
Applying MDA and Component Middleware to
Large-scale Distributed Systems: A Case Study

Andrey Nechypurenko
Siemens Corporate Technology

Munich, Germany
andrey.nechypurenko@siemens.com

Tao Lu, Gan Deng,
Douglas C. Schmidt, Aniruddha Gokhale

Vanderbilt University, Nashville, TN, USA
{tao.lu, gen.deng, d.schmidt,
a.gokhale}@vanderbilt.edu

Abstract
Despite advances in hardware and software
technologies, it remains challenging to develop large-
scale distributed systems that are correct, efficient, and
flexible. Some challenges arise from increasingly
demanding end user requirements for quality and
functionality. Other challenges arise from complexities
associated with integrating large-scale distributed
systems composed of modular components. This paper
provides two contributions to R&D efforts that address
these challenges. First, it motivates the use of an
integrated Model Driven Architecture (MDA) and
component middleware approach to enhance the level of
abstraction at which distributed systems are developed
to (1) improve software quality and developer
productivity and (2) reduce the complexity of component
integration. Second, we present our experience gained
applying MDA and component middleware software
techniques to develop an Inventory Tracking System that
monitors and controls the flow of goods and assets in
warehouses. Our preliminary results show that using
MDA tools and component middleware as the core
elements of software composition leads to reduced
development complexity, improved system
maintainability, and increased developer productivity.

Keywords: Model Driven Architecture, Component
Middleware, CORBA Component Model (CCM).

1. Introduction

During the past five decades the IT industry has
experienced a steady increase in the complexity of both
problem and solution spaces. In the problem space of
various domains (such as telecom, enterprise business,
aerospace, and industrial process control systems)
software-intensive systems developed today are often
considerably larger and more complicated than those
developed two decades ago. In the solution space,
gigabytes of documentation, source code, and binaries
are supplied by providers of infrastructure software
(such as operating systems, database management
systems, graphical user interface packages, and
component middleware), which suggests their
complexity has grown beyond the ability of most
developers to comprehend many aspects of these
popular technologies.

The IT industry has historically addressed the growth in
complexity by raising the level of abstraction at which
software systems are developed, integrated, and vali-

dated. For example, the growing complexity of larger-
scale assembly language programs in the 1960s moti-
vated the creation and adoption of the next generation of
higher-level programming languages (such as Pascal and
C++), which raised the abstraction level and helped im-
prove the efficiency and quality of software develop-
ment. Likewise, the growing complexity of developing
large-scale systems from scratch motivated the creation
and adoption of frameworks and patterns as a way to
provide semi-complete applications and factor out reus-
able structures and behaviors in mature domains (such
as network programming, database access, and GUI
creation).

More recently, component middleware technologies
(such as J2EE, .NET and CCM) have factored out key
functional and non-functional aspects (such as
component lifecycle management,
authentication/authorization, and remoting) to shield
application developers from low-level, non-portable
platform details (such as socket-level programming). As
a result, a growing number of large-scale distributed
systems are being assembled from modular components
– many of which are available from commercial-off-the-
shelf (COTS) providers – rather than developed
manually from scratch using proprietary, monolithic
software technologies.

Although the capabilities of higher-level component
middleware can help to alleviate many complexities
associated with lower-level platforms and tools, the
complexity of today’s component middleware
technologies yields new challenges to application
developers. For example, considerable effort must now
be expended to integrate business logic with the set of
rules and behavior dictated by component models. A
concrete example is: component containers in J2EE and
CCM. They can activate or passivate components
according to a lifecycle management strategy that is
independent from the business logic implemented by the
components. This process, however, imposes non-trivial
restrictions and rules on component developers.
Moreover, different component middleware platforms
implement lifecycle management differently, which
incurs additional complexities for applications that must
run on multiple platforms.

