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Abstract

High-performance Web servers are essential to meet the grow-
ing demands of the Internet and large-scale intranets. Satis-
fying these demands requires a thorough understanding of key
factors affecting Web server performance. This paper presents
empirical analysis illustrating how dynamic and static adap-
tivity can enhance Web server performance. Two research
contributions support this conclusion.

First, the paper presents results from a comprehensive em-
pirical study of Web servers (such as Apache, Netscape Enter-
prise, PHTTPD, Zeus, and JAWS) over high-speed ATM net-
works. This study illustrates their relative performance and
precisely pinpoints the server design choices that cause per-
formance bottlenecks. We found that once network and disk
I/O overheads are reduced to negligible constant factors, the
main determinants of Web server performance are its proto-
col processing path and concurrency strategy. Moreover, no
single strategy performs optimally for all load conditions and
traffic types.

Second, we describe the design techniques and optimiza-
tions used to develop JAWS, our high-performance, adaptive
Web server. JAWS is an object-oriented Web server that was
explicitly designed to alleviate the performance bottlenecks
we identified in existing Web servers. It consistently outper-
forms all other Web servers over ATM networks. The per-
formance optimizations used in JAWS include adaptive pre-
spawned threading, fixed headers, cached date processing,
and file caching. In addition, JAWS uses a novel software ar-
chitecture that substantially improves its portability and flex-

�This work was funded in part by NSF grant NCR-9628218, Object Tech-
nologies International, Eastman Kodak, and Siemens MED.

ibility, relative to other Web servers. Our empirical results
illustrate that highly efficient communication software is not
antithetical to highly flexible software.

1 Introduction

During the past two years, the volume of traffic on the World
Wide Web (Web) has grown dramatically. Traffic increases
are due largely to the proliferation of inexpensive and ubiq-
uitous Web browsers (such as NCSA Mosaic, Netscape Nav-
igator, and Internet Explorer). Likewise, Web protocols and
browsers are increasingly applied to specialized computation-
ally expensive tasks, such as image processing servers used by
Siemens [8] and Kodak [18] and database search engines (e.g.,
AltaVista and Lexis Nexis).

To keep pace with increasing demand, it is essential to de-
velop high-performance Web servers. Therefore, the central
themes of this paper are:

� High-performance Web servers must be adaptive: To
achieve optimal performance, Web servers must adapt to vari-
ous conditions, such as machine load and network congestion,
the type of incoming requests, and the number of simultane-
ous connections. While it is always possible to improve per-
formance with more expensive hardware or a faster OS, our
objective is to produce the fastest Web server possible for a
given hardware/OS platform configuration.

� Standard Web server benchmarking suites are inad-
equate over high-speed networks: Our experience mea-
suring Web server performance on ATM networks reveals
that existing benchmarking tools (such as WebSTONE and
SPECWeb) designed for low-speed Ethernet networks are in-
adequate to capture key performance determinants on high-
speed networks.
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To address these issues, this paper describes an adaptive
Web server framework and a Web server/ATM testbed de-
signed to empirically determine (1) the scalability of Web
servers under varying load conditions, (2) the performance im-
pact of different server design and implementation strategies,
and (3) the pros and cons of alternative Web server designs.

1.1 Web Server Performance

Web servers are often considered synonymous with HTTP
servers and the HTTP 1.0 and 1.1 protocols are relatively
straightforward. HTTP requests typically name a file, which
the server locates and returns to the client requesting it. On the
surface, therefore, Web servers appear to have few opportuni-
ties for optimization. This may lead to the conclusion that op-
timization efforts should be directed elsewhere (such as trans-
port protocol optimizations [14], specialized hardware [5], and
client-side caching [27, 15]).

However, empirical analysis in [8] and in Section 2 reveals
that Web server performance problems are complex and the
solution space is quite diverse. For instance, our experimen-
tal results show that a heavily accessed Apache Web server
(the most popular server on the Web today [23]) is unable
to maintain satisfactory performance on a dual-CPU 180 Mhz
UltraSPARC 2 over a 155 Mbps ATM network, due largely to
its choice of process-level concurrency. Other studies [12, 8]
have shown that the relative performance of different server
designs depend heavily on server load characteristics (such as
the number of simultaneous connections and file size).

The explosive growth of the Web, coupled with the larger
role servers play on the Web, places increasingly larger de-
mands on servers [3]. In particular, the high loads that servers
like the NASA Pathfinder Web site and AltaVista already en-
counter handling millions of requests per day will be con-
founded with the deployment of high-speed networks, such
as ATM or Gigabit Ethernet. Therefore, it is critical to under-
stand how to improve server performance and predictability.

Server performance is already a critical issue for the In-
ternet [1] and is becoming more important as Web protocols
are applied to performance-sensitive intranet applications. For
instance, electronic imaging systems based on HTTP (such
as Siemens MED or Kodak Picture Net) require servers to
perform computationally-intensive image filtering operations
(such as smoothing, dithering, and gamma correction). Like-
wise, database applications based on Web protocols (such as
AltaVista Search by Digital or the Lexis Nexis) support com-
plex queries that may generate a higher number of disk ac-
cesses than a typical Web server.

1.2 Adaptive Web Servers

This paper presents empirical results that illustrate that no sin-
gle Web server configuration is optimal for all circumstances.
Based on these results, we conclude that optimal Web server
performance requires bothstaticanddynamicadaptive behav-
ior.

Staticadaptivity allows a Web server to bind common op-
erations to high-performance mechanisms provided by the na-
tive OS (e.g., Windows NT 4.0 support for asynchronous I/O
and network/file transfer). Programming a Web server to use
generic OS interfaces (such as synchronous POSIX threading)
is insufficient to provide maximal performance across OS plat-
forms. Therefore, asynchronous I/O mechanisms in Windows
NT and POSIX must be studied, compared, and tested against
traditional concurrent server programming paradigms that uti-
lize synchronous event demultiplexing and threading [8].

Dynamicadaptivity allows a Web server to alter its run-time
behavior “on-the-fly.” This is useful when external conditions
have changed to the point where the initial configuration no
longer provides optimal performance. Such situations have
been observed in [8] and [11].

The remainder of this paper is organized as follows: Sec-
tion 2 outlines our Web server/ATM benchmarking testbed and
analyzes our benchmark results; Section 3 describes the OO
design and performance of JAWS, our high-performance Web
server; Section 4 summarizes the Web server optimization
techniques identified by our empirical studies; Section 5 com-
pares our research with related work; and Section 6 presents
concluding remarks.

