
IPC SAP
C++ Wrappers for Efficient, Portable,
and Flexible Network Programming

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science

Washington University, St. Louis 63130

An earlier version of this paper appeared in the Novem-
ber/December 1992 issue of the C++ Report magazine. An
expanded version of this paper [1] that includes perfor-
mance results over Ethernet and ATM networks is available
at www.cs.wustl.edu/ �schmidt/COOTS-95.ps.Z.

1 Introduction

This paper describes object-oriented (OO) techniques for en-
capsulating OS interprocess communication (IPC) mecha-
nisms with C++ wrappers. The paper focuses on the C++
wrappers provided by theIPC SAPcomponents in the ACE
framework [2]. ACE is a collection of reusable C++ class li-
braries and OO framework components that simplify the de-
velopment of portable, high-performance and real-time com-
munication software.IPC SAP is a component in ACE that
provides a family of OO network programming interfaces to
encapsulate the Socket interface [3], the System V transport
layer interface (TLI) [4], SVR4 STREAM pipes [5], UNIX
FIFOs [6], and Windows NT named pipes [7].

The C++ wrappers inIPC SAPshield developers and ap-
plications from non-portable details of native OS local and
remote IPC mechanisms. The IPC mechanisms encapsu-
lated byIPC SAP include standard connection-orientedand
connectionless protocols, such as TCP, UDP, and IPX/SPX,
available in UNIX/POSIX, Win32, and real-time operating
systems. IPC SAP utilizes OO techniques and C++ fea-
tures to provide a rich set of components that simplify the
development of efficient, portable, and flexible communica-
tion software.

This paper is organized as follows: Section 2 outlines the
levels of abstraction for programming communication soft-
ware; Section 3 describes existing network programming
interfaces; Section 4 outlines their limitations; Section 5
presents the OO design and implementation ofIPC SAP
and explains how it overcomes limitations with existing net-
work programming interfaces; Section 6 examines the OO
design of the C++ wrappers for Sockets, TLI, STREAM
pipes, and FIFOs in detail; Section 7 illustrates several exam-
ples that useIPC SAP to implement a client/server stream-
ing application; Section 8 discusses the principles the guided
the design ofIPC SAP; and Section 9 summarizes the ad-

vantages and disadvantages of using C++ to develop OO
wrappers for native OS interfaces.

2 Overview of Network Programming
Interfaces

Writing robust, extensible, and efficient communication soft-
ware is hard. Developers must master many complex OS and
communication concepts such as:

� Network addressing and service identification.

� Presentation conversions (such as encryption, compres-
sion, and network byte-ordering conversions between
heterogeneous end-systems with alternative processor
byte-orderings).

� Process and thread creation and synchronization.

� System call and library function interfaces to local and
remote interprocess communication (IPC) mechanisms.

Various programming tools and interfaces have been cre-
ated to help simplify the development of communication
software. Figure 1 illustrates the IPC interfaces available
on contemporary OS platforms, such as UNIX and Win32.
As shown in the figure, applications may access several lev-

USER

SPACE

KERNEL

SPACE

DOC MIDDLEWAREDOC MIDDLEWARE

SOCKETS AND SOCKETS AND TLITLITLI

OPENOPEN///CLOSECLOSE///PUTMSGPUTMSG///GETMSGGETMSG

STREAMSSTREAMSSTREAMS
FRAMEWORKFRAMEWORK

L
E

V
E

L

O
F

A
B

S
T

R
A

C
T

IO
N

TPITPI
NPINPI
DLPIDLPI

HI

LO

Figure 1: Levels of Abstraction for Network Programming

els of network programming interfaces for local and remote
IPC. The remainder of this section outlines each level of ab-
straction, ranging from high-level distributed object comput-

1

ing (DOC) middleware, to user-level network programming
interfaces, to low-level kernel programming interfaces.

2.1 DOC Middleware

Applications that exchange data with clients in a “request-
response” fashion are often developed using distributed ob-
ject computing (DOC) middleware. DOC middleware is de-
fined broadly to include object request brokers (ORBs) like
CORBA [8] and Microsoft’s DCOM [9], as well as message-
oriented middleware like MQseries. DOC middleware auto-
mates many tedious and error-prone aspects of distributed
application development, including:

� Authentication, authorization, and data security;

� Service location and binding;

� Service registration and activation;

� Demultiplexing and dispatching in response to events;

� Implementing message framing atop bytestream-
oriented communication protocols like TCP;

� Presentation conversion issues involving network byte-
ordering and parameter marshaling.

In addition, DOC middleware provides a set of high-level
tools, such as IDL compilers and naming services, that shield
developers from the complexities of lower-level OS system
calls that transmit and receive packets across a network.

2.2 User-level Network Programming Inter-
faces

DOC middleware is typically built upon network program-
ming interfaces such as Sockets [3], TLI [4], or Windows NT
named pipes [7]. Compared with higher-level DOC middle-
ware, there are several advantages to developing applications
via user-level network programming interfaces:

� Minimize the time and space overhead of unneces-
sary functionality– Applications may omit unnecessary
functionality, such as presentation layer conversions for
ASCII data or memory footprint.

� Allow fine-grained control over behavior– Network
programming interfaces enable finer-grain control over
behavior, such as permitting multicast transmission and
signal-driven asynchronous I/O.

� Increase portability– Network programming interfaces
like Sockets are available across a wider range of OS
platforms that DOC middleware.

The request-response and “oneway” communication
mechanisms provided by DOC middleware is not well-suited
for a certain class of applications, known as “streaming” ap-
plications [10]. Streaming applications are characterized by
high-bandwidth, long-duration communication of untyped
bytestreams or relatively simple datatypes that possess strin-
gent communication performance requirements. Interactive

teleconferencing, medical imaging, and video-on-demand
are examples of streaming applications.

The quality of service requirements of streaming appli-
cations frequently cannot tolerate the performance overhead
caused by DOC middleware [11]. This overhead stems
from non-optimized presentation format conversions, non-
optimized memory management, inefficient receiver-side de-
multiplexing, stop-and-wait flow control, synchronous send-
side method invocations, and non-adaptive retransmission
timer schemes. Traditionally, meeting the requirements of
streaming applications has involved direct access to network
programming interfaces such as Sockets [3] or TLI [4].

2.3 Kernel-level Network Programming In-
terfaces

Lower-level network programming interfaces are available
in an OS kernel’s communication subsystem. For example,
the SVR4putmsg andgetmsg system calls may be used
to directly access the transport provider interface (TPI) [12]
and the data-link provider interface (DLPI) [13] available in
System V STREAMS [14].

It is also possible to develop network services like routers
or network file systems that reside entirely within the OS
kernel [5]. However, programming at this level is usually
not portable between different OS platforms. Moreover, it’s
often not even portable across different versions of the same
OS.

2.4 Evaluation

It is generally harder to program distributed applications us-
ing user-level or kernel-level network programming inter-
faces rather than DOC middleware. Conventional network
programming libraries like Sockets and TLI lack type-safe,
portable, re-entrant, and extensible interfaces. For instance,
Socket endpoints are implemented via weakly-typed descrip-
tors that increase the potential for subtle errors to occur at
run-time [15].

The IPC SAP components described in this paper pro-
vide a mid-point in the design space by encapsulating much
of the complexity of network programming interfaces. The
goals ofIPC SAP are to improve thecorrectness, ease of
use, andportability/reusabilityof communication software,
without adversely affecting its performance.IPC SAP is
distributed with the ACE framework [2] and is used on
many commercial projects including Bellcore, Boeing, Lu-
cent, Motorola, Nortel, SAIC, and Siemens.

3 Survey of Network Programming
Interfaces

This section surveys the behavior and limitations of conven-
tional network programming interfaces such as Sockets and
TLI.

2

3.1 Background

In many operating systems, such as UNIX and Win32, com-
munication protocol stacks reside within the protected ad-
dress space of the OS kernel. Application programs run-
ning in user-space access the kernel-resident protocol stacks
via interfaces such as Sockets, TLI, or Win32 named pipes.
These interfaces manage local and remote endpoints of com-
munication by allowing applications to open connections to
remote hosts, negotiate and enable/disable certain options,
exchange data, and close all or part of the connections when
transmissions are complete.

Sockets and TLI are loosely modeled on the UNIX file I/O
interface, which defines theopen , read , write , close ,
ioctl , lseek , and select functions [14]. However,
Sockets and TLI provide additional functionality that is not
supported directly by the standard UNIX file I/O interfaces.
This extra functionality stems from certain syntactic and se-
mantic differences between file I/O and network I/O. For ex-
ample, the pathnames use to identify files on a UNIX system
are not globally unique across hosts in a distributed environ-
ment. Therefore, a different naming scheme (such as IP host
addresses) is used to uniquely identify network applications.

The Socket and TLI interfaces provide similar function-
ality. They support a general-purpose interface to multiple
communication domains[3]. A domain specifies a protocol
family and an address family. Each protocol family contains
a stack of protocols that implement certain types of com-
munication in the domain. Common protocol stacks pro-
vide reliable, bi-directional, connection-oriented, message
and bytestream services (e.g., protocols such as TCP, TP4,
and SPX), as well as unreliable, connectionless datagram
service (e.g., protocols such as UDP, CLNP, and IPX).

An address family defines an address format (e.g.,the ad-
dress size in bytes, number and type of fields, and order of
fields) and a set of kernel-resident functions that interpret the
address format (e.g.,to determine which subnet an IP data-
gram is destined for).

Section 3.2 gives an overview on Sockets, Section 3.3
briefly outlines TLI, Section 3.4 covers STREAM pipes, and
Section 3.5 discusses UNIX FIFOs. A complete discussion
of these interfaces is beyond the scope of this paper (see
[5, 3, 7, 6, 16] for additional details).

