Due to the semantics of C++ destructors, guarded locks will
be released even if C++ exceptions are thrown from within the critical
section.

➥ The following class illustrates a guard designed for the
Thread_Mutex developed in the implementation section of the
Wrapper Facade pattern (25):

class Thread_Mutex_Guard {
public:

// Store a pointer to the lock and acquire the lock.
Thread_Mutex_Guard (Thread_Mutex &lock)

: lock_ (&lock) { owner_= lock_->acquire (); }

// Release the lock when the guard goes out of scope.
~Thread_Mutex_Guard (void) {

// Only release the lock if it was acquired
// successfully, i.e., -1 indicates that
// <acquire> failed..
if (owner_ != -1)

lock_->release ();
}

6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

private:
// Pointer to the lock we’re managing.
Thread_Mutex *lock_;

// Records if lock_ is currently held by this object.
int owner_;

}; ❏

A pointer or reference to a lock, rather than a lock object, should be
used in a guard class implementation. This design prevents copying
or assigning a lock, which is erroneous as discussed in the Wrapper
Facade pattern (25).

In addition, it is useful to add a flag, such as the owner_ flag in the
Thread_Mutex_Guard example above, that indicates whether or not
a guard acquired the lock successfully. The flag can also indicate
failures that arise from 'order of initialization bugs' if static/global
locks are used erroneously [LGS99]. By checking this flag in the
guard's destructor, a subtle run-time error can be avoid that would
otherwise occur if the lock was released even although it was not held
by the guard.

Example
Resolved

The following C++ code illustrates how to apply the Scoped Locking
idiom to resolve the original problems with the Hit_Counter class in
our multi-threaded Web server.

class Hit_Counter {
public:

// Increment the hit count for a URL pathname.
int increment (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the
// <lock_>.
Thread_Mutex_Guard guard (lock_);
Table_Entry *entry = lookup_or_create (pathname);
if (entry == 0)

// Something’s gone wrong, so bail out.
return -1;
// Destructor releases <lock_>.

else
// Increment the hit count for this pathname.
entry->increment_hit_count ();

// Destructor for guard releases <lock_>.
}
// Other public methods omitted.

26.11.1999 Idioms.doc

Scoped Locking 7

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

private:
// Serialize access to the critical section.
Thread_Mutex lock_;
// ...

};

In this solution the guard ensures that the lock_ is acquired and
released automatically as control enters and leaves the increment()
method, respectively.

Variants Explicit accessors. One drawback with the Thread_Mutex_Guard
interface described in the Implementation section is that it is not
possible to release the lock explicitly without leaving the method or
block scope. To handle these use cases, a variant of the Scoped
Locking idiom can be defined to provide explicit accessors to the
underlying lock.

➥ For instance, the following code fragment illustrates a use case
where the lock could be released twice, depending on whether the
condition in the if statement evaluates to true:

{
Thread_Mutex_Guard guard (&lock);
// Do some work ...
if (/* a certain condition holds */)

lock->release ()
// Do some more work ...
// Leave the scope.

}

To prevent this erroneous use case, we do not operate on the lock
directly. Instead, a pair of explicit accessor methods are defined in the
Thread_Mutex_Guard class, as follows:

class Thread_Mutex_Guard {
public:

// Store a pointer to the lock and acquire the lock.
Thread_Mutex_Guard (Thread_Mutex &lock)

: lock_ (&lock) {
acquire ();

}

int acquire (void) {
// If <acquire> fails <owner_> will equal -1;
owner_ = lock_->acquire ();

}

8

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

int release (void) {
// Only release the lock if it was acquired
// successfully and we haven’t released it
// already!
if (owner_ != -1) {

owner_ = -1;
return lock_->release ();

}
else

return 0;
}

// Release the lock when the guard goes out of scope.
~Thread_Mutex_Guard (void) {

release ();
}

private:
// Pointer to the lock we’re managing.
Thread_Mutex *lock_;

// Records if the lock is held by this object.
int owner_;

};

This variant exposes acquire() and release() methods that
keep track of whether the lock has been released already, and if so,
it does not release the lock in guard ’s destructor. Therefore, the
following code will work correctly:

{
Thread_Mutex_Guard guard (&lock);
// Do some work ...
if (/* a certain condition holds */)

guard.release ();
// Do some more work ...
// Leave the scope.

} ❏

Strategized Scoped Locking. Defining a different guard for each type
of lock is tedious, error-prone, and excessive, because it may increase
the memory footprint of applications or components. Therefore, a
common variant of the Scoped Locking idiom is to apply either the pa-
rameterized type or polymorphic version of the Strategized Locking
pattern (237).

Known Uses Booch Components. The Booch Components [BV93] were one of the
first C++ class libraries to use the Scoped Locking idiom for multi-
threaded C++ programs.

26.11.1999 Idioms.doc

Scoped Locking 9

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Adaptive Communication Environment (ACE) [Sch97]. The Scoped
Locking idiom is used extensively throughout the ACE object-oriented
network programming toolkit.

Threads.h++. The Rogue Wave Threads.h++ library defines a set of
guard classes that are modeled after the ACE Scoped Locking
designs.

Java defines a programming feature called a synchronized block that
implements the Scoped Locking idiom in the language.

Consequences There are two benefits of using the Scoped Locking idiom:

Increased robustness. By applying this idiom, locks will be acquired/
released automatically when control enters/leaves critical sections
defined by C++ method and block scopes. This idiom increases the ro-
bustness of concurrent applications by eliminating common pro-
gramming errors related to synchronization and multi-threading.

Decreased maintenance effort. If parameterized types or polymor-
phism is used to implement the guard or lock classes, it is straight-
forward to add enhancements and bug fixes. In such cases, there is
only one implementation, rather than a separate implementation for
each type of guard, which eliminates version-skew.

There are two liabilities of applying the Scoped Locking idiom to
concurrent applications and components:

Potential for deadlock when used recursively. If a method that uses
the Scoped Locking idiom calls itself recursively ‘self-deadlock’ will
occur if the lock is not a ‘recursive’ mutex. The Thread-Safe Interface
pattern (249) describes a technique that avoids this problem. This
pattern ensures that only interface methods apply the Scoped
Locking idiom, whereas implementation methods do not apply this
idiom.

Limitations with language-specific semantics. Because the Scoped
Locking idiom is based on a C++ language feature, it may not be
integrated with operating system-specific system calls. Therefore,
locks may not be released automatically when threads or processes
abort or exit inside of a guarded critical section.

