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Abstract

As middleware-based distributed applications become more
pervasive, the need to improve the scalability of these ap-
plications becomes increasingly important. One way to im-
prove scalability is via load balancing. Earlier generations
of middleware-based load balancing services were simplistic,
however, since they focused on specific use-cases and envi-
ronments, which made it hard to use these services for any-
thing other than a small class of distributed applications.
This lack of generality also often forced continuous redevel-
opment of application-specific load balancing services, which
increases distributed applications deployment and optimiza-
tion costs. Recent advances in the design and implementation
of middleware-based load balancing services overcome these
limitations through several techniques, including (1) support
for adaptive load balancing strategies which allows a load
balancer to be applied to a wide variety of applications, (2)
load metric neutrality which further allows a load balancer
to remain non-application specific, and (3) server-side trans-
parency, which prevents application implementations from be-
ing complicated by adding load balancing support.

This paper presents the following contributions to research
on adaptive middleware-based load balancing techniques: (1)
it describes the design of Cygnus, which is an adaptive load
balancing/monitoring service we have developed based on the
CORBA middleware standard, (2) it presents the results of
benchmarking experiments that systematically evaluate dif-
ferent load balancing strategies supported by Cygnus to in-
dicate empirically how they improve scalability, and (3) il-
lustrates when adaptive load balancing is more suitable than
non-adaptive load balancing for use in middleware-based dis-
tributed applications.

1 Introduction

Load balancing is a technique that can be used to reduce con-
tention on a given resource by distributing access among re-
dundant instances of that resource. Distributed applications
can employ load balancing in various ways and at various lev-
els to improve overall system scalability. For example, heav-
ily accessed Internet web sites often use load balancing at the
network [1] and operating system [2] levels to improve perfor-
mance and accessibility to certain resources, such as network
hosts and host processes, respectively. Load balancing at these
levels, however, may unsuitable for certain types of distributed
systems due to the lack of application-level control over load
balancing policies, lack of extensible load metrics, and diffi-
culty or inability of taking client request content into account
when balancing loads.

For certain types of distributed systems, such as online stock
trading, e-commerce, and total ship computing systems [3],
middleware-based load balancing [4] can help improve scal-
ability without incurring the limitations of load balancing at
lower levels outlined above. Since middleware-based load bal-
ancing can be employed using various strategies and multiple
metrics, determining the most suitable strategies for different
types of distributed applications is hard without the guidance
of systematic performance results. This paper focuses on the
empirical evaluation of a middleware-based load balancing ap-
proach designed to be highly flexible and suitable for use by
many distributed applications and systems.

As with load balancing done at other levels, middleware-
based load balancing can be eithernon-adaptiveor adaptive,
depending on whether or not dynamic load conditions influ-
ence load balancing decisions. Adaptive load balancing is of-
ten the most flexible and desirable, however, since it can sat-
isfy many distributed application requirements, such as (1) im-
proved handling of erratic client request patterns, and (2) op-
timizing resource utilization under non-uniform loading con-
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ditions. Although adaptive load balancing can be a powerful
technology, there are challenges to applying it effectively, in
particular determining the conditions under which the over-
head of adaptive load balancing becomes prohibitive relative
to less powerful non-adaptive strategies. This paper will em-
pirically evaluate this issue an open-source1 CORBA [5] im-
plementation of middleware-based load balancing and moni-
toring service callCygnusthat we have developed to perform
non-adaptive and adaptive load balancing.

Our earlier work on middleware-based load balancing has
focused on (1) defining a nomenclature powerful enough to
describe various forms of middleware load balancing [4], (2)
creating a flexible, portable, optimized and low overhead load
balancing model [6], (3) identifying key advanced load bal-
ancing service features that may be used to further improve
or enhance the load balancing model mentioned above [7],
and (4) determining how to implement a middleware-based
load balancing service that provides efficient run-time per-
formance using standard features found in middleware tech-
nologies. This paper explores a previously unexamined topic
pertaining to middleware-based load balancing:empirically
evaluating the different strategies used in adaptive and non-
adaptive middleware-based load balancing and determining
when adaptive middleware-based load balancing is suitable
for use by distributed applications.

The remainder of this paper is organized as follows: Sec-
tion 2 presents an overview of the Cygnus middleware-based
load balancing and monitoring service that is used as the ba-
sis for the experiments conducted in this paper; Section 3
evaluates empirical results that demonstrate why adaptive
middleware-based load balancing is a scalable solution for cer-
tain types of distributed systems; Section 4 compares and con-
trasts research that is related to our own work; and Section 5
presents concluding remarks and future work.

2 Overview of Cygnus

This section identifies the desirable properties of a
middleware-based load balancing service and describes
the key concepts and the design of the Cygnus load balancing
and monitoring service, which was developed to satisfy these
desired properties.