3.2 The Socket Interface

The Socket interface was originally developed in BSD UNIX
to provide an interface to the TCP/IP protocol suite [3]. From
an application’s perspective, a Socket is a local endpoint of
communication that is bound to an address residing on a lo-
cal or a remote host. Sockets are accessed viahandles, which
are are also referred to asdescriptors.

In UNIX, Socket handles share the same namespace as
other handles,e.g., file, pipe, and terminal device handles.
Handles provide an encapsulation mechanism that shields
applications from knowledge of internal OS data structures.
A handle identifies a particular communication endpoint

maintained by the OS.
The Socket interface is shown in Figure 2. This interface

so
ck
et
()

b
in
d
()

co
n
n
ec
t(
)

li
st
en
()

ac
ce
p
t(
)

re
ad
()

w
ri
te
()

re
ad
v
()

w
ri
te
v
()

re
cv
()

se
n
d
()

re
cv
fr
o
m
()

se
n
d
to
()

re
cv
m
sg
()

se
n
d
m
sg
()

se
ts
o
ck
o
p
t(
)

g
et
so
ck
o
p
t(
)

g
et
p
ee
rn
am

e(
)

g
et
so
ck
n
am

e(
)

g
et
h
o
st
b
y
n
am

e(
)

g
et
se
rv
b
y
n
am

e(
)

Figure 2: Functions in the Socket Interface

contains around two dozen system calls that can be classified
into the following categories:

Local context management: The Socket interface pro-
vides the following functions for managing local context in-
formation:

� socket – which allocates the lowest unused Socket
handle;

� bind – which associates a Socket handle with a local
or remote address;

� getsockname and getpeername – which deter-
mine the local or remote address, respectively, a Socket
is connected with;

� close – which deallocates a Socket handle, making it
available for subsequent reuse.

Connection establishment and connection termination:
The Socket interface provides the following functions for es-
tablishing and terminating connections:

� connect – a client typically usesconnect to ac-
tivelyestablish a connection with a server;

� listen – a server useslisten to indicate it willing-
ness to listenpassivelyfor incoming client connection
requests;

� accept – a server usesaccept to create a new end-
point of communication to service a client;

� shutdown – which selectively terminates the read-
side and/or write-side stream of a bi-directional connec-
tion.

Data transfer mechanisms: The Socket interface pro-
vides the following functions that send and receive data:

� read/write – which receive and transfer buffers of
data via a particular handle;

� send/recv – which are similar toread /write ,
though they provide an extra parameter that controls
certain Socket-specific operations (such as exchanging
“urgent” data or “peeking” at data in a receive queue
without removing it from the queue);

3

� sendto/recvfrom – which exchange connection-
less datagrams;

� readv/writev – which support scatter-read and
gather-write semantics, respectively (these operations
optimize user/kernel mode switching and simplify
memory management);

� sendmsg/recvmsg – which are general-purpose
functions that subsume the behavior of all the other
data transfer functions. For UNIX-domain Sockets, the
sendmsg and recvmsg functions also provide the
ability to pass “access rights” (such as open file handles)
between arbitrary processes on the same host machine.

Note that these interfaces also can be used for other types of
I/O, such as files and terminals.

Options management: The Socket interface defines the
following functions that allow users to alter the default se-
mantics of Socket behavior:

� setsockopt and getsockopt – which modify
or query options within different layers in a protocol
stack. Options include multicasting, broadcasting, and
setting/getting the size of send and receive transport
buffers;

� fcntl andioctl – which are UNIX system calls that
enable asynchronous I/O, non-blocking I/O, and urgent
message delivery on Sockets.

In addition to the Socket functions describe above, com-
munication software may use the following standard library
functions and system calls:

� gethostbyname and gethostbyaddr – which
handle various aspects of network addressing such as
mapping host names to IP addresses;

� getservbyname – which identifies services by their
port numbers or humanly-readable names;

� ntohl, ntohs, htonl, htons – which per-
form network byte-order transformations;

� select – which performs I/O-based and timer-based
event demultiplexing on sets of open handles.

3.3 The TLI Interface

TLI is an alternative interface for accessing communication
protocol stacks. TLI provides basically the same set of ser-
vices that Sockets does. However, it places greater emphasis
on shielding applications from the details of the underlying
transport provider. [5] discusses TLI in detail.

3.4 STREAM Pipes

STREAM pipes are an enhancement to the original UNIX
pipe mechanism. Earlier generation UNIX pipes provided a
single uni-directional stream of bytes from a writer endpoint
to a reader endpoint. STREAM pipes support bi-directional

delivery of bytestream and prioritized message data between
processes and/or threads executing on the same host machine
[16]. Although thepipe system call interface remains the
same, STREAM pipes offer additional functionality that is
roughly equivalent to UNIX-domainSOCKSTREAMSock-
ets. They are somewhat more flexible than UNIX-domain
Sockets, however, since they enable STREAM modules to
be “pushed” and “popped” to and from pipe endpoints.

By default, a STREAM pipe provides only a single chan-
nel of data between its two endpoints. Therefore, if mul-
tiple senders write to the pipe all the messages are placed
into the same communication channel. This is often too re-
strictive since multiplexing data from multiple clients over
a single channel must be programmed manually. For exam-
ple, each message must include an identifier that enables the
receiver to determine which sender transmitted the message.
By using mounted STREAM pipes and theconnld module
[17], applications may dedicate a separate non-multiplexed
I/O channel between a server and each instance of a client.

STREAM pipes andconnld work as follows. The server
invokes thepipe system call, creating a bi-directional end-
point of communication. Thefattach system call mounts
a pipe handle at a designated location in the UNIX file
system. A server application may be created by pushing
the connld STREAM module onto the mounted end of
the STREAM pipe. A client application running on the
same host machine as the server subsequently opens the file-
name associated with the mounted pipe. At this point, the
connld module ensures that the client and server each re-
ceive a unique I/O handle identifying a non-multiplexed, bi-
directional channel of communication.

3.5 The FIFO Interface

UNIX FIFOs (also called named pipes [6]) are a restricted
form of a STREAM pipe. Unlike STREAM pipes, FIFOs
offer only a uni-directional data channel from one or more
senders to a single receiver. Moreover, messages from dif-
ferent senders are all placed into the same communication
channel. Therefore, some type of demultiplexing identifier
must be included explicitly in each message to enable the
receiver to determine which sender transmitted the message.

The STREAMS-based implementation of FIFOs in SVR4
UNIX provides both message and bytestream data delivery
semantics. In contrast, earlier versions of UNIX (such as
SVR3 and SunOS 4.x) only provide bytestream-oriented FI-
FOs. Therefore, unless fixed length messages are always
used, each message sent via a FIFO must be distinguished
by some form of byte count or special termination symbol.
This allows a receiver to extract messages from the FIFO
bytestream. FIFOs are described further in [5, 6, 16].

4

#include <sys/types.h>
#include <sys/socket.h>

const int PORT_NUM = 10000;

int buggy_echo_server (void)
{

sockaddr s_addr;
int length; // (1) uninitialized variable.
char buf[BUFSIZ];
int s_fd, n_fd;
// Create a local endpoint of communication.
if (s_fd = socket (PF_UNIX, SOCK_DGRAM, 0) == -1)

return -1;
// Set up the address information to become a server.
// (2) forgot to "zero out" structure first...
s_addr.sin_family = AF_INET;
// (3) used the wrong address family ...
s_addr.sin_port = PORT_NUM;
// (4) forgot to use htons() on PORT_NUM...
s_addr.sin_addr.s_addr = INADDR_ANY;
if (bind (s_fd, (sockaddr *) &s_addr,

sizeof s_addr) == -1)
perror ("bind"), exit (1);

// (5) forgot to call listen()

// Create a new endpoint of communication.
// (6) doesn’t make sense to accept a SOCK_DGRAM!
if (n_fd = accept (s_fd, &s_addr, &length) == -1) {

// (7) Omitted a crucial set of parens...
int n;
// (8) doesn’t make sense to read from the s_fd!
while ((n = read (s_fd, buf, sizeof buf)) > 0)

// (9) forgot to check for "short-writes"
write (n_fd, buf, n);

// Remainder omitted...
}

}

Figure 3: Buggy Echo Server

4 Problem: Limitations with Existing
IPC interfaces

Sockets, TLI, STREAM pipes, and FIFOs provide a wide
range of interfaces for accessing local and remote IPC mech-
anisms. These interfaces share several limitations, however.
The following discussion focuses on limitations with the
Socket interface, though most of these limitations apply to
the other network programming interfaces, as well.

High potential for error: In UNIX and Win32, handles
for Sockets, files, pipes, terminals, and other devices are
identified using “weakly-typed” integer or pointer values.
This weak type checking enables subtle errors to occur at
run-time. For example, the Socket interface cannot enforce
the correct use of Socket functions for different communica-
tion roles (such as active vs. passive connection establish-
ment or datagram vs. stream communication). Moreover, a
compiler cannot detect or prevent erroneous use of handles
since handles are weakly typed. Thus, operations may be
applied incorrectly on handles,e.g.,invoking a data transfer
operation on a handle set up for establishing connections.

Figure 3 depicts the following subtle and all-too-common
bugs that occur when using the Socket interface:

1. Forgetting to initialize thelen parameter toaccept
to the size ofstruct sockaddr in ;

2. Forgetting to initialize all bytes in the Socket address
structure to “0”;

3. Using an address family type that is inconsistent with
the protocol family of the Socket;

4. Neglecting to use thehtons library function to con-
vert port numbers from host byte-order to network byte-
order and vice versa;

5. Omitting the listen system call when creating a
passive-modeSOCKSTREAMSocket;

6. Applying the accept function on aSOCKDGRAM
Socket;

7. Erroneously omitting a key set of parentheses in an as-
signment expression;

8. Trying to read from a passive-mode Socket that should
only be used to accept connections;

9. Failing to properly detect and handle “short-writes” that
occur due to buffering.

Several of the problems listed above are classic problems
with C. For instance, by omitting the parentheses in the ex-
pression
if (n_fd = accept (s_fd, &s_addr, &length) == -1)

the value ofn fd will always be set to either 0 or 1, depend-
ing on whetheraccept() == -1 .