2 Web Server Performance over ATM

This section describes our experimental methodology, bench-
marking and analysis tools, the results of our experiments, and
our analysis of the results. To study the primary determinants
of Web server performance, we selected five Web server im-
plementations and analyzed their performance through a series
of blackbox and whitebox benchmarking experiments. Our
analysis of these results identified the following key determi-
nants of Web server performance:
� Filesystem access overhead costs are high:Most dis-
tributed applications benefit from caching and Web servers
are no exception. In general, Web servers that implement
file caching strategies (such as Enterprise, Zeus, and JAWS)
perform substantially better than those that did not (such as
Apache).
� Concurrency overhead is significant: A large portion of
non-I/O related Web server overhead is due to the Web server’s
concurrency strategy. Key overheads include synchronization,
thread/process creation, and context switching. Therefore, it
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is crucial to choose the right concurrency strategies to ensure
optimal performance.
� Protocol processing overhead can be expensive:Although
the HTTP/1.0 protocol is relatively simple, a naive implemen-
tation can introduce a substantial amount of overhead. For in-
stance, the dynamic creation of response headers and the use
of multiple write system calls significantly inhibits perfor-
mance.

These and related performance issues are described in Sec-
tion 4.

2.1 Web Server Test Suite

The servers chosen for our tests were Apache v1.1, PHTTPD
v0.99.76, Java Server 1.0, Netscape Enterprise v2.01 and Zeus
Server v1.0. The choice of servers for our study were based
on two factors. The first wasvariation in Web server design,
to gauge the performance impact of alternative approaches to
concurrency, event dispatching, and filesystem access. The
second waspublished performance, as reported by benchmark
results published by Jigsaw [2] and NCSA [13], as well as
information available from WebCompare [23].

Apache and PHTTPD are implemented in C. The Java
Server is implemented in Java. Netscape Enterprise and Zeus
servers are commercial servers with only binaries available.
Apache utilizes process level concurrency, PHTTPD spawns
a thread per request, as does the Java Server from Sun.1 Al-
though source code for Netscape Enterprise and Zeus is un-
available, their concurrency model can be inferred using tools
like truss and TNF. Our analysis indicates that Netscape
Enterprise uses a Thread Pool implementation, whereas Zeus
uses a Process Pool implementation.

2.2 Web Server/ATM Testbed

2.2.1 Hardware and Software Platforms

We studied Web server performance by observing how the
servers in our test suite performed on high-speed networks un-
der heavy workloads. To accomplish this, we constructed a
hardware and software testbed consisting of the Web server
being tested, and multiple clients connected to it via a high-
speed ATM switch [26], as shown in Figure 1.2

The experiments in this paper were conducted using a Bay
Networks LattisCell 10114 ATM switch connected to four
dual-processor UltraSPARC-2s running SunOS 5.5.1. The

1The Java Server actually performs Thread-per-Connection. However, our
testbed is based on HTTP 1.0 and does not use “keep-alives” (i.e., a new con-
nection is established for every new request). Therefore, Java Server effec-
tively performs Thread-per-Request.

2We also performed measurements over 10 Mbps Ethernet, but due to a
lack of performance variance, we omitted the discussion from this paper.
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Figure 1: Web Server/ATM Testbed Environment

LattisCell 10114 is a 16 Port, OC3 155 Mbs/port switch. Each
UltraSPARC-2 contains 2 168 MHz CPUs with a 1 Megabyte
cache per-CPU, 256 Mbytes of RAM, and an ENI-155s-MF
ATM adaptor card that supports 155 Megabits per-sec (Mbps)
SONET multi-mode fiber. The Maximum Transmission Unit
(MTU) on the ENI ATM adaptor is 9,180 bytes. Each ENI
card has 512 Kbytes of on-board memory. A maximum of
32 Kbytes is allotted per ATM virtual circuit connection for
receiving and transmitting frames (for a total of 64 K). This
allows up to eight switched virtual connections per card. This
testbed is similar to the one used in [7].

2.2.2 Benchmarking Methodology

We used the WebSTONE [6] v2.0 benchmarking software to
collect client- and server-side metrics. As described in Sec-
tion 2.3, these metrics includedaverage server throughput, av-
erage client throughput, average number of connections-per-
second, andaverage client latency. The testbed comprised
multiple concurrentWeb clients, running on UNIX hosts de-
picted in Figure 1. Each Web client transmits a series of HTTP
requests to download files from the server. The file access pat-
tern used in the tests is shown in Table 1.

Document Size Frequency
500 bytes 35%
5 Kbytes 50%
50 Kbytes 14%
5 Mbytes 1%

Table 1: File Access Patterns

This table represents actual load conditions on popular servers,
based on a study of file access patterns conducted by SPEC [4].

We benchmarked each Web server on an UltraSPARC-2
host, while the Web clients ran on three other UltraSPARC-
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2s. Web clients are controlled by a centralWebmaster, which
starts the Web clients simultaneously. The Webmaster also
collects and combines the measurements made by individual
clients. Since the Webmaster is less performance critical, it
ran on an UltraSPARC-1 connected to the testbed machines
with 10 Mbps Ethernet. The UltraSPARC-1 contained a 167
MHz CPU with 1 Megabyte cache and 128 MBytes of RAM.

2.2.3 Web Server Performance Analysis Techniques

We used two techniques to analyze the performance of Web
servers:blackboxand whiteboxbenchmarks. Theblackbox
tests measure externally visible Web server performance met-
rics (such as throughput and average response time seen by
clients). We accomplished this by controlling the Web clients
to vary the load on the server (i.e., the number of simultaneous
connections). These clients computed several blackbox met-
rics, as explained in Section 2.3.

To precisely pinpoint thesource of performance bottle-
necks, we employed whitebox benchmarks. This involved the
use of profiling tools, including the UNIXtruss(1) tool,
TNF [24], andQuantify [9]. These tools trace and log the
activities of Web servers and measure the time spent on vari-
ous tasks, as explained in Section 2.4.

2.2.4 Limitations of WebSTONE v2.0 over High-speed
Networks

Although WebSTONE measures several key performance met-
rics, a study of its source code revealed that it uses process-
based concurrency on UNIX,i.e., multiple Web clients are
spawned on a host using thefork system call. Context
switching overhead between these processes is high. This
overhead limits the number of concurrent clients on a single
host to�10, which prevents the clients from heavily loading
the Web server.3 The standard WebSTONE model is accept-
able for ordinary LANs (e.g., 10 Mbps Ethernet). However,
the high cost of ATM interfaces limits the number of avail-
able machines to use in our high-speed testbed (i.e., 155 Mbps
ATM). Thus, this model is unsuitable for our purposes.