➥ For instance, the following modification to increment() will
prevent the Scoped Locking idiom from working:

10

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

Thread_Mutex_Guard guard (&lock_);
Table_Entry *entry = lookup_or_create (pathname);
if (entry == 0)

// Something’s gone wrong, so exit the thread.
thread_exit ();
// Destructor will not be called so the
// <lock_> will not be released! ❏

As a general rule, therefore, it is inappropriate to abort or exit a
thread or process within a component. Instead, some type of
exception handling mechanism or error-propagation patterns should
be used [Mue96].

Excessive compiler warnings. The common use case of the Scoped
Locking idiom defines a guard object that is not used explicitly within
the scope because its destructor releases the lock implicitly.
Unfortunately, some C++ compilers print “statement has no effect”
warnings when guards are defined but not used explicitly within a
scope. At best, these warnings are distracting. At worst, they
encourage developers to disable certain compiler warnings, which
may mask other warnings that indicate actual problems with the
code. An effective way to handle this problem is to define a macro that
can eliminate the warnings without generating additional code.

➥ For instance, the following macro is defined in ACE [Sch97]:

#define UNUSED_ARG(arg) { if (&arg) /* null */; }

This macro can be placed after a guard to keep C++ compilers from
generating spurious warnings, as follows:

{ // New scope.
Thread_Mutex_Guard guard (lock_);
UNUSED_ARG (guard);
// ... ❏

See Also The Scoped Locking idiom is a special-case of a more general C++
idiom [Str98] where a constructor acquires a resource and a
destructor releases the resource when a scope is entered and exited,
respectively. When this idiom is applied to concurrent applications,
the resource that is acquired and released is some type of lock.

Credits Thanks to Brad Appleton for comments on the Scoped Locking idiom.

26.11.1999 Idioms.doc

Strategized Locking 11

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Strategized Locking

The Strategized Locking pattern parameterizes the synchronization
mechanisms in a component that protect its critical sections from
concurrent access.

Example A key component used to implement a high-performance Web server
is a file cache, which maps URL pathnames to memory-mapped files
[HS98]. When a client requests a URL pathname that is already
cached, the Web server can transfer the contents of the memory-
mapped file to the client directly. Thus, the Web server need not
access slower secondary storage via multiple read() and write()
operations.

A file cache implementation for a portable high-performance Web
server should run efficiently on various multi-threaded and single-
threaded operating systems. One way of achieving this portability is
to develop the following file cache classes:

These two implementations form part of a component family whose
classes differ only in their synchronization strategy. One component
in the family, represented in our example by the class
File_Cache_ST , implements a single-threaded file cache that uses
no locking. The other component in the family, represented by class
File_Cache_Thread_Mutex , implements a file cache that uses a mu-
tex to serialize multiple threads accessing the cache concurrently.
Maintaining multiple separate implementations of similar file cache

// A single-threaded file cache implementation.
class File_Cache_ST {
public:

// Return a pointer to the memory-mapped file
// associated with <pathname>.
const char * lookup (const char *pathname) {

// No locking required because we are
// single-threaded.

// ... look up the file in the cache, mapping it
// into memory if it is not currently in the cache.
return file_pointer;

}
// ...

private:
//File cache implementation...

// No lock required because we are
// single-threaded.

};

// A multi-threaded file cache implementation.
class File_Cache_Thread_Mutex {
public:

// Return a pointer to the memory-mapped file
// associated with <pathname>.
const char * lookup (const char *pathname) {

// Use the Scoped Locking idiom to serialize
// access to the file cache.
Guard <Thread_Mutex > guard (lock_);

// ... look up the file in the cache, mapping it
// into memory if it is not currently in the cache.
return file_pointer;

}
// ...

private:
//File cache implementation...

// Synchronization strategy.
Thread_Mutex lock_;

};

12

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

components can be tedious, however. In particular, future enhance-
ments and fixes, such as optimizing algorithms or removing defects,
must be carried out consistently in each component implementation.

Context An application or system where reusable components must run
efficiently in a variety of different concurrency use cases.

Problem Components that run in multi-threaded environments must protect
critical sections of their code from concurrent access by multiple cli-
ents. When integrating synchronization mechanisms with component
functionality the following two forces must be resolved:

• Different applications may require different synchronization strat-
egies, such as mutexes, readers/writer locks, or semaphores
[McK95b]. Therefore, it should be possible to customize a compo-
nent’s synchronization mechanisms according to the requirements
of particular applications.

➥ In our example, the synchronization strategy is hard-coded.
Therefore, a completely new class must be written to support a file
cache implementation that uses a readers/writer lock instead of a
thread mutex to increase performance on large-scale multi-
processor platforms. It is time-consuming, however, to customize
an existing file cache class to support new, more efficient
synchronization strategies. ❏

• It should be straightforward to add new enhancements and bug
fixes. In particular, to avoid version-skew, changes should apply
consistently and automatically to all component family members.

➥ If there are multiple copies of the same basic file cache
component, version-skew is likely to occur because changes to one
component may be applied inconsistently to other component
implementations. Moreover, applying each change manually is
error-prone and non-scalable. ❏

Solution Parameterize a component’s synchronization aspects by making them
‘pluggable’ types. Each type objectifies a particular synchronization
strategy, such as a mutex, readers/writer lock, or semaphore. Define
instances of these pluggable types as objects contained within a
component, which can use these objects to synchronize its method
implementations efficiently.

26.11.1999 Idioms.doc

Strategized Locking 13

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Implementation The Strategized Locking pattern can be implemented using the
following steps.

1 Define the component interface and implementation. The purpose of
this step is to define the component’s interface and implement its
methods efficiently without concern for synchronization aspects.

➥ The following class defines the File_Cache interface and imple-
mentation.

class File_Cache {
public:

const char *lookup (const char *pathname);
// ...

private:
// data members and private methods go here...

}; ❏

2 Determine which component synchronization aspects can vary and
update the component interface and implementation to strategize
these aspects. Many reusable components have relatively simple
synchronization aspects that can be implemented using common
locking strategies, such as mutexes and semaphores. These types of
synchronization aspects can be strategized in a uniform manner.

There are two ways to strategize locking mechanisms: polymorphism
and parameterized types. In general, parameterized types should be
used when the locking strategy is known at compile-time. Likewise,
polymorphism should be used when the locking strategy is not known
until run-time. As usual, the trade-off is between the efficient run-
time performance of parameterized types versus the potential for run-
time extensibility with polymorphism.

Once synchronization mechanisms are strategized, components can
use these mechanisms either by explicitly acquiring/releasing a lock
when entering/leaving a critical section or by applying the Scoped
Locking idiom (205) to acquire/release the lock automatically. If the
Scoped Locking idiom (237) is applied, this implementation step
involves the following three sub-steps.