A deeper problem is that C data structures lack adequate
abstraction. For example, the genericsockaddr address
structure forces the use of typecasts to provide a form of in-
heritance for Internet domain and UNIX-domain addresses.
These “subclass” address structures,sockaddr in and
sockaddr un , respectively, overlay thesockaddr “base
class.”

In general, the use of typecasts, combined with the
weakly-typed handle-based Socket interface, makes it very
hard for a compiler to detect mistakes at compile-time. In-
stead, error checking is deferred until run-time, which com-
plicates error handling and reduces application robustness.

Complex interface: Sockets provides a single inter-
face that supports multiple protocol families like TCP/IP,
IPX/SPX, ISO OSI, and UNIX-domain Sockets. The
Socket interface contains many functions to support differ-
entcommunication roles(such as active vs. passive connec-
tion establishment),communication optimizations(such as
writev that sends multiple buffers in a single system call),
andoptionsfor infrequently used operations such as broad-
casting, multicasting, asynchronous I/O, and urgent data de-
livery.

Although Sockets combine this functionality into a com-
mon interface, the resulting mechanism is complex and hard
to master. This complexity stems from the overly broad
andone-dimensional designof the Socket interface. For in-
stance, all the functions appear at a single level of abstrac-
tion, as shown in Figure 2. This design increases the amount

5

of effort required to learn and use Sockets correctly. Thus,
programmers must understand the entire Socket interface,
even if they only use part of it.

If Sockets are examined carefully, however, it becomes
clear that the interface may be decomposed into the follow-
ing three clusters of functionality:

1. Type of communication service– i.e., stream vs. data-
gram vs. connected datagram;

2. Communication role– i.e.,active vs. passive (clients are
typically active, whereas servers are typically passive);

3. Communication domain– i.e., local vs. local/remote.

Figure 4 clusters the related Socket functions according to
these criteria.

LOCALLOCAL LOCALLOCAL//REMOTEREMOTE

S
T

R
E

A
M

S
T

R
E

A
M

ACTIV
E

ACTIV
E

PASSIV
E

PASSIV
E

D
A

T
A

D
A

T
A

G
R

A
M

G
R

A
M

C
O

N
N

E
C

T
E

D
C

O
N

N
E

C
T

E
D

D
A

T
A

G
R

A
M

D
A

T
A

G
R

A
M

T
Y

P
E

O

F

C
O

M
M

U
N

IC
A

T
IO

N

S
E

R
V

IC
E

T
Y

P
E

O

F

C
O

M
M

U
N

IC
A

T
IO

N

S
E

R
V

IC
E

COMMUNICATION DOMAINCOMMUNICATION DOMAIN

CONNECTIO
N

CONNECTIO
N

ROLE
ROLE

accept(PF_UNIX)accept(PF_UNIX)
listen() send()/recv()listen() send()/recv()

socket(PF_UNIX)socket(PF_UNIX)
bind() sendto()bind() sendto()

socket(PF_UNX)socket(PF_UNX)
bind() recvfrom()bind() recvfrom()

socket(PF_INET)socket(PF_INET)
bind() recvfrom()bind() recvfrom()

socket(PF_INET)socket(PF_INET)
bind() sendto()bind() sendto()

socket(PF_UNIX)socket(PF_UNIX)
bind() connect() send()bind() connect() send()

socket(PF_UNIX)socket(PF_UNIX)
bind() connect() recv()bind() connect() recv()

socket(PF_INET)socket(PF_INET)
 bind() connect() send() bind() connect() send()

socket(PF_INET)socket(PF_INET)
bind() connect() recv()bind() connect() recv()

socket(PF_UNIX) bind()socket(PF_UNIX) bind()
connect() send()/recv()connect() send()/recv()

accept(PF_INET)accept(PF_INET)
listen() send()/recv()listen() send()/recv()

socket(PF_INET) bind()socket(PF_INET) bind()
connect() send()/recv()connect() send()/recv()

Figure 4: Socket Dimensions

Since the interface is one-dimensional, however, this natural
clustering is obscured. Section 6 illustrates how this classi-
fication can be restructured into a hierarchy of classes that
simplify the Socket interface and enhance the type-safety of
communication software.

Non-uniform: Another problem with the Socket interface
is that its several dozen functions lack a uniform naming con-
vention. Non-uniform naming makes it hard to determine the
scope of the Socket interface. For example, it is not immedi-
ately obvious thatsocket , bind , accept , andconnect
are related. Other network programming interfaces solve this
problem by prepending common prefix before each function.
For example, at is prepended before each function in the
TLI library.

However, the TLI interface also contains operations with
overly complex semantics. For example, unlike the Socket
interface, the TLI option handling interface is not speci-
fied in a standard manner. This makes it hard to write
portable applications that access standard TCP/IP options.
Likewise, subtle application-level code is necessary to han-
dle the non-intuitive, error-prone behavior oft listen and
t accept in a concurrent server with aqlen > 1 [5].

5 Solution: the IPC SAP C++ Wrap-
pers

5.1 Overview

IPC SAP encapsulates common handle-based IPC inter-
faces such as Sockets, TLI, STREAM pipes, and FIFOs. As
shown in Figure 5,IPC SAP is designed as a forest of class

IPC_SAP

A

SOCK_SAP TLI_SAP FIFO_SAPSPIPE_SAP

SOCKET

API

TRANSPORT

LAYER

INTERFACE API

STREAM PIPE

API

NAMED PIPE

API

Figure 5: IPC SAP Class Category Relationships

categories that includesSOCK SAP(which encapsulates the
Socket interface),TLI SAP (which encapsulates the TLI in-
terface),SPIPE SAP(which encapsulates the UNIX SVR4
STREAM pipe interface), andFIFO SAP (which encapsu-
lates the UNIX FIFO interface).

Each class category is organized as an inheritance hierar-
chy. Every subclass provides a well-defined interface to a
subset of existing IPC mechanisms. Together, the subclasses
within a hierarchy comprise the overall functionality of a
particular communication abstraction, such as the Internet-
domain or UNIX-domain protocol families. This section de-
scribes the design goals ofIPC SAP, outlines its class cat-
egories, and discusses the principles that underly its OO de-
sign.

5.2 IPC SAP Design Goals

IPC SAP is designed to improve thecorrectness, ease of
learningandease of use, portability, andreusabilityof com-
munication software, while maintaining a high level of per-
formance and functionality. This section discusses howIPC
SAPachieves these goals.

5.2.1 Improve Correctness

Several of the problems with Sockets are related to its weak
typechecking.IPC SAP improves the correctness of appli-
cation networking code by permitting only “type-safe” op-
erations on instances of its classes. To enforce type-safety,
IPC SAP ensures all of its objects are properly initialized
via constructors. In addition, only well-defined operations
are permitted onIPC SAP objects.

IPC SAP is designed to prevent accidental violations of
type-safety. For example, components in theSOCK SAP

6

class category prevent the accidental use of connection-
oriented operations on datagram objects. Therefore, it is im-
possible to invoke theaccept method on a datagram object,
recv or send data on a connector or acceptor factory ob-
ject, or invoke asendto operation on a connection-oriented
object.

SinceIPC SAP classes are strongly typed, any attempts
to perform invalid operations are rejected at compile-time
rather than at run-time. This point is illustrated in the re-
visedSOCK SAPversion ofbuggy echo server shown
in Figure 14. This example fixes all the problems with Sock-
ets identified in Figure 3.

5.2.2 Enhance Ease of Learning and Ease of Use

Simplifying the use of common IPC operations is a goal re-
lated to correctness. By providing simpler interfaces, devel-
opers are able to concentrate on writing applications, instead
of wrestling with low-level networking code. In general,
IPC SAP simplifies its network programming interfaces as
follows:

Provides auxiliary classes that shield applications from
error-prone details: For instance,IPC SAP contains the
Addr class hierarchy shown in Figure 6.1 This hierarchy

 Addr Addr

 INET INET
AddrAddr

 UNIX UNIX
AddrAddrSPIPESPIPE

AddrAddr

Figure 6: TheIPC SAP Address Class Hierarchy

supports several diverse network addressing formats via a
type-secure C++ interface. TheAddr hierarchy eliminates
several common programming errors associated with using
the C-basedstruct sockaddr data structures directly.
For example, it is no longer possible to forget to zero-out a
sockaddr addressing structure.

Combines several operations to form a single operation:
For instance, theACESOCKAcceptor is a factory for
passive connection establishment. Its constructor performs
the various Socket system calls (such assocket , bind ,
andlisten) required to create a passive-mode server end-
point;

Supplies default parameters for typical method argu-
ment values: For instance, the addressing parameters to
accept are frequently NULL pointers. To simplify pro-
gramming, these values are given as C++ default parame-
ters inSOCKAcceptor::accept , so that programmers
don’t have to provide them explicitly.

1To reduce clutter, theACE prefix has been omitted from all ACEIPC
SAPclass names shown in the figures.

Utilizes traits to convey “metaclass” information: For
instance, everyIPC SAP class contains a uniform set of
traits. These traits aretypedef ’d to designate the ad-
dress class (e.g., ACEINET Addr) and/or stream class
(e.g.,ACETLI Stream) associated with eachIPC SAP
type, as follows:

class ACE_SOCK_Connector
{
public:

// Traits
typedef ACE_INET_Addr PEER_ADDR;
typedef ACE_SOCK_Stream PEER_STREAM;
// ...

