
QoS for Distributed Object
Computing Middleware { Fact
or Fiction?

Chair: Douglas C. Schmidt, Washington University, St. Louis
Panelists:
Maximilian Ott, NEC
Guru Parulkar, Washington University, St. Louis
Rolf Stadler, Columbia University
Andreas Vogel, Visigenic, Inc.

1 INTRODUCTION

A growing class of distributed applications require end-to-end quality of ser-

vice (QoS) guarantees (such as bandwidth, latency, jitter, and level of re-

liability). These applications include telecommunication systems (e.g., call

processing and switching), avionics control systems (e.g., operational ight

programs for �ghter aircraft), multimedia (e.g., video-on-demand and tele-

conferencing), and simulations (e.g., battle readiness planning). In addition

to requiring QoS guarantees, these applications can bene�t by being built

with exible and reusable components, which can reduce development e�ort

and increase software quality.

Requirements for exible and reusable components motivate the use of

Distributed Object Computing (DOC) middleware and Object Request Bro-

kers (ORBs). Example DOC ORBs include OMG's Common Object Request

Broker Architecture (CORBA), Microsoft's Distributed COM (DCOM), and

JavaSoft's Remote Method Invocation (RMI). Following in the tradition of

Remote Procedure Call (RPC) toolkits like Sun RPC and OSF DCE, DOC

ORBs are well-suited for conventional request/response-style applications run-

ning on low-speed networks.

However, the QoS speci�cation and enforcement features of current DOC

middleware and ORBs, as well as their performance levels, are not yet suit-

able for applications with hard real-time requirements (e.g., avionics mission

computers) and stringent statistical real-time requirements (e.g., teleconfer-

encing). Conventional DOC ORB speci�cations and implementations are char-

acterized by the following de�ciencies:

� Lack of QoS speci�cation and enforcement { Conventional DOC

cIFIP 1997. Published by Chapman & Hall



2 Preparation of camera-ready copy papers for IFIP conferences

ORBs do not de�ne APIs that allow applications to specify their end-

to-end QoS requirements. Likewise, existing DOC ORB implementations

do not provide support for end-to-end QoS enforcement between applica-

tions across a network. For instance, CORBA provides no standard way

for clients to indicate the relative priorities of their requests to an ORB.

Likewise, there are no means for DCOM or RMI clients to inform an ORB

how frequently to execute operations that must run periodically.

� Lack of real-time features { Conventional DOC ORBs do not provide

key features that are necessary to support real-time programming. For in-

stance, although the CORBA inter-operability protocol (GIOP) supports

asynchronous messaging, there is no standard programming language map-

ping for exchanging ORB requests asynchronously. Likewise, the DCOM

and RMI speci�cations do not require an ORB to notify clients when trans-

port layer ow control occurs. Therefore, it is hard to write portable and

e�cient real-time applications that are guaranteed not to block inde�nitely

when ORB endsystem and network resources are temporarily unavailable.

� Lack of performance optimizations { Conventional ORBs incur signif-

icant throughput and latency overhead. These overheads stem from exces-

sive data copying, non-optimized presentation layer conversions, internal

message bu�ering strategies that produce non-uniform behavior for dif-

ferent message sizes, ine�cient demultiplexing algorithms, long chains of

intra-ORB virtual method calls, and lack of integration with underlying

real-time OS and network QoS mechanisms.

Although some operating systems, networks, and protocols now support

real-time scheduling, they do not provide integrated end-to-end solutions. In

particular, QoS research at the IPC and OS layers has not necessarily ad-

dressed key requirements and usage characteristics of DOC middlware such

as CORBA, DCOM, or RMI. For instance, research on QoS for communication

systems has focused largely on policies for allocating network bandwidth on

a per-connection basis. Likewise, research on real-time operating systems has

focused largely on avoiding priority inversions and non-determinism in syn-

chronization and scheduling mechanisms for multi-threaded applications. In

contrast, the programming model for developers of DOC applications focuses

largely on invoking remote operations on distributed objects. Determining

how to map the results from QoS work at the IPC and OS layers to DOC

middleware is an important open research topic.

Meeting the QoS needs of next-generation distributed applications requires

much more than de�ning IDL interfaces or building real-time scheduling into

ORBs. It requires a vertically integrated architecture that can deliver end-to-

end QoS guarantees at multiple levels of an entire distributed system. This

panel will describe the architectural features and optimizations that are nec-

essary to develop Distributed Object Computing middleware that can deliver



INTRODUCTION 3

end-to-end QoS guarantees to applications. The topics presented by the pan-

elists will include:

� The enchancements required to existing DOC speci�cations (such as OMG

CORBA) that will enable applications to de�ne their Quality of Service

(QoS) requirements to ORB endsystems.

� Key architectural patterns required to build real-time ORB endsystems

that can enforce deterministic and statistical end-to-end QoS guarantees

to applications.

� Strategies for integrating I/O subsystem architectures and optimizations

with DOC middleware to provide high bandwidth and low latency guaran-

tees to distributed applications.

� Overview of forthcoming CORBA speci�cations (such as the Noti�cation

service, Messaging service, Streaming service, and passing objects by value)

that address QoS requirements.

� Techniques for associating an IDL interface with multiple implementations

that can provide di�erent QoS characteristics.

We look forward to your participation in the panel.