14

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

2.1 Define an abstract interface for the locking mechanisms. To configure
a component with different locking mechanisms, all concrete
implementations of these mechanisms must employ an abstract
interface with common signatures for acquiring and releasing locks
based on either polymorphism or parameterized types.

• Polymorphism. In this approach, define an polymorphic lock object
that contains dynamically bound acquire() and release()
methods. Derive all concrete locks, such as mutexes or sema-
phores, from this base class and override its methods to define a
concrete locking strategy, as outlined in Implementation step 4.

➥ To implement a polymorphic lock object for our file cache
example, we first define an abstract locking class with virtual
acquire() and release() methods, as follows:

class Lock {
public:

// Acquire the lock.
virtual int acquire (void) = 0;
// Release the lock.
virtual int release (void) = 0;

// ...
}; ❏

• Parameterized types. In this approach we must ensure that all
concrete locks employ the same signature for acquiring and
releasing locks. The usual way to ensure this is to implement the
concrete locks using the Wrapper Facade pattern (25).

2.2 Use the Scoped Locking Idiom (229) to define a guard class that is
strategized by its synchronization aspect. This design follows the
Strategy Pattern [GHJV95], where the guard class serves as the
context holding a particular lock and the concrete locks provide the
strategies. The Scoped Locking idiom can be implemented either with
polymorphism or with parameterized types.

• Polymorphism. In this approach, pass a polymorphic lock object to
the guard's constructor and define a instance of this lock object as
a private data member. To acquire and release the lock with which
it is configured, the implementation of the guard class can the
polymorphic Lock base class defined in the previous sub-step.

26.11.1999 Idioms.doc

Strategized Locking 15

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

➥ A Guard class that controls a polymorphic lock could be
defined as follows:

class Guard {
public:

// Store a pointer to the lock and acquire the lock.
Guard (Lock &lock): lock_ (&lock) {

owner_ = lock_->acquire ();
}
// Release the lock when the guard goes out of scope.
~Guard (void) {

// Only release the lock if it was acquired
// successfully, i.e., -1 indicates <acquire>
// failed.
if (owner_ != -1) lock_->release ();

}

private:
// Pointer to the lock we’re managing.
Lock *lock_;
// Records if the lock was acquired successfully.
int owner_;

}; ❏

• Parameterized types. In this approach, define a template guard
class that is parameterized by the type of lock that will be acquired
and released automatically.

➥ The following illustrates a Guard class that is strategized by a
LOCK template parameter:

template <class LOCK> class Guard {
public:

// Store a pointer to the lock and acquire the lock.
Guard (LOCK &lock): lock_ (&lock) {

owner_ = lock_->acquire ();
}
// Release the lock when the guard goes out of scope.
~Guard (void) {

// Only release the lock if it was acquired
// successfully, i.e., -1 indicates <acquire>
// failed.
if (owner_ != -1) lock_->release ();

}

private:
// Pointer to the lock we’re managing.
LOCK *lock_;
// Records if the lock is held by this object.
int owner_;

}; ❏

16

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

2.3 Update the component interface and implementation. The guard class
is used in the implementation of the component to protect critical
sections within its methods, according to the Scoped Locking Idiom
(229). Depending on whether the polymorphic or parameterized type
approach is used, the lock can be passed to the component either as
a parameter in its constructor or by adding a lock template parameter
to the component declaration. In either case, the lock passed to a
component must follow the signature expected by the guard class, as
discussed in the previous sub-step.

➥ The version of our file cache component that takes a
polymorphic lock can be modified as follows:

class File_Cache {
public:

// Constructor
File_Cache (Lock &l)

: lock_ (l) {}

// A method.
const char * lookup (const char *pathname) {

// Use the Scoped Locking idiom to
// acquire and release the <lock_> automatically.
Guard guard (lock_);
// Implement the lookup() method.

}

// ...
private:

// The polymorphic strategized locking object.
Lock *lock_;

// Other File_Cache data members and methods go
// here...

};

Likewise, the templatized version of the file cache can be defined as
follows:

template <class LOCK> class File_Cache {
public:

// A method.
const char * lookup (const char *pathname) {

// Use the Scoped Locking idiom to
// acquire and release the <lock_> automatically.
Guard<LOCK> guard (lock_);
// Implement the lookup() method.

}
// ...

26.11.1999 Idioms.doc

Strategized Locking 17

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

private:
// The parameterized type strategized locking object.
LOCK lock_;

// Other File_Cache data members and methods go
// here...

};

If your C++ compiler supports default template arguments, it may be
useful to add a default LOCK to handle the most common use case.
For instance, we can make the default LOCK be a readers/writer lock,
as follows:

template <class LOCK = RW_Lock > class File_Cache
{ /* ... */ } ❏

3 Revise the component implementation to avoid deadlock and remove
unnecessary locking overhead. If intra-component method
invocations occur developers must design their component
implementation carefully to avoid self-deadlock and unnecessary
synchronization overhead. A straightforward technique that prevents
these problems is the Thread-Safe Interface pattern (249).

4 Define a family of locking strategies with uniform interfaces that can
support various application-specific concurrency use cases. Common
locking strategies include recursive and non-recursive mutexes,
readers/writer locks, semaphores, and file locks. If the appropriate
synchronization mechanism does not already exist, or the existing
mechanism has an incompatible interface, use the Wrapper Facade
pattern (25) to implement or adapt it to conform to the signatures
expected by the component’s synchronization aspects.

➥ In addition to the Thread_Mutex defined in the Wrapper Facade
pattern (25), a surprisingly useful locking strategy is the Null_Mutex .
This class defines an efficient locking strategy for single-threaded
applications and components, as follows:

class Null_Mutex {
public:

Null_Mutex (void) { }
~Null_Mutex (void) { }
int acquire (void) { return 0; }
int release (void) { return 0; }

};

All methods in Null_Mutex are empty inlined functions that can be
removed completely by optimizing compilers. This class is an example

18

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

of the Null Object pattern [PLoPD3], which simplifies applications by
defining a ‘no-op’ placeholder that does not require conditional
statements in the component’s implementation. An example use of
Null_Mutex and other locking strategies appears in the Example
Resolved section below. ❏

When applying the polymorphic approach, implement the locking
strategies as subclasses of the abstract class Lock , as discussed in
Implementation step 2. These subclasses can either implement a
particular locking mechanism directly or they can wrap an existing
non-polymorphic locking mechanism.