};

class ACE_TLI_Connector : public ACE_SOCK
{
public:

// Traits
typedef ACE_INET_Addr PEER_ADDR;
typedef ACE_TLI_Stream PEER_STREAM;
//...

};

As shown in Section 7, the use of traits in conjunction
with C++ parameterized types supports a powerful design
paradigm known as “generic programming” [18].

5.2.3 Increase Reusability

Inheritance-based hierarchical decomposition is used inIPC
SAP to increase the amount of common code shared by the
various IPC mechanisms. For instance,IPC SAP provides
a C++ interface to lower-level OS device control system calls
like fcntl andioctl . Inheritance enhances reuse within
the IPC SAP implementation by sharing code between dif-
ferent subclasses.

For example, theIPC SAP root base class provides stan-
dard methods and data that is shared by the other derived
classes. These shared components provide a handle and its
relatedset/get methods. In addition, methods are pro-
vided to enable and disable asynchronous I/O, non-blocking
I/O, and urgent message delivery on the handle.

5.2.4 Portability

Several C++ features help to enhanceIPC SAP portability.
For example,IPC SAPprovides a platform-independent in-
terface that improves communication software portability by
using C++ templates. As illustrated in Figure 7, a subset of
the SOCK SAPand TLI SAP classes offer the same OO
interface. Each platform may possess a different underlying
interface for local and remote network programming (e.g.,
Sockets vs. TLI). However, it is possible to write appli-
cations that can be parameterized transparently with either
class. This enhances application portability across OS plat-
forms that may not support both Sockets and TLI.

The use of classes (as opposed to stand-alone functions)
helps to simplify network programming by allowing applica-
tions to be parameterized by the type of IPC mechanism they
require. As discussed in Section 8, parameterization helps to

7

OSOS KERNEL KERNEL

PROTOCOL MECHANISMSPROTOCOL MECHANISMS

((TCPTCP//IPIP,, OSI,OSI, ETC ETC.).)

USERUSER

SPACESPACE

DISTRIBUTED

APPLICATION 1

APPLICATIONAPPLICATION11 DISTRIBUTED

APPLICATION 3

APPLICATIONAPPLICATION33DISTRIBUTED

APPLICATION 2

APPLICATIONAPPLICATION22

KERNELKERNEL

SPACESPACE

BSD SOCKET

API

COMMON INTERFACECOMMON INTERFACE

((PARAMETERIZED TYPESPARAMETERIZED TYPES))

SOCKETSOCKET

API

SOCK_SAP

BSD SOCKET

API

SYSTEM V
TLI API

TLI_SAP

NETWORK

INTERFACE

Figure 7: Using C++ Templates to Enhance Portability

improve portability among platforms that support different
network programming interfaces (such as Sockets or TLI).

5.2.5 Performance

To encourage developers to substituteIPC SAP for existing
interfaces, it is designed to operate efficiently. The follow-
ing techniques help improve performance without sacrificing
clarity and modularity:

Use inline functions: Many IPC SAP methods are spec-
ified as C++ inline functions. This eliminates the extra run-
time overhead of callingIPC SAP methods. Inlining is a
reasonable approach since each method is very short (aver-
aging approximately 3 lines per method).

Avoid virtual functions: Virtual functions are not used
in the IPC SAP inheritance hierarchy. This improves per-
formance since (1) it eliminates indirectvtable function
pointer dispatching and (2) it facilitates the direct inlining of
certain short, frequently-accessed methods (such as sending
and receiving user data).

6 The Object-Oriented Design of IPC
SAP

This section describes the OO design of the C++ class cat-
egories that comprise IPC SAP, with particular emphasis
on the design of theSOCK SAPC++ wrapper for Sock-
ets. SOCK SAPhas been ported to many UNIX platforms,
as well as to the WinSock network programming interface.
Readers who are not interested in this level of detail may
want to skip to Section 8, which discusses the general prin-
ciples underlying the design of theSOCK SAPwrappers.

6.1 Overview of SOCK SAP

SOCK SAPis designed to overcome the limitations with
Sockets described in Section 4. The primary benefits of us-

ing C++ wrappers to encapsulate the Socket interface are:

� Enhanced typesafety– SOCK SAPdetects many subtle
application typesystem violations at compile-time.

� Portability – SOCK SAPprovides a portable platform-
independent network programming interface.

� Ease of use– SOCK SAPgreatly reduces the amount
of application code and development effort expended
on lower-level network programming details.

� Efficient– SOCK SAPenhances the software qualities
listed above without sacrificing performance [1].

TheSOCK SAPclass category provides applications with
an OO interface to the Internet-domain and UNIX-domain
protocol families [6]. SOCK SAPconsists of�12 C++
classes. The general structure ofSOCK SAPcorresponds to
the taxonomy ofcommunication services, connection roles,
andcommunication domainsshown in Figure 8. It is instruc-

LOCAL LOCAL/REMOTE

S
T

R
E

A
M

ACTIV
E

PASSIV
E

D
A

T
A

G
R

A
M

C
O

N
N

E
C

T
E

D
D

A
T

A
G

R
A

M

LOCK_Connector
 LSOCK_Stream

 SOCK_Connector
SOCK_Stream

SOCK_Acceptor
SOCK_Stream

 SOCK_Dgram

 LSOCK_CODgram SOCK_CODgram

 LSOCK_Dgram SOCK_Dgram_Bcast

 LSOCK_Dgram SOCK_Dgram

 LSOCK_Dgram

LSOCK_AcceptorLSOCK_Acceptor
LSOCK_StreamLSOCK_Stream

SOCK_Dgram_McastSOCK_Dgram_Mcast

 SOCK_Dgram SOCK_Dgram

T
Y

P
E

O

F

C
O

M
M

U
N

IC
A

T
IO

N

S
E

R
V

IC
E

T
Y

P
E

O

F

C
O

M
M

U
N

IC
A

T
IO

N

S
E

R
V

IC
E

COMMUNICATION DOMAINCOMMUNICATION DOMAIN

CONNECTIO
N

CONNECTIO
N

ROLE
ROLE

Figure 8: Taxonomy of SOCK SAP Classes and Communi-
cation Dimensions

tive to compare Figure 4 with Figure 8. The components
in Figure 8 are more concise since they use C++ wrappers
to encapsulate the behavior of multiple Socket mechanisms
within classes related by inheritance.

Each class inSOCK SAPprovides an abstract interface
for a subset of mechanisms that comprise the overall class
category. The functionality of various types of Internet-
domain and UNIX-domain Sockets is achieved by inherit-
ing mechanisms from the appropriate classes described be-
low. These classes and their relationships are illustrated via
Booch notation [19] in Figure 9.2

Applications access the functionality of the underlying
Internet-domain or UNIX-domain Socket types by inherit-
ing or instantiating the appropriateSOCK SAPsubclasses

2Dashed clouds indicate classes and directed edges indicate inheritance
relationships between these classes,e.g.,ACESOCKStream inherits from
ACESOCK.

8

 LSOCK LSOCK
DgramDgram

 SOCK SOCK
DgramDgram

 SOCK SOCK
CODgramCODgram

 LSOCK LSOCK
CODgramCODgram

 LSOCK LSOCK
ConnectorConnector

 LSOCK LSOCK
AcceptorAcceptor

 SOCK SOCK
AcceptorAcceptor

 SOCK SOCK
ConnectorConnector

 SOCK SOCK

AA

 LSOCK LSOCK

AA

IPCIPC
SAPSAP

AA

 SOCK SOCK
DgramDgram
McastMcast

 SOCK SOCK
DgramDgram
BcastBcast

GROUPGROUP

COMMCOMM

DATAGRAMDATAGRAM

COMMCOMM

STREAMSTREAM

COMMCOMM

CONNECTIONCONNECTION

ESTABLISHMENTESTABLISHMENT

SOCKSOCK
StreamStream

LSOCKLSOCK
StreamStream

Figure 9: TheSOCK SAPClass Categories

shown in Figure 9. TheACESOCK* subclasses encap-
sulate Internet-domain functionality and theACELSOCK*
subclasses encapsulate UNIX-domain functionality, as de-
scribed below.

6.1.1 Base Classes

TheIPC SAP, ACESOCK, andACELSOCKclasses anchor
the inheritance hierarchy and enable subsequent derivation
and code sharing. Objects of these classes cannot be instanti-
ated since their constructors are declared in theprotected
section of the class definition.

IPC SAP: This class is the root of theIPC SAP hierar-
chy of C++ wrappers for interprocess communication mech-
anisms. It provides mechanisms common to allIPC SAP
components,i.e., SOCK SAP, TLI SAP , SPIPE SAP,
andFIFO SAP. For instance, it provides methods that set
a handle into non-blocking mode or enable asynchronous,
signal-driven I/O.

SOCK: This class is the root of theSOCK SAPhierarchy.
It provides mechanisms common to all other classes, such as
opening and closing local endpoints of communication and
handling options (like selecting Socket queue sizes and en-
abling group communication).

LSOCK: This class provides mechanisms that allow ap-
plications to send and receive open file handles between un-
related processes on the local host machine (hence the prefix
’L’). Note that System V and BSD UNIX both support this
feature, though Windows NT does not. Other classes inherit
from ACELSOCKto obtain this functionality.

SOCK SAPdistinguishes between theACELSOCK*and
ACESOCK* classes on the basis of network address for-
mats and communication semantics. In particular, the

ACELSOCK*classes use UNIX pathnames as addresses and
allow only intra-machine IPC. TheACESOCK*classes, on
the other hand, use Internet Protocol (IP) addresses and port
numbers and allow both intra- and inter-machine IPC.