To overcome these limitations, we modified WebSTONE’s
concurrency mechanism to use threads rather than processes.
This modification alleviated the client-side limitations and en-
hanced the ability of the testbed to stress Web servers. As
a result, our modified WebSTONE required just one process
per host. In contrast, the original WebSTONE process-based
concurrency model required14 processesper host. Therefore,
the servers in our study could be subjected to a much higher

3The number of processes can increase beyond 10, limited by the available
memory of the machine. However, beyond 10 processes, the context switching
overhead becomes very high, which causes a performance bottleneck on the
client side and inhibits WebSTONE’s ability to stress the Web server.

number of simultaneous connections per Web client. The tests
reported below use 42 concurrent connections on three hosts
(i.e., 14 concurrent connections per host).

2.3 Blackbox Performance Analysis

The following WebSTONE blackbox metrics were measured
in our Web server performance study. These metrics were
obtained using a range of simultaneous connections from
1 to 42. Server file caches were pre-loaded by running a
“dummy” client before doing the performance measurements.
We present the blackbox results below. The whitebox results
for each server are presented in Section 2.4.

Server throughput: This measures the number of bits the
server writes onto the network per second. Figure 2 depicts
the results. The process-based concurrency models of Apache
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Figure 2: Average Server Throughput

exhibits the lowest overall throughput. The multi-threaded
Netscape Enterprise server consistently outperforms the other
servers; the Process Pool based Zeus server also performs
quite well. Both sustained aggregate throughput higher than
35 Mbps over the 155 Mbps ATM network (for one concurrent
connection to the server, the server throughput is low because
the average size of the requested files are relatively small).

Server connections/sec: This metric computes the number
of connections the server completes per second. The results
are shown in Figure 3. This figure depicts how many connec-
tions are completed per second by the servers, as we increase
the number of simultaneous connections to the server. The En-
terprise server completed more connections per second than
other Web servers, followed by the Zeus server.
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Figure 3: Average Connections/sec

Client throughput: This is the average number of bits re-
ceived per second by the client. The number of bits received
includes the HTML headers sent by the server. The results
are depicted in Figure 4. Clearly, as the number of concurrent
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Figure 4: Average Client Throughput

clients increases, the server throughput is multiplexed amongst
a larger number of connections, and hence the clients’ average
throughput drops. Therefore, those servers that exhibit high
server throughput (e.g., Enterprise and Zeus) also exhibit cor-
respondingly high average client throughput.

Client latency: Latency is defined as the average amount of
delay in milliseconds seen by the client from the time it sends
the request to the time it completely receives the file. The
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Figure 5: Average Client Latency

results are shown in Figure 5. This graph is similar to the
client throughput graph in Figure 4. It shows how the latency
observed by individual clients increases, especially for the
process-based concurrency mechanism employed by Apache.

2.4 Whitebox Performance Analysis

To determine the design and implementation issues that cause
Web servers to exhibit the blackbox performance results in
Section 2.3, we conducted the following whitebox experiment.
Every Web server in our suite was subjected to an identical
load. 15 simultaneous connections were set up to the Web
server. Each connection made 1,000 requests (i.e., 15,000 total
requests). The access patterns of these requests were identical
to those presented in Section 2.2.2.

While the Web server was serving these requests, we used
the Solaristruss andTNF tools to count the number of sys-
tem calls made and the time spent in each call. We then cate-
gorized these calls into the tasks shown in Table 2.

Task System calls
File operations open, close, stat , etc.
Writing files write, writev, ioctl , etc.
Reading requests read, poll, getmsg , etc.
Signal handling sigaction, sigsetmask , etc.
Synchronization lwp mutex flock,unlock g, etc.
Process control fork, execve, waitid, exit , etc.
Miscellaneous time, getuid , etc.

Table 2: Categories of Web Server System Call Tasks

In addition, we used a software monitoring tool called
truss to measure the amount of time the Web server spent
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at user-level (i.e., when the server was not making a system
call). This allowed us to estimate the amount of time each
Web server spent in HTTP processing. The whitebox results
for each Web server are presented below, ordered by increas-
ing performance.

Note that theideal Web server would spend most of its
time performing network I/O,i.e., reading HTTP requests and
writing requested files to the network. In particular, it would
have negligible overhead resulting from synchronization (due
to efficient concurrency control and threading strategies) and
filesystem operations (due to caching).

2.4.1 Apache Whitebox Analysis

The results of the whitebox analysis of Apache are illustrated
in Figure 6. The key determinants of Apache performance are

File operations
14%

Signal Handing
7%

Process Control
1%

Context Switching
53%

Reading Requests
5%

Writing Files
11%

HTTP processing
9%

Figure 6: Apache Whitebox Analysis

outlined below:

Process-based concurrency: The primary performance
bottleneck of Apache is its process-based concurrency model,
where concurrent connections are handled by concurrent pro-
cesses. Apache performs a number of optimizations to re-
duce the overhead of process creation. The server pre-forks a
number of children into a process-pool to handle connections
which are yet to be established. A new child is spawned if
the pool is depleted. When a child finishes handling a connec-
tion, it returns to the pool. Thus, the cost of process creation
is amortized by handling multiple requestsiteratively, which
has less overhead than a pure process-per-request model. Even
with these optimizations, it is possible for the number of ac-
tive processes to match the number of concurrent connections,
which yields high context switching overhead.4

4The context switching overhead was calculated by using the UNIXtime
utility, which reports the total time spent by kernel on behalf of the Apache
Web server (i.e., in system calls) and the total user level time consumed by the
Web server process. These times were subtracted from the “wall-clock” time

The .htaccess mechanism: A feature of the Apache
Web server is its ability to configure Web server behavior on a
per-directory basis (e.g., different error messages for different
directories). This is achieved by placing a configuration file
(typically called.htaccess ) in every directory that contains
files being served by Apache. When a request arrives for a file,
the server tries to open the.htaccess file in that directory,
in an attempt to read the per-directory configuration. In addi-
tion, the Web server attempts to read all the.htaccess files
in directoriesabovethe one containing the requested file. This
causes a very large number ofopen system calls (�100,000
calls for 15,000 requests). Moreover, theopen calls fail if the
.htaccess file is not present, which executes error handling
code. Clearly, this feature increases latency since it causes the
server to make several filesystem calls and handle their failure
while a client waits for a response.