Another challenge confronting developers of large-scale
COTS-based component systems is that few software
developers have an integrated view of all the subsys-
tems and libraries in large-scale systems. Instead, they
are only familiar with a subset of the characteristics of
the subsystems and libraries they use regularly, which

makes it hard for developers to know which portions of
the system functionality are influenced by changes aris-
ing from bug fixes, new requirements, new platforms,
etc. The lack of an integrated view – coupled with the
danger of unforeseen side-effects – often force develop-
ers to implement suboptimal solutions that duplicate
code unnecessarily, violate key architectural principles,
and complicate system maintenance.

As a result of these challenges, it is not surprising that
large-scale distributed systems often have many defects
and are chronically over budget and behind schedule,
even when they are based on the most advanced
software technologies. In particular, despite
improvements in third-generation programming
languages (such as Java or C++) and run-time platforms
(such as component middleware), the level of
abstraction at which business logic is integrated with the
set of rules and behavior dictated by component models
is still too low. For example, the components and the
underlying component middleware framework often
have a large number of configurable attributes and
parameters that can be set at various stages of
development lifecycle, such as composing an application
or deploying an application in a specific environment. It
is tedious and error-prone to use third-generation
languages to write programs that manually ensure all
these parameters are semantically consistent throughout
an application. Moreover, there is no formal basis for
validating and verifying that middleware configured via
such ad hoc approaches will deliver the intended
behaviors. In addition, the level of abstraction
supported by third-generation languages does not
intuitively reflect the concepts used by today’s cutting-
edge software developers, who are using higher level
concerns (such as persistence, remoting, and
synchronization) to express their system architectures.

A promising way to alleviate these problems with low-
level abstractions and tools is to apply Model Driven
Architecture (MDA) techniques [MDA] that express
application functional and non-functional requirements
at higher levels of abstraction beyond third-generation
programming languages and conventional component
middleware. MDA tools help to improve the
understanding of software-intensive systems using
higher-level models that (1) standardize the process of
capturing business logic and quality of service (QoS)-
related requirements and (2) ensure the consistency of
software implementations with analysis information
associated with functional and systemic QoS
requirements captured by models. A key role in reducing
software complexity via MDA tools is played by meta-
modeling [GME], which defines a semantic type system
that precisely reflects the subject of modeling and
exposes important constraints associated with specific
application domains.

To evaluate the extent to which MDA technologies ac-
tually improve development productivity, quality, and
understanding, we have developed a prototypical Inven-
tory Tracking System (ITS). The ITS is a warehouse
management system that monitors and controls the flow
of goods and assets. Users of an ITS include couriers,

such as UPS, FedEx, DHL, as well as airport baggage
handling systems.

This paper uses a portion of our ITS prototype as a case
study to illustrate the benefits of integrating MDA and
component middleware by focusing on two of the
fundamental aspects of ITS, “Warehouse Configuration”
and “Component Assembly and Configuration”. We will
illustrate (1) how our MDA tool suite with two aspects
we developed could capture end user’s concerns in a ITS
system, (2) how the concerns are mapped to the actual
artifacts which are used by the run time framework --
CIAO1.

The remainder of this paper is organized as following:
Section 2 outlines our Inventory Tracking System (ITS)
prototype; Section 3 describes how we applied MDA
tools and techniques to generate (a) warehouse domain-
specific models for ITS and (b) middleware
configuration tools used to generate CIAO configuration
artifacts; and Section 4 summarizes our lessons learned
and presents concluding remarks.

2. Overview of the ITS Case Study

A key goal of an Inventory Tracking System (ITS) is to
provide convenient mechanisms that manage the
movement and flow of inventory in a timely and reliable
manner. For instance, an ITS should enable human
operators to configure warehouse storage organization
criteria, maintain the set of goods known throughout a
highly distributed system (which may span
organizational and even international boundaries), and
track warehouse assets using GUI-based operator
monitoring consoles. This section presents an overview
of the behavior and architecture of our ITS prototype.
Section 3 then uses this prototype to illustrate how
MDA can be integrated with component middleware and
applied to large-scale distributed system development.