6.1.2 Connection Establishment

Communication software is typified by asymmetric connec-
tion roles between clients and servers. In general, servers
listen passivelyfor clients to initiate connectionsactively
[20]. The structure of passive/active connection establish-
ment and data transfer relationships are captured by the fol-
lowing connection-orientedSOCK SAPclasses:

ACE SOCK Acceptor
and ACE LSOCK Acceptor: These classes are facto-
ries [21] that passively establish new endpoints of com-
munication in response to active connection requests. The
ACESOCKAcceptor andACELSOCKAcceptor pro-
duceACESOCKStream andACELSOCKStream con-
nection endpoint objects, respectively.

ACE SOCK Connector and ACE LSOCK Connector:
These classes are factories that actively establish new
endpoints of communication. These classes establish
connections with remote endpoints and produce the ap-
propriate *Stream object when a connection is estab-
lished. A connection may be initiated either synchronously
or asynchronously. TheACESOCKConnector and
ACELSOCKConnector factories produce
ACESOCKStream andACELSOCKStream connection
endpoint objects, respectively.

Note that the*Acceptor andConnector classes pro-
vide no methods for sending or receiving data. Instead, they

9

are factories that produce the*Stream data transfer ob-
jects described below. The use of strongly-typed factory in-
terfaces detects and prevents accidental misuse of local and
non-local*Stream objects at compile-time. In contrast,
the Socket interface can only detect these type mismatches
at run-time.

6.1.3 Stream Communication

Although establishing connections requires a distinction be-
tween active and passive roles, once a connection is estab-
lished data may be exchanged in any order according to the
protocol used by the endpoints.SOCK SAPisolates the data
transfer behavior in the following classes:

ACE SOCK Stream and ACE LSOCK Stream: These
classes are created by the*Acceptor or *Connector
factories described above. The*Stream classes provide
mechanisms for transferring data between two processes.
ACELSOCKStream objects exchange data between pro-
cesses on the same host machine;ACESOCKStream ob-
jects exchange data between processes that can reside on dif-
ferent host machines.

The overloadedsend andrecv *Stream methods pro-
vide standard UNIXwrite andread semantics. Thus, a
send or recv may write or read less, respectively, than the
requested number of bytes. These “short-writes” and “short-
reads” occur due to buffering in the OS and flow control in
the transport protocol. To reduce programming effort, the
the *Stream classes providesend n and recv n meth-
ods that allow transmission and reception of exactlyn bytes.
“Scatter-read” and “gather-write” methods are also provided
to efficiently send and receive multiple buffers of data simul-
taneously.

6.1.4 Datagram Communication

This paper focuses primarily on connection-oriented stream
communication. However, the Socket interface also provides
connectionless service that uses the IP and UDP protocols in
the Internet protocol suite. IP and UDP are unreliable data-
gram services that do not guarantee a particular message will
arrive at its destination. Connectionless service is used by
applications (such asrwho daemons [6]) that can tolerate
some degree of loss. In addition, IP and UDP provide a foun-
dation for higher-layer reliable protocols like TCP and Sun
RPC.

The SOCK SAPSocket wrappers encapsulate Socket
datagram communication with the following classes:

ACE SOCK Dgram and ACE LSOCK Dgram: These
classes provide mechanisms for exchanging datagrams be-
tween processes running on local and/or remote hosts.
Unlike the connected-datagram classes described below,
each send and recv operation must provide the ad-
dress of the service with every datagram sent or received.
ACELSOCKDgram inherits all the operations of both
ACESOCKDgram and ACELSOCK. It only exchanges

datagrams between processes on the same host. The
ACESOCKDgram class, on the other hand, may exchange
datagrams between processes on local and/or remote hosts.

ACE SOCK CODgram and ACE LSOCK CODgram:
These classes provide a “connected-datagram” mechanism.
Unlike the connectionless classes described above, these
classes allow thesend and recv operations to omit the
address of the service when exchanging datagrams. Note
that the connected-datagram mechanism is only a syntactic
convenience since there are no additional semantics associ-
ated with the data transfer (i.e., datagram delivery remains
unreliable). ACESOCKCODgram inherits mechanisms
from the ACESOCKbase class. ACELSOCKCODgram
inherits mechanisms from bothACESOCKCODgramand
ACELSOCK(which provides the ability to pass file handles).

6.1.5 Group Communication

Standard TCP and UDP communication is point-to-point.
However, some applications benefit from more flexible
delivery mechanisms that provide group communication.
Therefore, the following classes encapsulate the multicast
and broadcast protocols provided by the Internet protocol
suite:

ACE SOCK Dgram Mcast: This class provides mecha-
nisms for multicasting UDP datagrams to processes running
on local and/or remote hosts attached to local subnets. The
interface for this class supports the multicast of datagrams to
a particular multicast group. This class shields the end-user
from the low-level details required to utilize multicasting ef-
fectively.

ACE SOCK Dgram Bcast: This class provides mecha-
nisms for broadcasting UDP datagrams to processes running
on local and/or remote hosts attached to local subnets. The
interface for this class supports the broadcast of datagrams
to (1) all network interfaces connected to the host machine
or (2) a particular network interface. This class shields the
end-user from the low-level details required to utilize broad-
casting effectively.

The ACESOCKDgram Bcast class is used below to
broadcast a message to all servers listening on a designated
port number in a LAN subnet:

int
main (int argc, char *argv[])
{

ACE_SOCK_Dgram_Bcast b_sap (ACE_Addr::sap_any);
char *msg;
u_short b_port;

msg = argc > 1 ? argv[1] : "hello world\n";
b_port = argc > 2 ? atoi (argv[2]) : 12345;

if (b_sap.send (msg, strlen (msg),
b_port) == -1)

perror ("can’t send broadcast");
return 0;

}

10

It is instructive to compare this concise example with the
dozens of lines of C source code required to implement
broadcasting using the Socket interface directly.

6.2 Network Addressing

Designing an efficient, general-purpose network addressing
interface is hard. The difficulty stems from trying to repre-
sent different network address formats with a space efficient
and uniform interface. Different address formats store di-
verse types of information represented with various sizes.

For example, an Internet-domain service (such asftp
or telnet) is identified using two fields: (1) a four-byte
IP address (which uniquely identifies the remote host ma-
chine throughout the Internet) and (2) a two-byte port num-
ber (which is used to demultiplex incoming protocol data
units to the appropriate client or server process on the re-
mote host machine). In contrast, UNIX-domain Sockets ren-
dezvous via UNIX pathnames (which may be up to 108 bytes
in length and are meaningful only on a single local host ma-
chine).

The existingsockaddr -based network addressing struc-
tures provided by the Socket interface is cumbersome and
error-prone. It requires developers to explicitly initialize all
the bytes in the address structure to 0 and to use explicit
casts. In contrast, theSOCK SAPaddressing classes shown
in Figure 6 contain mechanisms for manipulating network
addresses.

The constructors for theAddr base class ensure that all
fields are automatically initialized correctly. Moreover, the
different sizes, formats, and functionality that exist between
different address families are encapsulated in the derived ad-
dress subclasses. This makes it easier to extend the network
addressing scheme to encompass new communication do-
mains. For example, theUNIX Addr subclass is associ-
ated with theACELSOCK* classes, theACEINET Addr
subclass is associated with theACESOCK*andACETLI*
classes, and theSPIPE Addr subclass is associated with
the STREAM pipe wrappers inSPIPE SAP.

6.3 TLI SAP

The TLI SAP class category provides a C++ interface to
the System V Transport Layer Interface (TLI). TheTLI
SAP inheritance hierarchy for TLI is almost identical to the
SOCK SAPC++ wrapper for Sockets. The primary dif-
ference is that TLI andTLI SAP do not define an inter-
face to the UNIX-domain protocol family. By combining
C++ features (such as default parameter values and tem-
plates) together with thetirdwr (theread/write com-
patibility STREAMS module), it becomes relatively straight-
forward to develop applications that may be parameterized at
compile-time to operate correctly over either a Socket or TLI
network programming interface.

The following code illustrates how C++ templates may be
applied to parameterize the IPC mechanisms used by an ap-
plication. This code was extracted from the distributed log-

ging facility described in [22]. In the code below, a subclass
derived fromEvent Handler is parameterized by a par-
ticular type of network programming interface and its corre-
sponding protocol address class:

// Logging_Handler header file.
template <class PEER_STREAM>
class Logging_Handler : public Event_Handler
{
public:

Logging_Handler (void);
virtual ˜Logging_Handler (void);

virtual int handle_close (int);
virtual int handle_input (int);
virtual int get_handle (void) const
{

return this->xport_sap.get_handle ();
}

protected:
PEER_STREAM xport_sap;

};

Depending on certain properties of the underlying OS plat-
form (such as whether it is BSD-based SunOS 4.x or System
V-based SunOS 5.x), the logging application may instantiate
the Client Handler class to use eitherSOCK SAPor
TLI SAP , as shown below:

#if defined (MT_SAFE_SOCKETS)
typedef ACE_SOCK_Stream PEER_STREAM;
#else
typedef ACE_TLI_Stream PEER_STREAM;
// Logging application.
#endif // MT_SAFE_SOCKETS.

class Logging_Handler :
public Logging_Handler<PEER_STREAM>

{
// ...

};

The increased flexibility offered by templates is useful
when developing portable applications that run on multiple
OS platforms. For instance, the ability to parameterize ap-
plications by network programming interface is necessary
across variants of SunOS platforms. In particular, the Socket
implementation in SunOS 5.2 was not thread-safe and the
TLI implementation in SunOS 4.x contained a number of se-
rious defects.

TLI SAP also shields applications from many peculiari-
ties of the TLI interface. For example, theaccept method
in the ACETLI Acceptor class encapsulates the subtle
application-level code required to handle the non-intuitive,
error-prone behavior oft listen andt accept in a con-
current server with aqlen > 1 [5]. Theaccept method
passively establishes client connection requests. Through the
use of C++ default parameter values, the standard method for
calling theaccept method is syntactically equivalent for
bothTLI SAP -based andSOCK SAP-based applications.