Lack of effective file-caching: Analysis of the system call
trace reveals that the Apache server does not perform file
caching. Instead, anopen system call is made for each file
requested and the file is read into memory before being sent to
the client.

Memory-mapped files are not used: After the file has been
opened, the server reads the file contents into a memory buffer
via theread system call and then writes it out to the network.
This introducesdata copying overhead. This overhead can be
avoided withmemory-mapped files, via the UNIX mmapsys-
tem call. Themmapcall makes the contents of a file available
to a process as a pointer to its address space. This technique is
explained further in Section 4.

Signal handling: A significant fraction (7%) of the total
time was consumed in signal handling activities. For example,
sigaction installs signal handlers for theSIGUSR1 sig-
nal andsigprocmask controls the responses to various sig-
nals. Apache employs signals to assist inter-process communi-
cation between the multiple server processes. For instance, the
SIGUSR1signal is used by the parent process to inform child
server processes that they should quit, so that new processes
can be launched with fresh configuration information.

2.4.2 Java Server Whitebox Analysis

The results of the whitebox analysis of Java Server are illus-
trated in Figure 7. The key determinants of Java Server perfor-
mance are outlined below:

Context switching: The Java Web Server uses the Java run-
time system, which supports user-level threads. On Solaris,
it uses thegetcontext and setcontext system calls5

reported bytime , to yield the context-switching overhead. The overhead for
the other servers were negligible and was not computed.

5Java Server uses the “green-threads” (i.e., user-level threads) Java Virtual
Machine implementation.
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Writing Files
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Reading Requests
10%

File operations
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Synchronizing
21%

HTTP Processing / 
Java VM overhead
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Figure 7: Java Server Whitebox Analysis

to context switch between the Java threads. The Java Server
spends over 20% of its per-request processing performing
user-level context switching. Moreover, context switching
overhead increases as the number of concurrent clients grows.
Hence, the average server throughput decreases and the client
latency increases as the number of simultaneous connections
increases, as shown in Figures 4 and 5.

HTTP processing and Java VM overhead: Apart from the
user-level context switching mentioned above, a large fraction
(46%) of the total time is consumed by user-level activity,i.e.,
HTTP processing and Java VM processing. This overhead
constitutes the main performance bottleneck of Java Server.

2.4.3 PHTTPD Whitebox Analysis

The results of the whitebox analysis of PHTTPD are illustrated
in Figure 8. The key determinants of PHTTPD performance

Reading Requests
2%

Synchronization
73%

Misc. System Calls
5%

HTTP processing
7% Writing Files

11%

File operations
2%

Figure 8: PHTTPD Whitebox Analysis

are outlined below:

Concurrency model: PHTTPD is a single-process multi-
threaded server and employs the Thread-per-Request concur-
rency model. Thus, a new thread is created to handle each
incoming request, which increases the latency seen by the

client. It also causes the number of threads to grow rapidly as
the number of outstanding requests increases, which increases
context switching overhead.

Background hostname lookups: In addition to the threads
mentioned above, PHTTPD spawns threads to perform host-
name lookups in the background. Numeric IP addresses of
HTTP clients are available locally using thegetsockname
system call. However, the full hostname is more useful for
logging client hits.

Background ident lookups: PHTTPD also uses threads
to perform ident [10] lookups in the background. The
ident lookups obtain the name of the user who issued the
HTTP request, which is typically used for logging purposes.

Synchronization: The threads spawned by PHTTPD use
mutex locks and semaphores to serialize access to shared data
(e.g., the file cache table). Our whitebox analysis reveals that
synchronization overhead (i.e., the time spent by PHTTPD in
acquiring and releasing locks) is the major performance bottle-
neck in PHTTPD, contributing over 70% of its total execution
time. For instance, for 15,000 requests approximately 600,000
mutex locks were acquired by various threads, causing an av-
erage of 40 locks acquiredper request(an equal number of
mutex locks were released).

2.4.4 Zeus Whitebox Analysis

The results of the whitebox analysis of Zeus are illustrated
in Figure 9. The key determinants of Zeus performance are

Writing Files
41%

Reading Requests
9%

File operations
21%

Misc. System Calls
6%

HTTP processing
12%

Inter-Process 
Synchronization 

Overhead
11%

Figure 9: Zeus Whitebox Analysis

outlined below:

Concurrency model: Zeus employs a static process pool
model of concurrency. The server initialization process creates
a pool of processes, which is known aspre-forking. All pro-
cesses in the pool run concurrently, though each process serves
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its requests using asynchronous I/O mechanisms. The use of a
Process Pool avoids the overhead of dynamic process creation.
The cache also limits the number of processes and the context
switching overhead. This accounts for the superior perfor-
mance of Zeus over Apache, which also employs a process-
based concurrency model, as explained in Section 2.4.1. The
Zeus documentation recommends that the number of the pro-
cesses in the pool should equal the number of processors.
Therefore, we used two processes in our tests since the server
ran on a dual-processor machine, as explained in Section 2.2.1.

Memory-mapped files and file caching: Zeus uses
memory-mapped files via the use of themmapsystem call.
Therefore, files need not be read into server memory before
being written to the Network. This technique is explained fur-
ther in Section 4. In addition, each file is memory-mapped
the first time it is requested so that subsequent calls bypass
the filesystem. This indicates that Zeus employsfile-caching,
which contributes to its relatively high performance.

Optimized file-writes: Zeus uses thewritev system call,
which allows multiple buffers to be written to a socket with
a single system call. Thewritev call transmits the HTTP
header and the requested file in asingle system call, as ex-
plained in Section 4.

Synchronization overhead: Since all processes in the Zeus
Process Pool serve connections arriving on the same socket,
they use inter-process synchronization to synchronize access
via the UNIX process-level advisory file locking APIs (i.e.,
thefcntl system call). This overhead is significant (10%).

Other system calls: Zeus also spends appreciable time
(11%) performing in miscellaneous operations and signal han-
dling. The major contributors include obtaining the current
time via thetime system call and setting signal masks via the
sigprocmask system call.

2.4.5 Enterprise Whitebox Analysis

The results of the whitebox analysis of Netscape Enterprise
are illustrated in Figure 10. The key determinants of Netscape
Enterprise performance are outlined below:

Concurrency model: Enterprise is a multi-threaded server
that employs the thread pool concurrency model. These
threads are created at server initialization time. This avoids
the overhead of dynamic thread creation and thus improves
latency.

Optimized file writes: Like Zeus, Netscape Enterprise em-
ploys thewritev optimizations. Therefore, it sends the
HTTP header and the requested file using a single system call.