2.1 ITS System Behavior

Figure 1 shows a UML use case diagram for our ITS
prototype. As shown in the figure, there are three
primary actors in the ITS system.

Figure 1. Use Case Diagram for the ITS Prototype

For the Configurator actor, the ITS provides the ability
to configure the set of available facilities in certain

1 Creating generators for J2EE and .NET component
middleware remains as future work.

warehouses, such as the structure of transportation belts,
routes used to deliver goods, and characteristics of stor-
age facilities (e.g., whether hazardous goods are allowed
to be stored, maximum allowed total weight of stored
goods, etc.). For the Operator actor, the ITS provides
the ability to reorganize the warehouse to fit future
changes, as well as dealing with other use cases, such as
receiving goods, storing goods, fetching goods, dumping
goods, stock queries, specifying delivery time accuracy,
and updating operator console views. For the Operating
Environment actor, the ITS provides the ability to toler-
ate partial failures due to transportation facility prob-
lems, such as broken belts. To handle these partial fail-
ures the ITS dynamically recalculates the delivery pos-
sibilities based on available transportation resources and
delivery time requirements.

2.2 Architecture

The ITS architecture is based on component middleware
developed in accordance with the OMG’s CORBA
Component Model (CCM) [CCM]. A component is a
basic meta-type in CCM that consists of a named
collection of features – known as ports, i.e., event
sources/sinks, facets, and receptacles – that can be
associated with a single well-defined set of behaviors. In
particular, a CCM component provides one or more
ports that can be connected together with ports exported
by other components. CCM also supports the
hierarchical encapsulation of components into
component assemblies, which export ports that allow
fine tuning of business logic modeling.

Figure 2 illustrates the key components that form the
basic implementation and integration units of our ITS
prototype. Some ITS components (such as the Operator

Figure 2. Key CCM ITS Architecture Components

Console component) expose interfaces to end users, i.e.,
ITS operators. Other components represent warehouse
hardware entities (such as cranes, forklifts, and shelves)
and expose interfaces to manage databases (such as

Transportation Facility component and the Storage Fa-
cility component). Yet another set of components (such
as the Workflow Manager and Storage Manager compo-
nents) coordinate and control the event flow within the
ITS system.

As illustrated in Figure 2, the ITS architecture consists
of the following three subsystems:

1. Warehouse Management (WM) subsystem, which
is a set of high-level functionality and decision
making components. This level of abstraction
calculates the destination location and delegates the
rest of the details to the Material Flow Control
(MFC) subsystem. In particular, the WM does not
provide capabilities such as route calculation for
transportation or reservation of intermediate storage
units.

2. Material Flow Control (MFC) subsystem, which is
responsible for executing high-level decisions
calculated by the WM subsystem. The primary task
of the MFC is to deliver goods to the destination
location. This subsystem handles all related details,
such as route (re)calculation, transportation facility
reservation, and intermediate storage reservation.

3. Warehouse Hardware (WH) subsystem, which is
responsible for dealing with physical devices, such
as sensors and transportation units (e.g., belts,
forklifts, cranes, pallet jacks, etc.).

The functionality of these three ITS subsystems is moni-
tored and controlled via an Operator Console. All persis-
tence aspects are handled via databases that can be man-
aged either by the centralized DBMS or distributed
DBMS over different DB servers. A typical interaction
scenario between these three subsystems is illustrated by
the following action sequence:

1. The new good arrives at the warehouse entrance and
is entered into the ITS either automatically or
manually.

2. The WM subsystem calculates the final destination
for storing the good by querying the Storage Facility
for a list of available free locations. The final
destination is passed to the MFC subsystem.

3. The MFC subsystem calculates the transportation
route and assigns required transportations facilities.

4. The MFC subsystem interacts with the WH
subsystem to control the transportation process and if
necessary adapt to changes, such as failures or the
appearance of higher priority tasks.