➥ For instance, the following class wraps the Thread_Mutex from
the Implementation section of the Wrapper Facade pattern (25),
thereby connecting it to our polymorphic lock hierarchy, as follows:

class Thread_Mutex_Lock : public Lock {
public:

// Acquire the lock.
virtual int acquire (void) {return lock_.acquire ();}

// Release the lock.
virtual int release (void) {return lock_.release ();}

private:
// Concrete lock type.
Thread_Mutex lock_;

}; ❏

Example
Resolved

The following illustrates how to apply the parameterized type form of
the Strategized Locking pattern to implement a Web server file cache
that is tuned for various single-threaded and multi-threaded concur-
rency use cases.

• Single-threaded file cache.

typedef File_Cache<Null_Mutex> FILE_CACHE;

• Multi-threaded file cache using a thread mutex.

typedef File_Cache<Thread_Mutex> FILE_CACHE;

• Multi-threaded file cache using a readers/writer lock.

typedef File_Cache<RW_Lock> FILE_CACHE;

• Multi-threaded file cache using a C++ compiler that supports default
template parameters, with the lock defaulting to a readers/writer
lock.

typedef File_Cache<> FILE_CACHE;

26.11.1999 Idioms.doc

Strategized Locking 19

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Note how in each of these configurations the File_Cache interface
and implementation require no changes. This flexibility stems from
the Strategized Locking pattern, which abstracts synchronization
aspects into a ‘pluggable’ parameterized types. Moreover, the details
of locking have been strategized via a typedef . Therefore, it is
straightforward to define a FILE_CACHE object that does not expose
synchronization aspects to applications, as follows:

FILE_CACHE file_cache;

Variants. Bridge strategy. Unfortunately, configuring the polymorphic file
cache in Implementation step 2.3 differed from configuring the
templatized file cache because a polymorphic lock implemented as a
pointer cannot be passed as a parameter to the templatized
File_Cache and Guard classes. Instead, we need a 'real' object,
rather than a pointer to an object

Fortunately, the Bridge pattern [GHJV95] can help us implement a
family of locking strategies that is uniformly applicable for both
polymorphic and parameterized type approaches. To apply this bridge
strategy variant, we simply define an additional abstraction class that
encapsulates, and can be configured with, a polymorphic lock. An
instance of this abstraction class can then be passed uniformly to
both polymorphic and templatized components.

➥ Consider the hierarchy of polymorphic locks defined in
Implementation step 2 as being a Bridge implementor class hierarchy.
The following abstraction class then can be used to encapsulate this
hierarchy:

class Lock_Abstraction {
public:

// Constructor stores a reference to the base class.
Lock_Abstraction (Lock &l): lock_ (l) {};

// Acquire the lock by forwarding to the
// polymorphic acquire() method.
int acquire (void) { return lock_.acquire (); }

// Release the lock by forwarding to the
// polymorphic release() method.
int release (void) { return lock_.release (); }

private:
// Maintain a reference to the polymorphic lock.
Lock &lock_;

};

20

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

Note how this design allows us to initialize both our polymorphic and
parameterized File_Cache and Guard classes with a single
Lock_Abstraction class that can be configured with a concrete lock
from our hierarchy of locking mechanisms. ❏

As a result of using this variation of Strategized Locking, the family of
locking mechanisms becomes more reusable and easier to apply
across applications. Be aware, however, that while this scheme is
flexible, it is also more complicated to implement and therefore
should be used with care.

Known Uses Aspect-Oriented Programming (AOP) [KLM+97]. AOP is a general
methodology for systematically strategizing aspects that vary in
applications and components.

Adaptive Communication Environment (ACE) [Sch97]. The Strate-
gized Locking pattern is used extensively throughout the ACE object-
oriented network programming toolkit. Most ACE containers and col-
lection components can be strategized by synchronization aspects us-
ing parameterized types.

Booch Components. The Booch Components [BV93] were one of the
first C++ class libraries to parameterize locking strategizes with
templates.

ATL Wizards. The Microsoft ATL Wizard in Visual Studio uses the
parameterized type implementation of Strategized Locking, complete
with default template parameters. In addition, it implements a class
similar to the Null_Mutex . Thus, if a COM class is implemented as a
single-threaded apartment a no-op lock class is used, whereas in
multi-threaded apartments a ‘real’ recursive mutex is used.

Consequences There are three benefits of applying the Strategized Locking pattern
to reusable components:

Enhanced flexibility and customization. Because the synchronization
aspects of components are strategized, it is straightforward to config-
ure and customize a component for particular concurrency use cases.
If no suitable locking strategy is available for a new concurrency use
case, the family of locking strategies can be extended without affect-
ing existing code.

Decreased maintenance effort for components. It is straightforward to
add enhancements and bug fixes to a component because there is

26.11.1999 Idioms.doc

Strategized Locking 21

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

only one implementation, rather than a separate implementation for
each concurrency use case. This centralization of concerns helps
minimize version-skew.

Improved reuse. A particular component becomes less dependent on
specific synchronization mechanisms. Thus, it becomes more reus-
able because its locking strategies can be configured.

There is a liability of applying the Strategized Locking pattern to
reusable components:

Obtrusive locking. If templates are used to parameterize locking
aspects this will expose the locking strategies to application code.
This design can be obtrusive, particularly for compilers that do not
support templates efficiently or correctly. One way to avoid this
problem is to apply the polymorphic approach to strategize
component locking behavior.

Overengineering: Externalizing the locking mechanism by placing it in
a component's interface may actually provide too much flexibility for
certain use cases. For instance, inexperienced developers may try to
parameterize a component with the wrong type of lock, which can
result in confusing compile-time or run-time behavior. Likewise, only
a single type of synchronization mechanism may ever be used for a
particular type of component, in which case the power of the
Strategized Locking pattern is unnecessary. In general, this pattern
is most effective when practical experience reveals that a component's
behavior is orthogonal to its locking strategy, and that locking
strategies can indeed vary in semantically meaningful and efficient
ways in different use cases.

See Also The Scoped Locking idiom (237) uses Strategized Locking to parame-
terize various synchronization strategies into its guard class.

The main synchronization mechanism in Java is the monitor object
(299). In particular, Java does not expose ‘conventional’ concurrency
control mechanisms, such as mutexes and semaphores, to
application developers. Therefore, the Strategized Locking pattern
need not be applied to Java directly. It is possible, however, to
implement different concurrency primitives, such as mutexes,
semaphores, and readers/writer locks in Java. The implementation of
these primitives can then be used as locking strategies to support
various application-specific concurrency uses cases. Due to Java’s

22

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

lack of parameterized types, only the polymorphic approach of
Strategized Locking pattern could be used to configure different
synchronization strategies. In this case, Java implementations of this
pattern will be similar to the C++ implementations described in this
pattern.