11

6.4 SPIPE SAP and FIFO SAP

The SPIPE SAP class category provides a C++ wrapper
interface for mounted STREAM pipes andconnld [17].
TheSPIPE SAPinheritance hierarchy mirrors the one used
for SOCK SAPand TLI SAP . It offers functionality that
is similar to theSOCK SAP ACELSOCK* classes (which
themselves encapsulate UNIX-domain Sockets). However,
SPIPE SAP is more flexible than theACELSOCK* in-
terface since it enables STREAM modules to be “pushed”
and “popped” to and fromSPIPE SAP endpoints, respec-
tively. SPIPE SAPalso supports bi-directional delivery of
bytestream and prioritized message data between processes
and/or threads executing within the same host machine [16].

The FIFO SAP class category encapsulates the UNIX
FIFO mechanism.

7 Programming with SOCK SAP C++
Wrappers

This section illustrates the ACESOCK SAPC++ wrappers
by using them to develop a client/server streaming applica-
tion. This application is a simplified version of thettcp
program described in [1]. For comparison, this application
is also written with Sockets. Most of the error checking has
been omitted in these examples to keep them short. Natu-
rally, robust programs should check the return values of li-
brary and system calls.

Figures 10 and 11 present a client/server program writ-
ten in C that uses Internet-domain Sockets andselect
to implement the stream application. The server shown in
Figure 11 creates a passive-mode listener Socket and waits
for clients to connect to it. Once connected, the server re-
ceives the data transmitted from the client and displays the
data on its standard output stream. The client-side shown
in Figure 10 establishes a TCP connection with the server
and transmits its standard input stream across the connec-
tion. The client uses non-blocking connections to limit the
amount of time it waits for a connection to be accepted or
refused.

Most of the error checking for return values has been omit-
ted to save space. However, it is instructive to note all the
Socket initialization, network addressing, and flow control
details that must be programmed explicitly to make even this
simple example work correctly. Moreover, the code in Fig-
ures 10 and 11 is not portable to platforms that do not support
both Sockets andselect .

Figures 12 and 13 useSOCK SAPto reimplement the C
versions of the client/server programs. TheSOCK SAPpro-
grams implement the same functionality as those presented
in Figure 10 and Figure 11. TheSOCK SAPC++ programs
exhibit the following benefits compared with the Socket-
based C implementation:

Increased clarity: e.g.,network addressing and host loca-
tion is handled by theAddr class shown in Figure 6, which

#define PORT_NUM 10000
#define TIMEOUT 5

/* Socket client. */

void send_data (const char host[], u_short port_num)
{

struct sockaddr_in peer_addr;
struct hostent *hp;
char buf[BUFSIZ];
int s_sd, w_bytes, r_bytes, n;

/* Create a local endpoint of communication */
s_sd = socket (PF_INET, SOCK_STREAM, 0);

/* Set s_sd to non-blocking mode. */
n = fcntl (s_sd, F_GETFL, 0);
fcntl (s_sd, F_SETFL, n | O_NONBLOCK);

/* Determine IP address of the server */
hp = gethostbyname (host);

/* Set up address information to contact server */
memset ((void *) &peer_addr, 0, sizeof peer_addr);
peer_addr.sin_family = AF_INET;
peer_addr.sin_port = port_num;
memcpy (&peer_addr.sin_addr,

hp->h_addr, hp->h_length);

/* Establish non-blocking connection server. */
if (connect (s_sd, (struct sockaddr *) &peer_addr,

sizeof peer_addr) == -1) {
if (errno == EINPROGRESS) {

struct timeval tv = {TIMEOUT, 0};
fd_set rd_sds, wr_sds;
FD_ZERO (&rd_sds);
FD_ZERO (&wr_sds);
FD_SET (s_sd, &wr_sds);
FD_SET (s_sd, &rd_sds);

/* Wait up to TIMEOUT seconds to connect. */
if (select (s_sd + 1, &rd_sds, &wr_sds,

0, &tv) <= 0)
perror ("connection timedout"), exit (1);

// Recheck if connection is established.
if (connect (s_sd,

(struct sockaddr *) &peer_addr,
sizeof peer_addr) == -1

&& errno != EISCONN)
perror ("connect failed"), exit (1);

}
}

/* Send data to server (correctly handles
"short writes" due to flow control) */

while ((r_bytes = read (0, buf, sizeof buf)) > 0)
for (w_bytes = 0; w_bytes < r_bytes; w_bytes += n)

n = write (s_sd, buf + w_bytes,
r_bytes - w_bytes);

/* Close down the connection. */
close (s_sd);

}

int main (int argc, char *argv[])
{

char *host = argc > 1 ? argv[1] : "ics.uci.edu";
u_short port_num =

htons (argc > 2 ? atoi (argv[2]) : PORT_NUM);

/* Send data to the server. */
send_data (host, port_num);
return 0;

}

Figure 10: Socket-based Client Example

12

#define PORT_NUM 10000

/* Socket server. */

void recv_data (u_short port_num)
{

struct sockaddr_in s_addr;
int s_sd;

/* Create a local endpoint of communication */
s_sd = socket (PF_INET, SOCK_STREAM, 0);

/* Set up the address information for a server */
memset ((void *) &s_addr, 0, sizeof s_addr);
s_addr.sin_family = AF_INET;
s_addr.sin_port = port_num;
s_addr.sin_addr.s_addr = INADDR_ANY;

/* Associate address with endpoint */
bind (s_sd, (struct sockaddr *) &s_addr,

sizeof s_addr);

/* Make endpoint listen for service requests */
listen (s_sd, 5);

/* Performs the iterative server activities */

for (;;) {
char buf[BUFSIZ];
int r_bytes, n_sd;
struct sockaddr_in peer_addr;
int peer_addr_len = sizeof peer_addr;
struct hostent *hp;

/* Create a new endpoint of communication */
while ((n_sd = accept (s_sd, &peer_addr,

&peer_addr_len)) == -1
&& errno == EINTR)

continue;

hp = gethostbyaddr (&peer_addr.sin_addr,
peer_addr_len, AF_INET);

printf ("client %s\n", hp->h_name);

/* Read data from client (terminate on error) */

while ((r_bytes = read (n_sd, buf, sizeof buf)) > 0)
write (1, buf, r_bytes);

/* Close the new endpoint
(listening endpoint remains open) */

close (n_sd);
}
/* NOTREACHED */

}

int main (int argc, char *argv[])
{

u_short port_num =
htons (argc > 1 ? atoi (argv[1]) : PORT_NUM);

// Receive data from clients.
recv_data (port_num);
return 0;

}

Figure 11: Socket-based Server Example

static const int PORT_NUM = 10000;
static const int TIMEOUT = 5;

// SOCK_SAP Client.

template <class CONNECTOR>
void send_data (CONNECTOR::PEER_ADDR peer_addr)
{

// Data transfer object.
CONNECTOR::PEER_STREAM peer_stream;

// Establish connection without blocking.
CONNECTOR connector

(peer_stream, peer_addr, ACE_NONBLOCK);

if (peer_stream.get_handle () == -1) {
// If non-blocking connection is in progress,
// wait up to TIMEOUT seconds to complete.
Time_Value timeout (TIMEOUT);

if (errno != EWOULDBLOCK ||
connector.complete

(peer_stream, peer_addr, &timeout) == -1)
perror ("connector"), exit (1);

}

// Send data to server (send_n() handles
// "short writes" correctly).

char buf[BUFSIZ];

for (int r_bytes;
(r_bytes = read (0, buf, sizeof buf)) > 0;)

peer_stream.send_n (buf, r_bytes);

// Explicitly close the connection.
peer_stream.close ();

}

int main (int argc, char *argv[])
{

char *host = argc > 1 ? argv[1] : "ics.uci.edu";
u_short port_num =

htons (argc > 2 ? atoi (argv[2]) : PORT_NUM);

// Address of the server.
ACE_INET_Addr s_addr (port_num, host)

// Use SOCK SAP wrappers on client’s side.
send_data <ACE_SOCK_Connector> (s_addr);
return 0;

}

Figure 12: SOCK SAP-based Client Example

13

static const int PORT_NUM = 10000;

// SOCK_SAP Server.

template <class ACCEPTOR>
void recv_data (ACCEPTOR::PEER_ADDR s_addr)
{

// Factory for passive connection establishment.
ACCEPTOR acceptor (s_addr);

// Data transfer object.
ACCEPTOR::PEER_STREAM peer_stream;

// Remote peer address.
ACCEPTOR::PEER_ADDR peer_addr;

// Performs iterative server activities.

for (;;) {
// Create a new STREAM endpoint
// (automatically restarted if errno == EINTR).
acceptor.accept (peer_stream, &peer_addr);

printf ("client %s\n", peer_addr.get_host_name ());

// Read data from client (terminate on error).

char buf[BUFSIZ];

for (int r_bytes = 0;;) {
r_bytes = peer_stream.recv (buf, sizeof buf);
if (r_bytes > 0)

write (1, buf, r_bytes);
else

break;
}

// Close peer_stream endpoint
// (acceptor endpoint stays open).
peer_stream.close ();

}
/* NOTREACHED */

}

int main (int argc, char *argv[])
{

u_short port_num =
argc == 1 ? PORT_NUM : atoi (argv[1]);

// Port for the server.
ACE_INET_Addr s_addr (port_num);

// Use Socket wrappers on server’s side.
recv_data<ACE_SOCK_Acceptor> (s_addr);
return 0;

}

Figure 13: SOCK SAP-based Server Example

hides the subtle and error-prone details that must be pro-
grammed explicitly in Figures 10 and 11. Moreover, the
low-level details of non-blocking connection establishment
are performed by theSOCK Connector factory. In addi-
tion, the use of templatetraits minimizes the number of type
parameters that must be specified when instantiated the pa-
rameterized functions.