For the technical infrastructure of our initial ITS proto-
type, we selected the Component Integrated ACE ORB
(CIAO) [CIAO1, CIAO2], which is QoS-enabled CCM
middleware built atop the The ACE ORB (TAO) [TAO1,
TAO2]. TAO is a highly configurable, open-source 2
Real-time CORBA Object Request Broker (ORB) that

2 CIAO and TAO can be downloaded from
http://deuce.doc.wustl.edu/Download.html.

implements key patterns [POSA2] to meet the demand-
ing QoS requirements of distributed real-time and em-
bedded (DRE) systems. CIAO extends TAO to provide
the component-oriented paradigm to developers of DRE
systems by abstracting critical systemic aspects (such as
QoS requirements, real-time policies) as installa-
ble/configurable units supported by the CIAO compo-
nent framework. Promoting these DRE aspects as first-
class metadata disentangles (1) code for controlling
these non-function aspects from (2) code that imple-
ments the application logic, ideally making DRE system
development more flexible and productive as a result.

3. Model Driven ITS Development

To evaluate how MDA technologies can help improve
productivity by enabling developers to work at a higher
abstraction level than components and classes, we
developed and applied a set of modeling tools to
automate the following two aspects of ITS development:

1. Warehouse modeling, which simplifies the
warehouse configuration aspect of the ITS system
according to the equipment available in certain
warehouses, including moving conveyor belts and
various types of cranes. These modeling tools can
synthesize the ITS database configuration and
population.

2. Modeling and synthesizing the deployment and
configuration (D&C) aspects of the components that
implement the ITS functionality. These modeling
tools use MDA technology in conjunction with the
CCM to develop, assemble, and deploy ITS software
components.

This section describes these two modeling aspects, fo-
cusing on the domain models and model interpreters.
We also explore the relationship between these aspects
to show how multiple layers of MDA are applied in ITS.

3.1 Modeling an ITS Warehouse with MDA
Tools

Warehouse modeling consists of designing the
warehouse configuration model by mapping from
concrete warehouse structures perceived from a physical
standpoint. This is the first phase which must be
accomplished prior to setting up an ITS. The following
are the two main concerns of a warehouse model in this
phase:

1. Transportation facility network, which includes
position information (e.g., the physical location and
reachable areas) and properties, (e.g., the capacity
and toxicity of items transported in the network).

2. Appropriate available storage places, which
includes their physical locations and properties
(e.g., storage capacity and type of goods they can
store).

In the ITS warehouse model these two concerns are
blended together to give the warehouse model develop-
ers a convenient overview of the warehouse setup,
which is similar to the architectural blue print of the

warehouse. Mapping from the architectural blue print to
the warehouse model should be intuitive to domain ex-
perts, as well as to model developers, so they can reuse
the warehouse knowledge efficiently and conveniently.

3.1.1 Choosing the Modeling Tool

After evaluating the requirements of our partners in
Siemens business units, we have selected Microsoft®
Visio® as our warehouse modeling tool. Visio is a
commercially supported graphic drawing tool with
meta-modeling capabilities, as well as the following
desirable features:

• Full range of technical diagramming capabilities.
Numerous drawing related features are provided by
Visio. For instance, it supports grid, docking point,
and object manipulation (e.g., resize, rotation,
connection routing), which are valuable for
warehouse modeling by domain experts who work
on large-scale commercial ITS deployments.

• Integrated model interpreter with embedded
debugging environment. Unlike traditional tools
that focus on a discrete segment of information,
Visio offers an integrated toolset for applications,
development, and data modeling. Visio is shipped
with an embedded Visual Basic® editor and
debugging environment that simplifies interpreter
writing. C++/COM objects can also be plugged in, if
desired.