Credits Thanks to Brad Appleton for comments on this pattern and Prashant
Jain for his contribution to how this pattern applies to Java.

26.11.1999 Idioms.doc

Thread-Safe Interface 23

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Thread-Safe Interface

The Thread-Safe Interface pattern ensures that intra-component
method calls avoid self-deadlock and minimize locking overhead in
concurrent applications whose components maintain shared state.

Example When designing thread-safe components, developers must be careful
to avoid self-deadlock and unnecessary locking overhead when intra-
component method calls occur. For example, consider a more
complete implementation of the File_Cache component that was
outlined in the Strategized Locking pattern (237):

template <class LOCK> class File_Cache {
public:

// Return a pointer to the memory-mapped file
// associated with <pathname>, adding
// it to the cache if it doesn’t exist.
const char * lookup (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the <lock_>.
Guard<LOCK> guard (lock_);
const char *file_pointer =

check_cache (pathname);
if (file_pointer == 0) {

// Insert the <pathname> into the cache.
// Note the intra-class <insert> call.
insert (pathname);
file_pointer = check_cache (pathname);

}
return file_pointer;

}
// Add <pathname> to the cache.
void insert (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the <lock_>.
Guard<LOCK> guard (lock_);
// ... insert <pathname> into the cache...

}
private:

// The strategized locking object.
LOCK lock_;

const char * check_cache (const char *);
// ... other private methods and data omitted...

};

24

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

This implementation of File_Cache works efficiently only when
strategized by a ‘null’ lock, such as the Null_Mutex described in the
Strategized Locking pattern (237). If, however, the File_Cache
implementation is strategized with a recursive mutex2 it will incur
unnecessary overhead when it reacquires the mutex in the insert()
method. Even worse, if it is strategized with a non-recursive mutex,
when the lookup() method calls the insert() method the code will
‘self-deadlock’. This self-deadlock occurs because insert() tries to
reacquire the LOCK that has already been acquired by lookup() .

Thus, it is effectively counter-productive to apply the Strategized
Locking pattern to the implementation of File_Cache shown above
because there are so many restrictions and subtle problems that can
arise. Yet, the File_Cache abstraction can still benefit from the
flexibility and customization provided by Strategized Locking.

Context Components in a multi-threaded application that contain intra-
component method calls.

Problem Multi-threaded components typically contain multiple publically ac-
cessible interface methods and private implementation methods that
can alter component state. To prevent race conditions, a lock internal
to the component can be used to serialize interface method invoca-
tions that access its state. Although this design works fine if each
method is self-contained, component methods often call each other to
carry out their computations. If this occurs, the following forces will
be unresolved in multi-threaded components that use improper in-
tra-component method invocation designs:

• Thread-safe components should be designed to avoid ‘self-
deadlock.’ Self-deadlock can occur if one component method
acquires a non-recursive lock in the component and then calls a
different component method that tries to reacquire the same lock.

• Thread-safe components should be designed to incur only minimal
locking overhead, for example to prevent race conditions on
component state. If a recursive component lock is selected to avoid
the self-deadlock problem outlined above, however, unnecessary

2. A recursive mutex can be reacquired by the thread that has locked the mutex
without blocking the thread.

26.11.1999 Idioms.doc

Thread-Safe Interface 25

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

overhead will be incurred to acquire and release the lock multiple
times across intra-component method calls.

Solution Structure all components that process intra-component method
invocations according to the following two design conventions:

• Interface methods ‘check’. All interface methods, such as C++
public methods, should only acquire/release component lock(s),
thereby performing synchronization checks at the ‘border’ of the
component. After the lock is acquired, the interface method should
immediately forward to an implementation method, which
performs the actual method functionality. Once the
implementation method returns, the Interface method should
release the lock(s) before returning control to the caller.

• Implementation methods ‘trust’. Implementation methods, such as
C++ private and protected methods, should only perform work
when called by interface methods. Thus, they should trust that
they are called with the necessary lock(s) held and should therefore
never acquire/release lock(s). Moreover, implementation methods
should never call ‘up’ to interface methods because these methods
acquire lock(s).

By following these conventions, even components designed to use the
Strategized Locking pattern (237) can avoid self-deadlock and
minimize locking overhead.

Implementation The Thread-Safe Interface pattern can be implemented using the
following steps:

1 Determine the interface and corresponding implementation methods.
The interface methods define the public API of the component. For
each interface method, define a corresponding implementation
method.

➥ The interface and corresponding implementation methods for
the File_Cache are defined as follows:

template <class LOCK> class File_Cache {
public:

// The following two interface methods just
// acquire/release the <LOCK> and forward to
// their corresponding implementation methods.
const char * lookup (const char *pathname);
void insert (const char *pathname);

26

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

private:
// The following two implementation methods do not
// acquire/release locks and perform the actual work
// associated with managing the <File_Cache>.
const char * lookup_i (const char *pathname);
void insert_i (const char *pathname);

// ... Other implementation methods omitted ...
}; ❏

2 Program the interface and implementation methods. The bodies of the
interface and implementation methods are programmed according to
the design conventions described in the Solution section.

➥ The following implementation of the File_Cache class applies
the Thread-Safe Interface pattern to minimize locking overhead and
prevent self-deadlock in the interface and implementation methods:

template <class LOCK> class File_Cache {
public:

// Return a pointer to the memory-mapped file
// associated with <pathname>, adding
// it to the cache if it doesn’t exist.
const char * lookup (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the <lock_>.
Guard<LOCK> guard (lock_);
return lookup_i (pathname);

}

// Add <pathname> to the file cache.
void insert (const char *pathname) {

// Use the Scoped Locking idiom to
// automatically acquire and release the <lock_>.
Guard<LOCK> guard (lock_);
insert_i (pathname);

}

private:
LOCK lock_; // The strategized locking object.

// The following implementation methods do not
// acquire or release <lock_> and perform their
// work without calling any interface methods.
const char * lookup_i (const char *pathname) {

const char *file_pointer =
check_cache_i (pathname);

if (file_pointer == 0) {
// If <pathname> isn’t in the cache then

26.11.1999 Idioms.doc

Thread-Safe Interface 27

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

// insert it and look it up again.
insert_i (pathname);
file_pointer = check_cache_i (pathname);
// The calls to implementation methods
// <insert_i> and <check_cache_i> assume
// that the lock is held and perform work.