Increased typesafety: e.g., the ACESOCKAcceptor
and ACESOCKConnector connection factories create
ACESOCKStream objects. This prevents the type errors
shown in Figure 3 from occurring at run-time.

Decreased program size: e.g.,a substantial reduction in
the lines of code results from localizing active and passive
connection establishment in theACESOCKAcceptor and
ACESOCKConnector connection factories. In addition,
default values are provided for constructor and method pa-
rameters, which reduces the number of arguments needed
for common usage patterns.

Increased portability: e.g., due to the use of template
traits, switching between Sockets and TLI simply requires
changing

send_data <ACE_TLI_Connector> (s_addr);

in the client to

send_data <ACE_SOCK_Connector> (s_addr);

and

recv_data<ACE_SOCK_Acceptor> (s_addr);

in the server to

recv_data<ACE_TLI_Acceptor> (s_addr);

As shown in Section 8, conditional compilation directives
can be used to further decouple the communication software
from reliance upon a particular type of network program-
ming interface.

8 Socket Wrapper Design Principles

This section describes the following design principles that
are applied throughout theSOCK SAPclass category:

� Enforce typesafety at compile-time

� Allow controlled violations of typesafety

� Simplify for the common case

� Replace one-dimensional interfaces with hierarchical
class categories

� Enhance portability with parameterized types

� Inline performance critical methods

� Define auxiliary classes to hide error-prone details

Although these principles are widely known and widely used
in domains like graphical user interfaces they have been less
widely applied in the communication software domain.

14

8.1 Enforce Typesafety at Compile-time

Several limitations with Sockets discussed in Section 4 stem
from the lack of typesafety in its interface. To enforce type-
safety,SOCK SAPensures all its objects are properly ini-
tialized via constructors. In addition, to prevent accidental
violations of typesafety, only legal operations are permitted
on SOCK SAPobjects. This latter point is illustrated in the
SOCK SAPrevision ofecho server shown in Figure 14.
This version fixes the problems with Sockets and C identified
in Figure 3. SinceSOCK SAPclasses are strongly typed, in-
valid operations are rejected at compile-time rather than at
run-time. For example, it is not possible to invokerecv or
send on aACESOCKAcceptor connection factory since
these methods are not part of its interface. Likewise, return
values are only used to convey success or failure of opera-
tions. This reduces the potential for misuse in assignment
expressions.

8.2 Allow Controlled Violations of Typesafety

This principle is exemplified by theget handle and
set handle methods provided by theIPC SAP root
class. These methods extract and assign the underly-
ing handle, respectively. By providingget handle and
set handle , IPC SAP allows applications to circumvent
its type-checking mechanisms in situations where applica-
tions must interface directly with UNIX system calls (such
asselect) that expect a handle. Another way of stating
this principle is “make it easy to useSOCK SAPcorrectly,
hard to use it incorrectly, but not impossible to use it in ways
the class designers did not anticipate.”

8.3 Simplify for the Common Case

This principle is applied in the following ways in the ACE
C++ Socket wrappers:

Supply default parameters for common method argu-
ments: for instance, theACESOCKConnector con-
structor has six parameters:

ACE_SOCK_Connector
(ACE_SOCK_Stream &new_stream,

const ACE_SOCK_Addr &remote_sap,
ACE_Time_Value *timeout = 0,
const ACE_SOCK_Addr &local_sap =

(ACE_SOCK_Addr &) Addr::sap_any,
int protocol_family = PF_INET,
int protocol = 0);

However, only the first two commonly vary from call to call:

ACE_SOCK_Stream stream;

// Compiler supplies default values.
ACE_SOCK_Connector con (stream,

ACE_INET_Addr (port, host));
// ...

Therefore, to simplify programming, the values are given as
defaults in theACESOCKConnector constructor so that
programmers need not provide them every time.

int echo_server (ACE_INET_Addr s_addr)
{

// Initialize the passive mode server.
ACE_SOCK_Acceptor acceptor (s_addr);

// Data transfer object.
ACE_SOCK_Stream peer_stream;

// Client remote address object.
ACE_INET_Addr peer_addr;

// Accept a new connection.
if (acceptor.accept (peer_stream,

&peer_addr) != -1) {
char buf[BUFSIZ];
for (size_t n;

peer_stream.recv (buf, sizeof buf, n) > 0;)
// Handles "short-writes."
if (peer_stream.send_n (buf, n) != n)

// Remainder omitted.
}

}

Figure 14:SOCK SAPRevision of the Echo Server

Define parsimonious interfaces: This principle localizes
the cost of using a particular abstraction. TheIPC SAP
interfaces limits the amount of details that application de-
velopers must remember.IPC SAP provides developers
with clusters of classes that perform various types of com-
munication (such as connection-oriented vs. connectionless)
and various connection roles (such as active vs. passive).
To reduce the chance of error, theACESOCKAcceptor
class only permits operations that apply for programs play-
ing passive roles and theACESOCKConnector class
only permits operations that apply for programs playing
an active role. In addition, sending and receiving open
file handles has a much simpler calling interface using
ACESOCKSAP compared with using the highly-general
UNIX sendmsg/recvmsg functions. For example, using
ACELSOCK*classes to pass Socket handles is very concise:

ACE_LSOCK_Stream stream;
ACE_LSOCK_Acceptor acceptor ("/tmp/foo");

// Accept connection.
acceptor.accept (stream);

// Pass the Socket handle back to caller.
stream.send_handle (stream.get_handle ());

versus the code that is required to implement this using the
Socket interface:

int n_sd;
int u_sd;
sockaddr_un addr;
u_char a[2];
iovec iov;
msghdr send_msg;

u_sd = socket (PF_UNIX, SOCK_STREAM, 0);

memset ((void *) &addr, 0, sizeof addr);
addr.sun_family = AF_UNIX;
strcpy (addr.sun_path, "/tmp/foo");

bind (u_sd, &addr, sizeof addr.sun_family +
strlen ("/tmp/foo"));

15

listen (u_sd, 5);

// Accept connection.
n_sd = accept (u_sd, 0, 0);

// Sanity check.
a[0] = 0xab; a[1] = 0xcd;

iov.iov_base = (char *) a;
iov.iov_len = sizeof a;

send_msg.msg_iov = &iov;
send_msg.msg_iovlen = 1;
send_msg.msg_name = (char *) 0;
send_msg.msg_namelen = 0;
send_msg.msg_accrights = (char *) &n_sd;
send_msg.msg_accrightslen = sizeof n_sd;

// Pass the Socket handle back to caller.
sendmsg (n_sd, &send_msg, 0);

Combine multiple operations into a single operation:
Creating a conventional passive-mode Socket requires mul-
tiple calls:

int s_sd = socket (PF_INET, SOCK_STREAM, 0);
sockaddr_in addr;
memset (&addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_port = htons (port);
addr.sin_addr.s_addr = INADDR_ANY;
bind (s_sd, &addr, addr_len);
listen (s_sd);
// ...

In contrast, theACESOCKAcceptor is a factory for pas-
sive connection establishment. Its constructor performs the
Socket callssocket , bind , andlisten required to cre-
ate a passive-mode listener endpoint. Therefore, applications
simply write the following:

ACE_INET_Addr addr (port);
ACE_SOCK_Acceptor acceptor (addr);

to achieve the functionality presented above.

8.4 Replace One-dimensional Interfaces with
Hierarchical Class Categories

This principle involves using hierarchically-related class cat-
egories to restructure existing one-dimensional Socket inter-
faces (shown in Figure 9). The criteria used to structure the
SOCK SAPclass category involved identifying, clustering,
and encapsulating related Socket functions to maximize the
reuse and sharing of class components.

Inheritance supports different subsets of functionality for
theSOCK SAPclass categories. For instance, not all operat-
ing systems support passing open file handles (e.g.,Windows
NT). Thus, it is possible to omit theACELSOCKclass (de-
scribed in Section 6.1) from the inheritance hierarchy with-
out affecting the interfaces of other classes in theSOCK SAP
design.

Inheritance also increases code reuse and improves modu-
larity. Base classes expresssimilarities between class cat-
egory components and derived classes express thediffer-
ences. For example, theIPC SAP design places shared

template <class ACCEPTOR>
int echo_server (ACCEPTOR::PEER_ADDR s_addr)
{

// Initialize the passive mode server.
ACCEPTOR acceptor (s_addr);

// Data transfer object.
ACCEPTOR::PEER_STREAM peer_stream;

// Remote address object.
ACCEPTOR::PEER_ADDR peer_addr;

// Accept a new connection.
if (acceptor.accept (peer_stream,

&peer_addr) != -1) {
char buf[BUFSIZ];
for (size_t n;

peer_stream.recv (buf, sizeof buf,
n) > 0;)

if (peer_stream.send_n (buf, n) != n)
// Remainder omitted.

}
}

Figure 15: Template Version of the Echo Server

mechanisms towards the “root” of the inheritance hierar-
chy in theIPC SAP andSOCK SAPbase classes. These
mechanisms include operations for opening/closing and set-
ting/retrieving the underlying Socket handles, as well as cer-
tain option management functions that are common to all the
derivedSOCK SAPclasses. Subclasses located towards the
“bottom” of the inheritance hierarchy implement specialized
operations that are customized for the type of communica-
tion provided (such as stream vs. datagram communication
or local vs. remote communication). This approach avoids
unnecessary duplication of code since the more specialized
derived classes reuse the more general mechanisms provided
at the root of the inheritance hierarchy.