• Extensibility. Visio supports database modeling,
which includes complete database design, database
schema, and Data Definition Language (DDL) script
generation from conceptual and physical models. For
example, in the warehouse configuration domain, we
can connect the physical model to the associated
database. Moreover, Visio ships with many domain-
specific paradigms (known as drawing types in
Visio). Besides the major building blocks needed by
warehouse management systems, Visio also provides
many other modeling paradigms, such as UML
diagrams. The meta-modeling capability makes it
possible to extend Visio’s modeling paradigm to suit
the domain more effectively.

Figure 3. Microsoft Visio ITS Model Example

Figure 3 illustrates a Visio screenshot, where warehouse
model elements are available from the master panel
(left-side) and the right-side contains the drawing
representing a warehouse fragment consisting of a
moving belt, two cranes, storage rack, and a forklift.
Modeling a warehouse graphically is therefore as
straightforward as mapping/drawing the concrete
warehouse physical structure in the Microsoft Visio
drawing panel.

3.1.2 Implementing the Model Interpreter

After creating the complete model for a desired
warehouse configuration, the corresponding
configuration artifacts are generated automatically by
using our domain-specific model interpreter. The model
interpreter we developed for the warehouse model
contains a set of Visual Basic macros that can be
executed within Visio to generate corresponding data
model as part of component synthesis. In the model
interpreter, certain analysis and validation steps are
applied to the warehouse model to validate the
correctness of the data model. Once validated, C++ code
is generated and used at runtime to bootstrap the ITS
components, as described below:

1. Certain location-related constraints can be checked
by the model interpreter to validate the model to
ensure that the physical layout and configuration of
the warehouse is valid and meaningful. For example,
when a crane is on top of a storage place, the model
interpreter can ensure that the crane is capable of
reaching all the storage cells of the place. Upon
discovering potential conflicts, error or warning
messages will be issued to a domain expert.

2. Different domain-specific aspects captured by the
graphical model can be extracted from the model to
populate the warehouse system databases. The
generated artifacts include the classes used to
populate the databases and some initialization steps
of the databases.

After running the model interpreter, the system is ready
to start the component-based deployment and
configuration process described in Section 3.2.

3.2 Modeling ITS Component Deployment and
Configuration with MDA Tools
As discussed in section 2.2, ITS is developed using
CIAO, which is a CCM implementation. As a result, ITS
has a standardized way to configure the functional and
systemic QoS behavior of its software components and
map them to the underlying hardware and software
infrastructure in a highly flexible manner. In ITS,
component deployment and configuration is performed
via the Component Synthesis using Model Integrated
Computing (CoSMIC) toolsuite [CoSMIC], which is an
MDA open-source 3 toolsuite targeted for component-
based distributed applications.

3 CoSMIC can be downloaded from
http://www.dre.vanderbilt.edu/cosmic/.

At the heart of CoSMIC is the Component Assembly
and Deployment Modeling Language (CADML), which
automates the deployment and configuration aspects of
distributed applications. CADML is a visual language
tool developed using the Generic Modeling
Environment (GME) framework [GME], which supports
the following features:

• GUI interface supporting all general GUI application
features with very generic semantic mapping.

• Library importing and exporting capability.

• Type system defined in the meta-model, which
supports inheritance and instantiation. This
introduces object-oriented design (OOD) in the
modeling paradigm.

• Formalized constraints specified in the meta-model
to validate the model.

• Plug-in of analysis and synthesis tools that interpret
the models

The current release of CoSMIC’s CADML tool supports
the CCM Deployment and Configuration standard
[D&C] and works out-of-the-box with CIAO. The
CADML modeling paradigm allows developers of
CIAO-based application to model component
assemblies that capture the connections between
different application components.

The CADML model interpreter synthesizes component
assembly metadata as XML descriptors, which are then
used by CIAO middleware deployment tools. Different
descriptor files represent different application scenarios.
With the support of a component repository, application
developers can configure and deploy different
application scenarios by providing the required
descriptors. For example, Figure 4 presents a screen shot
that illustrates how the deployment and configuration of
ITS components are modeled in the CADML modeling
environment.