Writing Files
41%

Reading Requests
13%

File operations
18%

HTTP processing
13%

Synchronizing
15%

Figure 10: Enterprise Whitebox Analysis

Memory-mapped files and file caching: The Enterprise
server employs memory-mapped files via themmapsystem
call and file-caching to minimize filesystem access. This is
evident from thetruss output, which reveals that files re-
quested by clients are only mapped into memory the first time
they are requested. Subsequent calls to the same file are ser-
viced from the cache.

Optimized synchronization mechanisms: A system call
trace of Enterprise reveals that although the threads acquire
and release locks for accepting new connections, once a new
request has been acceptedno locking overhead is incurred un-
til after the request has been completely serviced.This reduces
client latency, as seen in Figure 5.

Thus, a combination of lightweight concurrencymodel, effi-
cient synchronization mechanisms, and file-caching optimiza-
tions gives Enterprise superior performance over the other
Web servers benchmarked in our ATM experiments.

3 Strategies for Developing High-
Performance Web Servers

The analysis in Section 2 illustrates the superior performance
of Netscape Enterprise and Zeus and identifies key factors that
determine Web server performance. These factors include the
server concurrency strategy, synchronization overhead, pro-
tocol processing overhead, andcaching strategy. Applying
whitebox measurement techniques in our ATM/Web Server
testbed enabled us to determine preciselywhy Netscape En-
terprise and Zeus perform much better than other Web servers
over high-speed ATM networks.

After empirically determining the key Web server perfor-
mance factors, our next objective was to develop an OO Web
server development framework called JAWS. JAWS is de-
signed to systematically develop and test the performance im-
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pact of different Web server design strategies and optimization
techniques. This section outlines the object-oriented design
of JAWS and presents the results of systematically applying
techniques uncovered in the analysis in the previous section.
We conclude this section by demonstrating how a highly op-
timized version of JAWS gives equivalent (and sometimes su-
perior) performance compared with Netscape Enterprise and
Zeus.

3.1 The Object-Oriented Architecture of JAWS
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Figure 11: The Object-Oriented Architecture of JAWS

Figure 11 illustrates the OO software architecture of the
JAWS Web server. As shown in Section 2, concurrency strate-
gies, event dispatching, and caching are key determinants of
Web server performance. Therefore, JAWS is designed to
allow these Web server strategies to be customized accord-
ing to key environmental factors. These factors include traf-
fic patterns, workload characteristics, support for kernel-level
threading and/or asynchronous I/O in the OS, and the number
of available CPUs.

JAWS is structured as a framework [22] that contains the
following components: anEvent Dispatcher, Concurrency
Strategy, I/O Strategy, Protocol Pipeline, Protocol Handlers,
Cached Virtual Filesystem, andTilde Expander. Each com-
ponent is structured as a set of collaborating objects imple-
mented with the ADAPTIVE Communication Environment
(ACE) C++ communication framework [21]. Each component
plays the following role in JAWS:

Event Dispatcher: This component is responsible for coor-
dinating theConcurrency Strategywith the I/O Strategy. As
events are processed, they are dispensed to theProtocol Han-

dler, which is parameterized by a concurrency strategy and an
I/O strategy, as discussed below.

Concurrency Strategy: This implements concurrency
mechanisms (such as single-threaded, Thread-per-Request,
or synchronous/asynchronous Thread Pool [8]) that can
be selected adaptively at run-time or pre-determined at
initialization-time. These strategies are discussed in Sec-
tion 3.2.3.

I/O Strategy: This implements the I/O mechanisms (such as
asynchronous, synchronous, and reactive). Multiple I/O mech-
anisms can be used simultaneously.

Protocol Handler: This component allows developers to
apply the JAWS framework to create various Web server
configurations. A Protocol Handler is parameterized by a
concurrency strategy and an I/O strategy (though these re-
main opaque to the protocol handler). In JAWS, the Proto-
col Handler implements parsing and processing of HTTP re-
quest methods. The abstraction allows other protocols (e.g.,
HTTP/1.1 and DICOM) to be incorporated easily into JAWS.
To add a new protocol, developers simply implement a new
Protocol Handler, which is then configured into the JAWS
framework.

Protocol Pipeline: This component provides a framework to
allow a set of filter operations (e.g., compression, decompres-
sion, and parse HTML) to be incorporated easily into the data
being processed by the Protocol Handler. This enables a server
programmer to easily incorporate functional extensions (such
as image filters or database operations) transparently into the
Web server.

Cached Virtual Filesystem: This component improves
Web server performance by reducing the overhead of filesys-
tem access. The caching policy is strategized (e.g., LRU, LFU,
Hinted, and Structured). This allows different caching policies
to be profiled for effectiveness and enables optimal strategies
to be configured statically or dynamically. These strategies are
discussed in Section 3.2.4.

Tilde Expander: This mechanism is another cache compo-
nent that uses a perfect hash table [20] to map abbreviated
user login names (e.g., �schmidt ) to user home directo-
ries (e.g., /home/cs/faculty/schmidt ). When per-
sonal Web pages are stored in user home directories (and user
directories do not reside in one common root), this component
substantially reduces the disk I/O overhead required to access
a system user information file, such as/etc/passwd .

In general, the OO design of JAWS decouples the func-
tionality of Web server components from their implementation
strategies. For instance, the JAWS Concurrency Strategies can
be decoupled from its Protocol Handlers. Thus, a wide range
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of strategies can be supported, configured, tested, and evalu-
ated. As a result, JAWS can adapt to environments that may
require different concurrency, I/O, and caching mechanisms.
This additional flexibility is not antithetical to performance,
as shown in Section 3.3.1 where JAWS demonstrates that de-
coupled and flexible Web server designs can achieve superior
performance.

3.2 Performance Impacts of Web Server
Strategies

The following subsection describes the concurrency, I/O, and,
caching strategies supported by JAWS. The discussion focuses
on the performance of the various strategies and how they in-
teract with each other. The JAWS framework allows the Web
server strategies to be changed easily, which facilitates con-
trolled measurements of different server configurations. The
results of this study are described below.

3.2.1 JAWS Baseline

Our study of the performance impact of different Web server
strategies began with a version of JAWS that was not tuned
with any optimizations. Thisbaseline implementation of
JAWS consists of its original default run-time configuration,
running with a pool of 20 threads. Below, we illustrate the
performance impacts in relation to the baseline implementa-
tion.