8.5 Enhance Portability with Parameterized
Types

Wrapping Sockets with C++ classes (rather than stand-alone
C functions) helps to improve portability by allowing the
wholesale replacement of network programming interfaces
via parameterized types. Parameterized types decouple ap-
plications from reliance on specific network programming
interfaces. Figure 15 illustrates this technique by modifying
theecho server to become a C++ function template. De-
pending on certain properties of the underlying OS platform
(such as whether it implements TLI or Sockets more effi-
ciently), theecho server may be instantiated with either
SOCK SAPor TLI SAP classes, as shown below:

// Conditionally select IPC mechanism.
#if defined (USE_SOCKETS)
typedef ACE_SOCK_Acceptor ACCEPTOR;
#else // USE_TLI
typedef ACE_TLI_Acceptor ACCEPTOR;
#endif // USE_SOCKETS.

const int PORT_NUM = 10000;

int main (void)
{

16

// ...

// Invoke the echo_server with appropriate
// network programming interfaces. Note the
// use of template traits for addr class.
ACCEPTOR::PEER_ADDR addr (PORT_NUM);
echo_server<ACCEPTOR> (addr);

}

In general, the use of parameterized types is less intrusive
and more extensible than conventional alternatives, such as
implementing multiple versions or littering conditional com-
pilation directives throughout the source code.

For example, theSOCK SAPandTLI SAP classes of-
fer the same OO interface (depicted in Figure 7). Certain
OS platforms may possess different underlying network pro-
gramming interfaces such as Sockets but not TLI or vice
versa. UsingIPC SAP, applications can be written that are
transparently parameterized with either theSOCK SAPor
TLI SAP class category. C++ templates support a loose
form of type conformance that does not constrain an in-
terface to encompassesall potential functionality. Instead,
templates are used to parameterize application code that is
carefully designed to invoke only a subset of methods that
are common to the various communication abstractions (e.g.,
open , close , send , recv , etc.).

The type abstraction provided by templates improves
portability among platforms that support different network
programming interfaces (such as Sockets or TLI). For exam-
ple, the parameterizing the network programming interface
turned out to be useful for developing applications across
various SunOS platforms. The Socket implementation in
SunOS 5.2 was not thread-safe and the TLI implementation
in SunOS 4.x contains a number of serious defects.

8.6 Inline Performance-critical Methods

To encourage developers to replace existing low-level net-
work programming interfaces with C++ wrappers, theSOCK
SAP implementation must operate efficiently. To ensure
this, methods in the critical performance path (such as the
ACESOCKStream recv andsend methods) are speci-
fied as C++ inline functions to eliminate run-time function
call overhead. Inlining is both time and space efficient since
these methods are very short (approximately 2 or 3 lines per
method). The use of inlining implies that virtual functions
should be used sparingly since most contemporary C++ com-
pilers do not fully optimize away virtual function overhead.

8.7 Define Auxiliary Classes that Hide Error-
prone Programming Details

The C interface to Socket addressing is awkward and error-
prone. It is easy to neglect to zero-out asockaddr in
or convert port numbers to network byte-order. To shield
applications from these low-level details,IPC SAP define
the Addr class hierarchy (shown in Figure 6). This hier-
archy supports several diverse network addressing formats

via a typesafe C++ interface. TheAddr hierarchy elimi-
nates common programming errors associated with using the
C-based family ofstruct sockaddr data structures di-
rectly. For example, the constructor ofACEINET Addr
automatically zeros-out thesockaddr addressing structure
and converts the port number to network byte order, as fol-
lows:

class ACE_INET_Addr : public ACE_Addr
{
public:

ACE_INET_Addr::ACE_INET_Addr (u_short port,
long ip_addr = 0)

{
memset (&this->inet_addr_, 0,

sizeof this->inet_addr_);
this->inet_addr_.sin_family = AF_INET;
this->inet_addr_.sin_port = htons (port);
memcpy (&this->inet_addr_.sin_addr,

&ip_addr, sizeof ip_addr);
}

private:
sockaddr_in inet_addr_;

};

9 Concluding Remarks

IPC SAP provides a family of OO C++ wrappers that en-
capsulate standard local and remote IPC mechanisms avail-
able on contemporary operating systems. These encapsu-
lated interfaces simplify the development of communica-
tion software by making it easier to write correct, com-
pact, portable, and efficient code. In addition, the wrapper
methodology facilitates organizational transition to C++ by
(1) incrementally teaching developers OO design principles
and (2) leveraging off of an existing code base in languages
other than C++. This paper concludes by describing several
advantages and disadvantages of using C++ to implement
IPC SAPand outlining future papers that explore additional
uses ofIPC SAP.

Advantages and Disadvantages of Using C++:The pri-
mary advantages of C++ to develop wrappers include the fol-
lowing:

� Encapsulate variation– Classes hide differences in ad-
dressing formats, such as Internet vs. UNIX-domain
addressing. In addition, they encapsulate distinct in-
terface behaviors in different classes. For instance, an
ACESOCKAcceptor object’s interface is specially-
tailored for server operations.

� Enhance functional subsetting– Inheritance makes it
easier to define functional subsets. For instance, the
ACELSOCKclass can be omitted on operating systems
that do not support passing of file handles.

� Increased portability– Templates enable the parameter-
ization of different IPC mechanisms into applications,
which improves portability across platforms.

One disadvantage of C++ is its lack of a portable na-
tive exception handling. When used properly, C++ excep-
tion handling helps to simplify error recovery and improves

17

type-safety. For example, an exception can be thrown if an
ACEINET Addr constructor fails because a remote address
does not correspond to a valid host. Without C++ exception
handling, however, it is possible to begin using anIPC SAP
object without initializing it properly. This problem will be
solved over time as the ANSI/ISO C++ exception handling
mechanism becomes available on most OS platforms.

Current Status and Future Topics: IPC SAP is avail-
able with the ACE [2] framework. The OS platforms sup-
ported by ACE include Win32 (WinNT 3.5.x, 4.x, Win95,
and WinCE using MSVC++ and Borland C++), most ver-
sions of UNIX (SunOS 4.x and 5.x; SGI IRIX 5.x and 6.x;
HP-UX 9.x, 10.x, and 11.x; DEC UNIX 3.x and 4.x, AIX
3.x and 4.x, DG/UX, Linux, SCO, UnixWare, NetBSD, and
FreeBSD), real-time operating systems (VxWorks, Chorus,
LynxOS, and pSoS), and MVS OpenEdition.

ACE has been used in research and development projects
at many universities and companies. For instance, ACE
has been used to build real-time avionics systems at Boeing
[23]; telecommunication systems at Bellcore [22], Ericsson
[24], Motorola [25], and Lucent; medical imaging systems
at Siemens [26] and Kodak [27]; and distributed simulation
systems at SAIC/DARPA. It is also widely used for research
projects and classroom instruction.

All the source code described in this paper is available on-
line at www.cs.wustl.edu/ �schmidt/ACE.html .
Many projects using ACE are described at
www.cs.wustl.edu/ �schmidt/ACE-users.html .
In addition,comp.soft-sys.ace is a USENET news-
group devoted to ACE-related topics.

References
[1] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-

Oriented Components for High-speed Network Program-
ming,” in Proceedings of the1st Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

[2] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[3] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarter-
man,The Design and Implementation of the 4.4BSD Operat-
ing System. Addison Wesley, 1996.

[4] Sun Microsystems,Network Interfaces Programmer’s Guide,
Chapter 6 (TLI Interface) ed., 1992.

[5] S. Rago,UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[6] W. R. Stevens,UNIX Network Programming, Second Edition.
Englewood Cliffs, NJ: Prentice Hall, 1997.

[7] H. Custer,Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[8] Object Management Group,The Common Object Request
Broker: Architecture and Specification, 2.2 ed., Feb. 1998.

[9] D. Box, Essential COM. Addison-Wesley, Reading, MA,
1997.

[10] S. Mungee, N. Surendran, and D. C. Schmidt, “The Design
and Performance of a CORBA Audio/Video Streaming Ser-
vice,” in submitted to the Hawaiian International Conference
on System Sciences, Jan. 1999.

[11] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedings of SIGCOMM ’96, (Stanford, CA), pp. 306–317,
ACM, August 1996.

[12] OSI Special Interest Group,Transport Provider Interface
Specification, December 1992.

[13] OSI Special Interest Group,Data Link Provider Interface
Specification, December 1992.

[14] D. Ritchie, “A Stream Input–Output System,”AT&T Bell
Labs Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[15] D. C. Schmidt, “IPCSAP: An Object-Oriented Interface to
Interprocess Communication Services,”C++ Report, vol. 4,
November/December 1992.

[16] W. R. Stevens,Advanced Programming in the UNIX Environ-
ment. Reading, Massachusetts: Addison Wesley, 1992.

[17] D. L. Presotto and D. M. Ritchie, “Interprocess Communica-
tion in the Ninth Edition UNIX System,”UNIX Research Sys-
tem Papers, Tenth Edition, vol. 2, no. 8, pp. 523–530, 1990.

[18] A. Stepanov and M. Lee, “The Standard Template Library,”
Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April
1994.

[19] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[20] D. C. Schmidt, “Acceptor and Connector: Design Patterns
for Actively and Passively Initializing Network Services,”
in Workshop on Pattern Languages of Object-Oriented Pro-
grams at ECOOP ’95, (Aarhus, Denmark), August 1995.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[22] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design(J. O.
Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading, MA:
Addison-Wesley, 1995.

[23] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The Design
and Performance of a Real-time CORBA Event Service,” in
Proceedings of OOPSLA ’97, (Atlanta, GA), ACM, October
1997.

[24] D. C. Schmidt and P. Stephenson, “Experiences Using Design
Patterns to Evolve System Software Across Diverse OS Plat-
forms,” in Proceedings of the9th European Conference on
Object-Oriented Programming, (Aarhus, Denmark), ACM,
August 1995.

[25] D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,”The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2,
no. 1, 1996.

[26] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern
for Dynamic Configuration of Services,” inProceedings of
the3rd Conference on Object-Oriented Technologies and Sys-
tems, USENIX, June 1997.

[27] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,”USENIX Comput-
ing Systems, vol. 9, November/December 1996.

18