}
return file_pointer;

}
const char * check_cache_i (const char *) { /* ... */ }
void insert_i (const char *) { /* ... */ }

// ... other private methods and data omitted ...
};

Variants Thread-Safe Facade. This variant is applicable if access to a whole
subsystem or large component must be synchronized. A facade
[GHJV95] can be introduced to serve as an entry point for all client
requests. The facade’s methods correspond to the interface methods.
The classes that belong to the subsystem or component provide the
implementation methods. If these classes already have their own
internal concurrency strategies they may need to be ‘refactored’ to
avoid the nested monitor lockout problem [JS97a].

The nested monitor problem occurs when a thread acquires object X's
monitor lock, without relinquishing the lock already held on monitor
Y, thereby preventing a second thread from acquiring the monitor
lock for Y. This can lead to deadlock because after acquiring monitor
X, the first thread may wait for a condition to become true that can
only change as a result of actions by the second thread after it has
acquired monitor Y.

Note that if the subsystem or component cannot be modified, for
instance if it is a 3rd party product or legacy system, it may not be
possible to refactor the code properly to avoid nested monitor
lockouts. In this case, Thread-Safe Facade should not be applied.

Thread-Safe Wrapper Facade. This variant helps to provide synchro-
nized access to a class or function API that cannot be modified. A
wrapper facade (25) provides the interface methods, which encapsu-
late the corresponding implementation calls on the class or function
API with actions to acquire and release a lock. Thus, the wrapper fa-
cade provides a synchronization veneer that serializes access to the
methods of the class or function API. As with the Thread-Safe Facade,
if the class or function API has its own concurrency strategies, care

28

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

must be taken when applying the wrapper facade to avoid the nested
monitor lockout problem.

Known Uses Adaptive Communication Environment (ACE) [Sch97]. The
Thread-Safe Interface pattern is used extensively throughout the ACE
object-oriented network programming toolkit.

Consequences There are two benefits of applying the Thread-Safe Interface pattern
to multi-threaded components:

Increased robustness. This pattern ensures that self-deadlock does
not occur due to intra-component method calls.

Enhanced performance. This pattern ensures that no unnecessary
locks are acquired or released.

However, there are two liabilities when applying the Thread-Safe
Interface pattern to multi-threaded components:

Additional indirection and extra methods. Each interface method
requires at least one implementation method, which increases the
footprint of the component and may also add an extra level of method-
call indirection for each invocation. One way to minimize this
overhead is to inline the interface and/or the implementation
method.

Potential deadlock. The Thread-Safe Interface pattern does not
completely resolve the problem of self-deadlock by itself. For instance,
consider a client that calls an interface method on component A,
which then delegates to an implementation method that calls an
interface method on another component B. If the implementation of
component B’s method calls back on an interface method of
component A, deadlock will occur when trying to reacquire the lock
that was acquired by the first call in this chain. The Variants section
describes several solutions to this problem.

See Also The Thread-Safe Interface pattern is related to the Decorator pattern
[GHJV95], which extends an object transparently by dynamically
attaching additional responsibilities. The intent of the Thread-Safe
Interface pattern is similar, in that it attaches robust and efficient
locking strategies to make components thread-safe. The primary
difference is that the Decorator pattern focuses on attaching
additional responsibilities to objects dynamically, whereas the

26.11.1999 Idioms.doc

Thread-Safe Interface 29

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Thread-Safe Interface pattern focuses on the static partitioning of
method responsibilities in component classes.

Components designed according to the Strategized Locking pattern
(237) should employ the Thread-Safe Interface pattern because it
ensures that the component will function robustly and efficiently
regardless of the type of locking strategy that is selected.

Java implements locking at the method-level via monitor objects (299)
designated by the synchronized keyword. In Java, monitors are
recursive. Therefore, the problem of self-deadlock cannot occur as
long as developers reuse the same monitor, that is, synchronize on
the same object. However, the problem of nested monitor lockout
[JS97a] [Lea99] is common in Java and can occur if care is not taken
when using multiple nested monitors.

The problem of locking overhead depends on which virtual machine
is used. If a specific virtual machine has a poor monitor
implementation and monitors are acquired recursively the Thread-
Safe Interface pattern can be applied to improve run-time
performance in Java.

Credits Thanks to Brad Appleton for comments on this pattern. Prashant
Jain provided the discussion on the Thread-Safe Interface variants,
as well as the discussion of the ‘nested monitor lockout’ problem in
Java.

30

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

26.11.1999 Idioms.doc

Double Checked Locking Optimization 31

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Double Checked Locking Optimization

The Double-Checked Locking Optimization pattern reduces contention
and synchronization overhead whenever critical sections of code
acquire locks just once during program execution, but must be
thread-safe when locks are acquired.

Also Known As Lock Hint [Bir91]

Example The Singleton pattern ensures a class has only one instance and
provides a global point of access to that instance. The following C++
code illustrates the canonical implementation of Singleton from
[GHJV95]:

class Singleton {
public:

static Singleton *instance (void) {
if (instance_ == 0) {

// Enter critical section.
instance_ = new Singleton() ;
// Leave critical section.

}
return instance_;

}
// Other methods and members omitted.

private:
static Singleton *instance_;
// Initialized to 0 by linker.

};

Applications use the static instance() method to retrieve a pointer
to the Singleton and then invoke public methods, as follows:

Singleton::instance ()->method ();

Unfortunately, the canonical implementation of the Singleton pattern
shown above is problematic in the presence of preemptive multi-task-
ing or true hardware parallelism. For instance, if multiple preemptive
threads invoke Singleton::instance() simultaneously before it is
initialized, the Singleton’s constructor can be called multiple times if
multiple threads execute the dynamic initialization of the Singleton
within the critical section shown above. At best, this will cause a
memory leak. At worst, this will have disastrous consequences, for in-

32

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

stance, if initialization is not idempotent.3 To protect the critical sec-
tion from concurrent access we could apply the Scoped Locking idiom
(249), to acquire and release a mutex lock automatically, as follows:

class Singleton {
public:

static Singleton *instance (void) {
// Constructor of <guard> acquires
// <lock_> automatically.
Guard <Thread_Mutex > guard (lock_);

// Only one thread is allowed in the
// critical section at a time.
if (instance_ == 0)

instance_ = new Singleton ;

return instance_;
// Destructor of <guard> releases
// <lock_> automatically.

}
private:

static Thread_Mutex lock_;
static Singleton *instance_;

};

Although our Singleton implementation is now thread-safe, the addi-
tional locking overhead may be excessive. In particular, every call to
instance() now acquires and releases the lock, even though the crit-
ical section should be executed just once.