Figure 4. ITS CCM Component Assembly Model

The generated XML descriptors are fed into the CIAO
component middleware runtime environment, which
then deploys the components into the containers
throughout the ITS distributed system. This MDA-based
modeling approach is essential to the CCM D&C proc-
ess. In particular, it automates the descriptor generation

to avoid errors that arise when the ad-hoc handcrafting
approach is used. Moreover, analysis is performed on
the D&C models to ensure semantic correctness of the
configurations, e.g., only the ports with the same inter-
face or event type could be connected.

3.3 Relations between the Warehouse Model
and the Component D&C Model
As discussed above, there are two types of modeling
aspects in ITS: (1) warehouse modeling and (2) compo-
nent deployment and configuration (D&C) modeling.
These two aspects are semi-orthogonal to each other in
terms of aspect separation, i.e., they depict the overall
system from different perspectives, yet they are com-
plementary to each other. For example, Figure 5 shows
how the system modeler and warehouse modeler are
different roles in the ITS development process.

Figure 5. ITS Modeling Aspects

The system modeler studies the business logic of general
ITS and produces a model describing the software
aspect of the system, including CCM component,
deployment/assembly specification, and QoS
requirements. The warehouse modeler, in contrast, is
responsible for modeling one or a group of specific
warehouses.

The warehouse and component model aspects can be
implemented separately during system development, i.e.,
the warehouse model can be mapped to the CCM and
D&C model by means of MDA-based code generation
to fully materialize an ITS system. There exist, however,
some concerns that span these two aspects. For example,
the number of components and the way they are
communicate with each other can influence the
configuration of different infrastructural aspects, such as
real-time event channels [Harrison]. In ITS, however, a
warehouse modeler often needs to fine tune the
configuration on the base of warehouse model. In these
cases, different actions are applied according to the
nature of the concern after necessary analysis.

4. Concluding Remarks

Advances in hardware and software raising the level of
abstraction at which distributed systems are developed.

With each increase in abstraction comes a new set of
complexities that must be mastered to reap the rewards
of the higher-level technologies. A key challenge asso-
ciated with higher-level software abstractions is that the
integration complexity makes it hard to assure the over-
all quality of the complete system. To explore the bene-
fits of applying Model Driven Architecdture (MDA)
technologies to address these challenges, we have de-
veloped an Inventory Tracking System (ITS) prototype,
which is a distributed system that employs MDA tools
and component middleware to address key requirements
from the warehouse management application domain.

The lessons we have learned applying MDA and
component middleware technologies thus far include:

• The component middleware paradigm elevates the
abstraction level of middleware to enhance software
developer quality and productivity. It also
introduces extra complexities, however, that are
hard to handle in an ad-hoc manner for enterprise
application. For example, the CCM requires many
configuration files due to its large number of
configuration points.

• The MDA paradigm expedites application devel-
opment with the proper tool support. In the ITS pro-
ject, if the warehouse model is the only missing or
changing aspect in the system (which is typical for
end users), little new application code must be writ-
ten. Likewise, in the case when the software model
is missing or changes, application developers must
write the component implementation code and fin-
ish the component model. Even in this latter case,
however, the amount of effort required is signifi-
cantly less than starting from the raw component
middleware.

• Domain-specific modeling techniques can help to
reduce the learning curve for end users. For exam-
ple, warehouse modelers in our ITS project need lit-
tle or no knowledge of how to write conventional
software since they interact with the system entirely
through models and visual modeling environments.

• Models at different abstraction layers or reflecting
different aspects often exist in the large-scale
MDA-based systems. Weaving the models together
to form the overall system is very important. In ITS,
this is currently done in a ad-hoc manner. To solve
this problem an even higher level of abstraction is
needed based on the concept of “concern” as a fun-
damental building block. For example, we could de-
fine yet another modeling paradigm to capture the
meta-models of both the warehouse model and the
component model, as well as important correlations
between these two meta-models. A model weaving
process [Gray] could then be captured in the model
and automated.