3.2.2 Protocol Processing Optimizations

Our initial optimizations for JAWS implemented techniques
that reduced protocol processing overhead. These techniques
included: caching the HTTP response header, lazy time header
calculation, and the use of thewritev system call to send
multiple buffers of data in a single operation. Figure 12
shows the performance improvements when these enhance-
ments were implemented. As shown in the figure, these opti-
mizations resulted in a�65% improvement in server through-
put over the baseline version.

3.2.3 Concurrency Strategies

Our experiments in Section 2 suggest that the choice of con-
currency and event dispatching strategies significantly impacts
the performance of Web servers that are subject to changing
load conditions. Carrying these results forward, we deter-
mined the quantitative performance impacts of using differ-
ent concurrency strategies (i.e., Thread Pool and Thread-per-
Request), as well as varying parameters of a particular concur-
rency strategy (e.g., the minimum and maximum number of
active threads) in JAWS.
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Figure 12: JAWS Performance After Protocol Optimizations

Thread Pool results: In theThread Poolmodel, a group of
threads are spawned at initialization time. All threads block
in accept 6 waiting for connection requests to arrive from
clients. This eliminates the overhead of waiting to create a
new thread before a request is served. The Thread Pool model
is used by the JAWS baseline implementation.

The performance graph in Figure 13 compares the perfor-
mance of JAWS using the Thread Pool strategy on a dual-CPU
UltraSPARC 2, while varying the number of threads in the
Thread Pool. Note that the server throughput does not corre-
late clearly with the size of the Thread Pool. In addition, as
we increase the size of the Thread Pool the variance in server
throughput is not appreciable. Therefore, we conclude that a
smaller Thread Pool (e.g., 6 threads) performs just as well as
a larger Thread Pool (e.g., 42 threads). However, the traffic
patterns used in our benchmarks (shown in Table 1) exhibit
a large distribution of small files. Therefore, if the distribu-
tion shifted to larger files, a larger Thread Pool may behave
more efficiently than a smaller Thread Pool because a smaller
Thread Pool will be depleted with many long running requests.
In this case, latency for new requests will increase, thereby de-
creasing the overall throughput.

To avoid underutilizing CPU resources, the number of
threads in the Thread Pool should be no lower than the num-
ber of processors in the system. Thus, Figure 13 illustrates that
server throughput is low when only one thread is in the Thread
Pool, especially under higher loads (> 24 concurrent connec-
tions). This behavior is due to the absence of concurrency.

6Several operating systems (e.g., Solaris 2.5) only allow one thread in a
process to callaccept on the same port at the same time. This restriction
forces JAWS to use thread mutexes to serializeaccept calls, which intro-
duces additional synchronization overhead.
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Figure 13: Performance of the JAWS Thread Pool

Thread-per-Request results: A common model of concur-
rency (e.g., used byinetd ) is to spawn a new process to han-
dle each new incoming request.Thread-per-Requestis similar,
except that threads are used instead of processes. While a child
process requires a (virtual) copy of the parent’s address space,
a thread shares its address space with other threads in the same
process.

[ Note to reviewers: We did not have enough time to com-
plete Thread-per-Request results for this paper. If the paper is
accepted, Thread-per-Request results will be included in the
final submission. ]

3.2.4 File Caching Strategies

Our analysis in Section 2 determined that accessing the filesys-
tem is a significant performance inhibitor. This concurs with
other Web server performance research [15, 27] that uses
caching to achieve better performance. While the baseline ver-
sion of JAWS does employ caching, it spends too much time
synchronizingconcurrent thread access to the Cached Virtual
Filesystem (CVF).

To address this concern, the CVF was re-engineered. The
new implementation accounted for the following factors:

� Locking the entire cache can be avoided– The original
implementation locked on entry to every operation, be-
cause each operation was implemented to modify shared
state. Once this requirement was removed, greater con-
currency was achieved by only locking the hashed index
entry of the cache.

� The cache lock can be inherited by the file– Acquiring a
new lock for the cached object itself is unnecessary since

all users of the cached file must acquire it through the
CVF. Thus, within the CVF, operations on a cached file
are serialized automatically.

Figure 14 shows a significant performance gain with the
new CVF. In particular, with lower synchronization overhead
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Figure 14: JAWS Performance after File Cache Optimizations

the performance improves by as much as 40% when concur-
rent contention for files is high.

3.3 Performance Analysis

In the previous section, we demonstrated the impact that each
design strategy had on the performance of JAWS compared to
its baseline implementation. Below, we provide detailed per-
formance analysis of the optimized version of JAWS. We first
present whitebox performance results comparing the JAWS
baseline with the optimized JAWS. We conclude with black-
box benchmarking results that demonstrate how the optimized
JAWS outperforms Netscape Enterprise and Zeus, which have
the best performance of the Web servers benchmarked in Sec-
tion 2.3.

3.3.1 JAWS Whitebox Analysis

This section compares whitebox analysis of the JAWS baseline
implementation against the optimized JAWS implementation.
Figure 15 illustrates the percentage of time the JAWS baseline
spends servicing HTTP requests.

In contrast, Figure 16 provides insight into how combin-
ing the optimization strategies analyzed in the previous section
helped to improve the performance of JAWS. In particular, the
synchronization time is reduced by 7%, and the network trans-
fer time increased by 5%.
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Figure 15: Whitebox Analysis of Baseline JAWS
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Figure 16: Whitebox Analysis of Optimized JAWS

Earlier in this section we described the individual impacts of
applying the different design strategies to the baseline JAWS.
Our whitebox results demonstrate that combining these tech-
niques have yielded an optimized version of JAWS with much
improved performance. The deployment of the protocol opti-
mization strategies reduced HTTP processing time and the im-
proved file cache implementation minimized synchronization
overhead. The use of a tuned Thread Pool strategy removes
thread creation overhead and minimizes the resource utiliza-
tion of the server.

3.3.2 JAWS Blackbox Analysis

We conclude this section by comparing the benchmark results
of the optimized JAWS against Netscape Enterprise and the
Zeus Web servers. Figures 17-20 provide a new insight us-
ing the same metrics described in Section 2.3. These metrics
reveal the following conclusion:JAWS is capable of outper-
forming the best existing Web servers.