Placing the guard inside the conditional check would remove the
locking overhead, as follows.

static Singleton *instance (void) {
if (instance_ == 0) {

Guard <Thread_Mutex > guard (lock_);

// Only come here if instance_
// hasn’t been initialized yet.
instance_ = new Singleton ;

}
return instance_;

}

This solution does not provide thread-safe initialization, however,
because there is still a race condition in multi-threaded applications

3. Object initialization is idempotent if an object can be reinitialized multiple times
without harmful side-effects.

26.11.1999 Idioms.doc

Double Checked Locking Optimization 33

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

that can cause multiple initializations of Singleton . For instance,
consider two threads that simultaneously check for instance_ == 0 .
Both will succeed, one will acquire the lock via the Guard , and the
other will block. After the first thread initializes Singleton and
releases the lock, the blocked thread will obtain the lock and
erroneously initialize Singleton a second time.

Context A concurrent application containing shared resources accessed by
multiple threads.

Problem Shared resources in a concurrent application must ensure that
certain portions of their code execute serially to avoid race conditions.
A common way to avoid race conditions is to use locks, such as mu-
texes, which serialize access to the shared resources’ critical sections.
Every thread that wants to enter a critical section must first acquire
a lock. If this lock is already acquired by another thread, the thread
blocks until the lock is released and the lock can be acquired.

This serialization approach, however, can be inappropriate for objects
or components, such as singletons, that require ‘just once’ initializa-
tion. In particular, even though the critical section code in our Single-
ton example must be executed just once, during its initialization, ev-
ery method call on the singleton will acquire and release the mutex.
As shown in [PLoPD3], this straight-forward solution can incur mea-
surable performance penalties due to excessive locking overhead.

Solution Introduce a flag that provides a ’hint’ as to whether it is necessary to
execute a critical section before acquiring the lock that guards it. If
this code need not be executed, the critical section is skipped, thereby
avoiding unnecessary locking overhead. The general pseudo-code
design of this code is shown below:

// Perform first-check to evaluate ‘hint’.
if (first_time_in_flag is FALSE) {

acquire the mutex

// Perform double-check to avoid race condition.
if (first_time_in_flag is FALSE) {

execute the critical section
set first_time_in_flag to TRUE

}

release the mutex

34

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

Implementation The Double-Checked Locking Optimization pattern can be
implemented in the following three steps:

1 Identify the critical section to be executed just once. This critical
section typically performs operations, such as initialization logic, that
are executed just once in a program.

➥ For instance, a singleton is initialized just once in a program.
Thus, the call to the singleton’s constructor is executed only once in
a critical section, regardless of the number of times the accessor
method Singleton::instance() is called. ❏

2 Implement the locking logic. The locking logic serializes access to the
critical section of code that is executed just once.

➥ A Thread_Mutex can ensure that the singleton’s constructor
does not execute concurrently. To implement this locking logic we can
employ the Scoped Locking idiom (249) to ensure that the lock is
acquired automatically when the appropriate scope is entered and
released automatically when it goes out of scope. ❏

3 Implement the first-time-in flag. This flag indicates whether the critical
section has been executed already.

➥ The Singleton::instance_ pointer is used as the first-time-in
flag. If the flag evaluates to true, the critical section is skipped. If the
flag is also used for a particular application-specific purpose, as our
Singleton::instance_ pointer is used, it must be an atomic type
that can be set without a partial read or write. The following code for
the singleton example is thread-safe, but avoids unnecessary locking
overhead by placing the call to new within another conditional test:

class Singleton {
public:

static Singleton *instance (void) {
// First check
if (instance_ == 0) {

// Ensure serialization (guard
// constructor acquires lock_).
Guard <Thread_Mutex > guard (lock_);
// Double check.
if (instance_ == 0)

instance_ = new Singleton ;
// guard destructor releases lock_.

}
return instance_;

}

26.11.1999 Idioms.doc

Double Checked Locking Optimization 35

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

private:
static Thread_Mutex lock_;
static Singleton *instance_;

};

The first thread that acquires the lock_ will construct the Singleton
object and assign the pointer to instance_ , which serves as the first-
time-in flag in this example. All threads that call instance()
subsequently will find instance_ != 0 and skip the initialization
step.

The second check prevents a race condition if multiple threads try to
initialize Singleton simultaneously. This handles the case where
multiple threads execute in parallel. In the code above, these threads
will queue up at the lock_ mutex. When the queued threads finally
obtain the mutex lock_, they will find instance_ != 0 and skip the
initialization of Singleton .

This implementation of Singleton::instance() only incurs locking
overhead for threads that are active inside of instance() when
Singleton is first initialized. In subsequent calls to instance() , the
instance_ pointer is not 0 and therefore lock_ is neither acquired
nor released. ❏

Variants Volatile data. The Double-Checked Locking Optimization pattern
implementation may require modifications if a compiler optimizes the
first-time-in flag by caching it in some way, such as storing it in a CPU
register. In this case, cache coherency may become a problem if
copies of first-time-in flag held simultaneously in registers by
multiple threads become inconsistent. Thus, one thread’s setting of
the value might not be reflected in other threads’ copies. A related
problem is that a highly optimizing compiler may consider the second
check of flag == 0 superfluous and optimized away.

A solution to both these problems is to declare the flag as volatile
data to ensure that a compiler will not perform aggressive
optimizations that change the program’s semantics.

36

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

➥ For our Singleton example, this variant results in the following
code:

class Singleton {
// ...

private:
static volatile Singleton *instance_;
// instance_ is volatile.

};

The use of volatile ensures that a compiler will not place the
instance_ pointer into a register nor will it optimize the second
check away. ❏

The downside of using volatile is that all access the flag will be
through memory, rather than through registers, which may degrade
performance.

Template adapter. Another variation for the Double-Checked Locking
Optimization pattern is applicable when the pattern is implemented
in C++. In this case, create a template adapter that transforms
classes to have singleton-like behavior and performs the Double-
Checked Locking Optimization pattern automatically. The following
code illustrates how to write this template in C++:

template <class TYPE, class LOCK>
class Singleton {
public:

static TYPE *instance (void) {
// First check
if (instance_ == 0) {

// Ensure serialization (guard
// constructor acquires lock_).
Guard <LOCK> guard (lock_);

// Double check instance_.
if (instance_ == 0)

instance_ = new TYPE;
// guard destructor releases lock_.

}
return instance_;

}

private:
static LOCK lock_;
static TYPE *instance_;

};

26.11.1999 Idioms.doc

Double Checked Locking Optimization 37

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

The Singleton template is parameterized by TYPE and LOCK. Thus, a
class of the given TYPE is transformed into a Singleton with the
Double-Checked Locking Optimization pattern applied automatically
on the LOCK type within the instance() method.