In future work we plan to implement an integrated con-
cern modeling and manipulation environment to achieve
the benefits outlined in the last bullet point above. We
also plan to extend our MDA modeling tools so they can
perform a two step mapping from (1) the domain-

specific model to the platform-independent component-
based architecture presented in Figure 2 and (2) the plat-
form-independent model to a CCM-specific implemen-
tation.

References
[CCM] BEA Systems, et al., CORBA Component
Model Joint Revised Submission, Object Management
Group, OMG Document orbos/99-07-01 edition, July
1999.

[CIAO1] Nanbor Wang, Krishnakumar Balasubrama-
nian, and Chris Gill, “Towards a Real-time CORBA
Component Model,” in OMG Workshop On Embedded
& Real-Time Distributed Object Systems, Washington,
D.C., July 2002, Object Management Group.

[CIAO2] Nanbor Wang, Douglas C. Schmidt,
Aniruddha Gokhale, Christopher D. Gill, Balachandran
Natarajan, Craig Rodrigues, Joseph P. Loyall and Rich-
ard E. Schantz, “Total Quality of Service Provisioning
in Middleware and Applications,” Microprocessors and
Microsystems, vol. 26, no. 9-10, Jan 2003.

[COSMIC] Aniruddha S. Gokhale, Douglas C. Schmidt,
Tao Lu, Balachandran Natarajan, Nanbor Wang: “CoS-
MIC: An MDA Generative Tool for Distributed Real-
time and Embedded Applications,” Middleware Work-
shops 2003.

[D&C] Object Management Group: “Deployment and
Configuration of Component-based Distributed Applica-
tions”, An Adopted Specification of the Object Manage-
ment Group, Inc. June 2003 Draft Adopted Specification
ptc/July 2002.

[GME] Akos Ledeczi “The Generic Modeling Environ-
ment”, Workshop on Intelligent Signal Processing, ac-
cepted, Budapest, Hungary, May 17, 2001.

[Gray] Jeff Gray, Janos Sztipanovits, Ted Bapty
Sandeep Neema, Aniruddha Gokhale, and Douglas C.
Schmidt, “Two-level Aspect Weaving to Support
Evolution of Model-Based Software,” Aspect-Oriented
Software Development, Edited by Robert Filman, Tzilla
Elrad, Mehmet Aksit, and Siobhan Clarke, Addison-
Wesley, 2003.

[Harrison], Tim Harrison, David Levine, and Douglas C.
Schmidt, “The Design and Performance of a Real-time
CORBA Event Service, Proceedings of OOPSLA ’97,
Atlanta, Georgia, Oct 1997.

[MDA] OMG: “Model Driven Architecture (MDA)”
Document number ormsc/2001-07-01 Architecture
Board ORMSC1July 9, 2001.

[POSA2] Douglas C. Schmidt, Michael Stal, Hans
Rohnert, and Frank Buschmann, Pattern-Oriented
Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2, Wiley & Sons, New
York, 2000.

[TAO1] Douglas C. Schmidt, David L. Levine, and
Sumedh Mungee, “The Design and Performance of
Real-Time Object Request Brokers,” Computer Com-
munications, vol. 21, no. 4, pp. 294–324, Apr. 1998.

[TAO2] Douglas C. Schmidt et. al, “TAO: A Pattern-
Oriented Object Request Broker for Distributed Real-
time and Embedded Systems,” IEEE Distributed
Systems Online, vol. 3, no. 2, Feb. 2002.

 [Voelter] Markus Völter, Alexander Schmid, Eberhard
Wolff. Server Component Patterns: Component Infra-
structures Illustrated with EJB, Wiley & Sons. The
ISBN is 0-470-84319-5.