This result confirms that a open flexible Web server frame-
work is capable of providing equivalent performance to the

best commercial Web servers. We believe this achievement
is possible due to JAWS’ adaptive framework that allowed us
to systematically tune run-time parameters to optimize JAWS’
performance. With automated adaptation, it should be possi-
ble for JAWS to dynamically adjust its behavior at run-time to
handle different server load conditions than those encountered
during our benchmarking tests.
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Figure 17: Average Server Throughput
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Figure 18: Average Connections-per-Second

Further evidence of the need for adaptivity is seen in the
performance difference between JAWS and Netscape Enter-
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Figure 20: Average Client Latency

prise. Although JAWS consistently outperforms Enterprise
under heavy loads, Enterprise consistently delivers higher
server throughput during light loads. These results indicate the
need to alter server behavior to handle lightvs. heavy loads.
Further research is necessary to reveal how Enterprise delivers
this performance.

4 Summary of Web Server Optimiza-
tion Techniques

Based on our study of existing Web server designs and imple-
mentation strategies, as well as our experience tuning JAWS,
the following summarizes optimizations for developing high-
performance Web servers.

Lightweight concurrency mechanism: Process-based con-
currency mechanisms can yield poor performance, as is evi-
dent in the case of the Apache Web server. In multi-processor
systems, a process-based concurrency mechanism might per-
form well, as in the case of Zeus, especially when thenumber
of processes are equal to the number of processors. In this
case, each processor can run a Web server process and context
switching overhead is minimized.

In general, processes should bepre-forkedto avoid the over-
head of dynamic process creation. However, it is preferable to
use lightweight concurrency mechanisms, (e.g., using POSIX
threads) to minimize context switching overhead. Similar to
processes, threads should be created at server startup time and
organized into a thread pool to avoid dynamic thread creation
overhead.

Critical path system call overhead: The critical path in a
Web server is defined as the sequence of instructions that must
be executed by the server after it receives an HTTP request
from the client and before it sends out the requested file. The
time taken to execute the critical path of instructions directly
impacts the latency observed by clients. Therefore, it is im-
portant to minimize system call overhead and other process-
ing in the critical path. The remainder of this section describes
various places in Web servers where such overhead can be re-
duced.

Synchronization mechanism: Process-based concurrency
mechanisms often employ signals to assist synchronization.
For instance, Apache uses theSIGUSR1signal to restart all
the server processes. In such cases, the use of signal mask-
ing calls likesigprocmask should be minimized since they
cause substantial overhead, as observed for Apache in Fig-
ure 6.

For thread-based concurrency mechanisms, synchroniza-
tion using locks should be minimized. In particular, it is im-
portant to minimize the number of locks acquired (or released)
on the critical path. Servers that average a lower number of
lock operations per request (Enterprise performs�4) perform
much better than servers that perform a high number of lock
operations (PHTTPD averages�40 lock operations per re-
quest).

In some cases, acquiring and releasing locks can also result
in preemption. Thus, if a thread reads in an HTTP request
and then attempts to acquire a lock, it might be preempted,
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and may wait for a relatively long time before it is dispatched
again. This increases the latency incurred by a Web client.

File Caching and themmapmechanism: If the Web server
does not perform file caching, the overhead of theopen sys-
tem call is typically incurred on the critical path. Servers that
perform file caching (e.g., Enterprise and Zeus) perform much
better than servers that do not (e.g., Apache). Caching can be
effectively performed using memory-mapped files (e.g., So-
laris provides themmapsystem call). Memory-mapped files
have two advantages over the conventionalread /write I/O
cycle:

� Reduced data copying overhead: Since the file is di-
rectly mapped into memory, it need not be read into memory
buffers before being transmitted to the client.

� Reduced critical path length: Since system calls like
open and read are avoided, the critical path becomes
shorter, thereby reducing latency.

The “gather-write” mechanism: Thewritev system call
allows multiple buffers to be written to a device in a single
system call. This is useful for Web servers since the typical
server response to a valid client request is composed of the
following two parts:

� The HTTP header: This header contains various HTTP-
related information, such as the the HTTP success code, the
document type, and the document date.

� The requested file: Using themmaptechnique discussed
earlier, this file is typically available in the server’s address
space.

If these two buffers are transmitted using a singlewritev
call the overhead of switching between user-mode and kernel-
mode will be reduced by a factor of�2.

Logging overhead: Most Web servers support features that
allow administrators to log the number of hits on various pages
they serve. Logging is often done to estimate the load on the
server at various times during the day. It is also commonly
performed for commercial reasons,e.g., Web sites might base
their advertising rates on page hit frequencies. However, log-
ging HTTP requests causes a significant overhead for the fol-
lowing reasons:

� Filesystem calls: A heavily loaded Web server makes a
significant number of I/O calls, which stresses the filesystem
and underlying hardware. Writing data to log files increases
this stress and thus contributes to lower performance. Keeping
log files and the HTTP files on separate filesystems and, if
possible, on separate physical devices can limit this overhead.

� Increase in critical path complexity: Logging requests in
the critical path can cause severe performance penalties since
typically file operations are required to write the log informa-
tion to disk. This overhead can be reduced bybatching log
file writes. Batching allows several requests to be logged to
a memory buffer, which is written to disklazily (e.g., when
the server is not servicing requests or after the memory buffer
grows beyond a certain threshold).

� Synchronization overhead: A typical Web server has
multiple active threads or processes serving requests. If these
threads/processes are required to log requests to a common
shared log file, access to this log file needs to be synchronized,
i.e., at most one thread/process can write to the shared log file
at any time. This synchronization introduces additional over-
head and is thus detrimental to performance. This overhead
can be reduced by keeping multiple independent log files. If
memory buffers are used, these should be stored inthread-
specific storageto eliminate locking contention.

� Reverse hostname lookups: The IP address of the client
is available to a Web server locally. However, the hostname
is typically more useful information in the log file. Thus, the
IP address of the client needs to be converted into the corre-
sponding host name. This is typically done usingreverse DNS
lookups. Since these lookups often involve network I/O, they
are very costly. Therefore, they should be avoided or done in
background threads (e.g., as done by PHTTPD).

� Ident lookups: The Ident protocol [10] allows a Web
server to obtain the user name for a given HTTP connection.
This typically involves setting up a new TCP/IP connection to
the user’s machine and thus involves a round-trip delay. Also,
the ident lookup must be performed while the HTTP connec-
tion is active and therefore cannot be performed lazily. To
achieve high performance, such lookups must thus be avoided
whenever possible.

Pre-computation of HTTP responses: Typical HTTP re-
quests result in the server sending back the HTTP header,
which contains the HTTP success code and the MIME type of
the file requested, (e.g., text/plain ). Since such responses
are part of the expected case they can bepre-computed. When
a file enters the cache, the corresponding HTTP response can
also be stored along with the file. When an HTTP request ar-
rives, the header is thus directly available in the cache. This
saves processing time on the critical path.