Pre-initialization of singletons. This variation is actually an alternative
to using the Double-Checked Locking Optimization at all. It works by
initializing all objects explicitly during program start-up, for instance,
in the main() function of a C or C++ program. Therefore, there are no
race conditions because the initialization is constrained to occur
within a single thread.

This solution is inappropriate, however, when expensive calculations
must be performed that may not be necessary. For instance if a,
singleton is never actually created during program execution.
initializing it during program start-up will simply waste resources
and frustrate end-users. In addition, pre-initialization can break
encapsulation by forcing application components with singletons in
their implementation to expose this information somehow so that
singletons can be initialized. Likewise, requiring pre-initialization
makes it hard to compose applications using components that are
configured dynamically using the Service Configurator pattern (203).

Known Uses ACE. The Double-Checked Locking Optimization pattern is used
extensively throughout the ACE network programming toolkit
[Sch97]. For instance, to reduce code duplication, ACE uses a
reusable adapter ACE_Singleton template to transform ’normal’
classes to have singleton-like behavior [PLoPD3]. Although singletons
are not the only use case of the Double-Checked Locking
Optimization pattern in ACE, they are particularly easy to motivate.

Sequent Dynix/PTX. The Doubled-Checked Locking Optimization
pattern is used in the Sequent Dynix/PTX operating system.

POSIX. The Double-Checked Locking Optimization pattern can be
used to implement POSIX ‘once’ variables [IEEE96], which ensure
that functions are only invoked once in a program.

Andrew Birrell describes the use of the Double-Checked Locking
Optimization pattern in [Bir91]. Birrell refers to the first check of the
flag as a lock ‘hint.’

38

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

The Solaris 2.x documentation for the POSIX thread-specific storage
functions, such as pthread_key_create(3T) , as discussed in the
Thread-Specific Storage pattern (321) illustrates the use of the
Double-Checked Locking Optimization to initialize thread-specific
data.

Consequences There are two benefits of using the Double-Checked Locking
Optimization pattern:

Minimized locking overhead. By performing two first-time-in flag
checks, the Double-Checked Locking Optimization pattern minimizes
overhead for the common case. Once the flag is set, the first check
ensures that subsequent accesses require no further locking.

Prevents race conditions. The second check of the first-time-in flag
ensures that the critical section is executed just once.

However, there are three liabilities of using the Double-Checked
Locking Optimization pattern that can arise if the pattern is used in
software that is ported to certain types of operating system,
hardware, or compiler/linker platforms. Note, however, that this
pattern is applicable to a large-class of platforms. Therefore, we not
only describe the three liabilities but also outline techniques for
overcoming them.

Non-atomic pointer or integral assignment semantics. If an instance_
pointer is used as the flag in the implementation of a singleton, all the
bits of the singleton instance_ pointer must be read and written
atomically in single operations. If the write to memory resulting from
the call to new is not atomic, other threads may try to read an invalid
pointer. This will sporadically result in illegal memory accesses.

Such scenarios are possible on systems where memory addresses
straddle word alignment boundaries, such as 32 bit pointers used on
a computer with a 16 bit word bus—which requires two fetches from
memory for each pointer access. In this case, it may be necessary to
use a separate, word-aligned integral flag (assuming that the
hardware supports atomic word-based reads and writes), rather than
using an instance_ pointer.

Multi-processor cache coherency. Certain multi-processor platforms,
such as the DEC Alpha and Intel Merced, perform aggressive memory
caching optimizations where read and write operations can execute

26.11.1999 Idioms.doc

Double Checked Locking Optimization 39

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

‘out of order’ across multiple CPU caches. In these platforms, it may
not be possible to use the Double-Checked Locking Optimization
pattern without further modifications because CPU cache lines will
not be flushed properly if shared data is accessed without locks held.
To use the Double-Checked Locking Optimization pattern correctly
on these hardware platforms requires CPU-specific instructions,
such as memory barriers to flush cache lines, to be inserted into the
Double-Checked Locking Optimization implementation.

Note that a serendipitous side-effect of using the template adapter
variation of the Double-Checked Locking Optimization pattern is that
it centralizes the placement of these CPU-specific cache instructions.
For instance, a memory barrier instruction can be located within the
instance() method of the Singleton template adapter class, as
follows:

template <class TYPE, class LOCK> TYPE *
Singleton <TYPE, LOCK>::instance (void) {
#if defined (ALPHA_MP)

// Insert the CPU-specific memory barrier instruction
// to synchronize the cache lines on multi-processor.
asm (“mb”);

#endif /* ALPHA_MP */
// First check
if (instance_ == 0) {

// Ensure serialization (guard
// constructor acquires lock_).
Guard<LOCK> guard (lock_);

// Double check.
if (instance_ == 0)

instance_ = new TYPE;
}
return instance_;

}

As long as all applications use the Singleton template adapter,
rather than writing their own singletons and hand-crafting the
Double-Checked Locking Optimization pattern at each point of use, it
is straightforward to localize the placement of CPU-specific code.

Initialization of static mutexes. The various implementations of
Singleton shown above all define lock_ as a static data member.
Unfortunately, the C++ language specification does not guarantee the
order of initialization of static objects that are defined in separate
compilation units. As a result, different compiler and linker platforms

40

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 Idioms.doc

may behave inconsistently and lock_ may not be initialized when it
is first accessed. One way to avoid this problem is to avoid global
objects altogether or at least avoid defining non-trivial application
logic in constructors for global objects. Another solution is to use the
Object Lifetime Manager pattern [LGS99]. This pattern governs the
entire lifetime of global or static objects by creating them prior to their
first use and ensuring they are destroyed properly at program
termination.

See Also The Double-Checked Locking Optimization pattern is a thread-safe
variant of the Lazy Evaluation idiom [Mey98] [Beck97]. This idiom is
often used in programming languages like C that lack constructors to
ensure components are initialized before their state is accessed:

static const int STACK_SIZE = 1000;
static T *stack_;
static int top_;

void push (T *item) {
// First-time-in-check.
if (stack_ == 0) {

// Allocate the pointer, which implicitly
// indicates that initialization was performed.
stack_ = malloc (STACK_SIZE * sizeof *stack);
assert (stack_ != 0);
top_ = 0;

}
stack_[top_++] = item;
// ...

}

The first time that push() is called, stack_ is 0, which triggers its
implicit initialization via malloc() .

Credits The co-author of the original version [PLoPD3] of this pattern was Tim
Harrison. Thanks to Jim Coplien, Ralph Johnson, Jaco van der
Merwe, Duane Murphy, Paul McKenney, and John Basrai for their
suggestions and comments on the Double-Checked Locking
Optimization pattern.