The time system call: Web servers are expected to send
out HTTP responses that contain the current time. This time
stamp can be used by clients to determine how current the in-
formation requested is if the last modification time is also for-
warded. Invoking thetime system call on receipt of every
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request causes the Web server to incur the overhead of switch-
ing between user-mode and kernel-mode. This overhead can
be overcome by caching the time and only changing it when
absolutely necessary (such as, when a file has a newer modifi-
cation time than the current cached time). Netscape Enterprise
uses this scheme.

Transport layer optimizations: The following transport
layer options should be configured to improve Web server per-
formance over high-speed networks:

� The listen backlog: Most TCP implementations buffer in-
coming HTTP connections on a kernel-resident “listen queue”
so that servers can dequeue them for servicing usingaccept .
If the TCP listen queue exceeds the “backlog” parameter to
the listen call, new connections are refused by TCP. Thus,
if the volume of incoming connections is expected to be high,
the capacity of the kernel queue should be increased by giving
a higher backlog parameter (which may require modifications
to the OS kernel).

� Socket send buffers: Associated with every socket is a
send buffer, which holds data sent by the server, while it is
being transmitted across the network. For high performance,
it should be set to the highest permissible limit (i.e., large
buffers). On Solaris, this limit is 64k.

� Nagle’s algorithm (RFC 896): Some TCP/IP implemen-
tations implement Nagle’s Algorithm to avoidcongestion.
This can often result in data getting delayed by the network
layer before it is actually sent over the network. Several
latency-critical applications (such as X-Windows) disable this
algorithm, (e.g., Solaris supports theTCP NODELAYsocket
option). Disabling this algorithm can improve latency by forc-
ing the network layer to send packets out as soon as possible.

5 Related Work

Measuring and analyzing the performance of Web servers is an
increasingly popular research topic. Existing research on im-
proving Web performance has focused largely on reducing net-
work latency, primarily through caching techniques [15, 27] or
protocol optimizations [14, 19, 17]. In addition, the workload
of Web servers have been modeled analytically at the Univer-
sity of Saskatchewan [12].

SGI’s WebSTONE is widely considered as the standard
benchmarking system for measuring the performance of Web
servers [6], and it is the basis of our own benchmarking
methodology. A detailed analysis of the bottlenecks in a sin-
gle Web server (i.e., Apache) has been performed at Boston
University [1]. Our work extends this work by benchmarking
a wide range of Web servers to identify the impacts of alterna-
tive server designs.

Another way to improve Web performance is by remov-
ing overhead in the protocol itself. The W3C has recently
standardized HTTP/1.1, which enables multiple requests over
a single connection. This “connection-caching” strategy can
significantly enhance the performance over HTTP/1.0 [25, 19,
17]. The need for persistent connections to improve latency
was noted by Mogul [14]. Latency can also be improved by us-
ing caching proxies and caching clients, although the removal
policy needs to be carefully considered [27]. JAWS can be
extended to become a caching proxy, allowing it to leverage
directly from this work. Yeager and McGrath of NCSA dis-
cuss many of these issues in [16].

The analyses presented above have aided our work, which
focuses on improving end-to-end Web performance by im-
proving the efficiency of Web servers. The related work on
caching is particularly rich, and our own results corroborate its
importance. However, we extend the related work by studying
the performance impacts of different combinations of concur-
rency, caching, and I/O dispatching strategies for Web servers
that are subjected to varying loads. Workload studies provide
evidence that Web server workloads can vary from server to
server, motivating the need for adaptation. Work on remov-
ing protocol overhead will make Web server bottlenecks more
prominent. We believe there is a need for comprehensive un-
derstanding ofwhen to apply various combinations of opti-
mization strategies in order to overcome these bottlenecks.

The JAWS framework facilitates the fundamental under-
standing of Web server performance by holding the develop-
ment framework constant and systematically configuring and
testing different strategies under varying load conditions on
high-speed networks. This allows us to construct profiles that
can predict the optimal combinations of strategies to use in dif-
ferent Web server conditions. By incorporating these profiles
into the framework, JAWS can support automatic configura-
tion of optimal combinations of concurrency, I/O, and caching
strategies.

6 Concluding Remarks

The research presented in this paper was motivated by a desire
to build high-performance Web servers. Naturally, it is always
possible to improve performance with more expensive hard-
ware (e.g., additional memory and faster CPUs) and a more
efficient operating system. However, our research objective is
to produce the fastest server possiblefor a given hardware/OS
platform configuration.

As shown in Section 2, we began by analyzing the perfor-
mance of existing servers. The servers that performed poorly
were studied to discover sources of bottlenecks. The servers
that performed well were examined even more closely using
whitebox techniques to examine what they did right. We found

15



that checking and opening files creates significant overhead,
which can be alleviated by applying perfect hashing and other
caching techniques.

When network and file I/O are held constant, however, the
largest portion of the HTTP request lifecycle is spent dispatch-
ing theGETrequest to the Protocol Handler that processes the
request. The time spent in dispatching depends largely on the
choice of the concurrency strategy. Our results show that no
single concurrency strategy provides optimal performance in
all circumstances.

In general, research on adaptive software has not been pur-
sued deeply in the context of Web systems. Current research
on Webserverperformance has emphasized caching [15, 27],
concurrency [8], and I/O [16, 1]. While our results corrob-
orate that caching is vital to high performance, non-adaptive
caching strategies do not provide optimal performance in Web
servers [11]. Moreover, current server implementations and
experiments rely onstaticallyconfigured concurrency and I/O
strategies.

As a result of our empirical studies, we observed that servers
relying on static, fixed strategies cannot behave optimally in
many high load circumstances. Therefore, we conclude that
high-performance Web servers must beadaptive, i.e., be cus-
tomizable to utilize the most beneficial strategy for particular
traffic characteristics, workload, and hardware/OS platforms.

JAWS supports Web server adaptivity by providing a frame-
work built using an adaptive communication environment
(ACE) [21]. Future versions of JAWS will support prioritized
request handling (to promote requests for smaller objects of re-
quests for larger objects), dynamic protocol pipelines (to sup-
port optimal end-to-end data filtering operations, such as com-
pression), as well as automatic configuration for concurrency,
I/O dispatching and caching strategies. We believe that com-
bining these techniques will produce a Web server that exhibits
extremely low latency and high throughput.

The complete source code for JAWS is available at
www.cs.wustl.edu/ �schmidt/ACE.html .
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