2.1 Desirable Properties

It is desirable to identify the salient properties of a load bal-
ancing service before we can discuss about the specific design
of a load balancing service. Below are certain key properties

1The source code for Cygnus is available fromdeuce.doc.wustl.
edu/Download.html.

of a load balancing service, which we used as a motivation in
designing Cygnus:

� General purpose: A load balancing service should make
little or no assumptions about the types of applications
whose loads it balances. The load balancing service
should not be tied to a particular application and should
be specific to a specific class of distributed systems.

� Requires little or no application change: Applications
constantly evolve over time and new applications are also
deployed when deemed necessary. Changing applica-
tions to include load balancing support will incur con-
tinuous re-development and deployment costs. This will
also lead to development of non-optimized load balanc-
ing implementations, that are specific to particular class
of applications. Hence load balancing service should be
developed as a standalone entity to the application.

� Transparent: A load balancing service should balance
loads in a transparent manner. A client invoking an op-
eration on a server could have its request processed by a
local server or a remote server. From the client’s point
of view, there should be no difference between local and
remote execution and hence clients should not be aware
of the load balancing being done.

� Dynamic: A load balancing service should allow appli-
cation developers to choose between different load bal-
ancing strategies while adding load balancing support to
their application. For example, applications whose re-
quests all generate similar or uniform load can choose
to use a simple round robin algorithm to select which
group member will receive the request, while applica-
tions whose requests generate erratic loads need to use
a much more advanced algorithm that utilizes run-time
information such as CPU load, number of requests pro-
cessed per unit time, etc, to select the group member
that will handle the request. Based on these different ap-
plication characteristics, load balancing strategies can be
classified into adaptive and non-adaptive load balancing
strategies. Hence it is imperative for a load balancing
service to support both adaptive and non-adaptive load
balancing strategies.

� Scalable: A load balancing service should assist in im-
proving scalability of a distributed application by han-
dling a large number of client requests and manage many
servers in an efficient manner.

� Extensible : A load balancing service must provide
mechanisms for application developers to develop their
custom load balancing strategies and use it in their load
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balancing/shedding decisions. The application develop-
ers should also be able to select different load metrics
during runtime. Therefore the load balancing service has
to support a wide range of load metrics.

2.2 Key Load Balancing Concepts

The key load balancing concepts and components used in this
paper and Cygnus are defined below:

� Load balancer, which is a component that attempts
to ensure application load is balanced across groups of
servers. It is sometimes referred to as a “load balanc-
ing agent” or a “load balancing service.” A load balancer
may consist of a single centralized server or multiple de-
centralized servers that collectively form a single logical
load balancer.

� Member, which is a duplicate instance of a particular
object on a server that is managed by a load balancer. It
performs the same tasks as the original object. A member
can either retain state (i.e., bestateful) or retain no state
at all (i.e., bestateless).

� Object group, which is actually a group ofmembers
across which loads are balanced. Members in such
groups implement the same remote operations.

� Session, which in the context of distribution middleware
defines the period of time that a client is connected to a
given server for the purpose of invoking remote opera-
tions on objects in that server.

Figure 1 illustrates the relationships between these compo-
nents.

2.3 Cygnus Design Overview

The core architectural components found in Cygnus are de-
picted in Figure 2 and described below:

� Load manager, which is the application entry point for
all load balancing tasks,i.e. it is amediator.

� Member locator, which is theinterceptorresponsible for
binding a client to a member.

� Load analyzer, which analyzes load conditions and trig-
gers load shedding when necessary based on the load bal-
ancingstrategyin use.

� Load monitor , which makes load reports available to the
load manager.

� Load alert, which is a mediator through which load
shedding is performed.
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Figure 1: Key Load Balancing Concepts
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Figure 2: Components in the Cygnus LB/M Service
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Design patterns [8] played a key role in the development of
Cygnus. The following patterns were used in the design of
Cygnus:

� Interceptor pattern , which enables load balancing to
be added transparently without changing applications in
use [9]. The member locator component implements the
interceptor pattern to enable clients to resolve ”next avail-
able” servers to process the request.

� Strategy pattern, which enables the load balancer to dy-
namically select the load metric to be used and use the
load metric in its load balancing decisions [8].

� Mediator pattern , which allows loose coupling between
the servers and load balancer [8]. The Load Monitor
component acts as a mediator between the servers and
the load balancer and defines interfaces which the load
balancer can use to pull load reports from the load moni-
tor.

� Component Configurator pattern, which allows dy-
namic (re)configurations of the load balancing service
and add load monitor and the load analyzer components
depending upon whether the application requires it or
not [9]. In this way, the load balancer need not add com-
ponents the application does not need.

A comprehensive discussion of the design of the Cygnus load
balancing and monitoring service appears in [6].

3 Experimental Design and Empirical
Results

To significantly improve the overall performance for a wide
range of applications, a load balancing service should (1) in-
cur minimum overhead, and (2) support both non-adaptive and
adaptive load balancing strategies.

A key contribution of the Cygnus load balancing and mon-
itoring (LB/M) service outlined in Section 2 is its ability to
satisfy these requirements. It can increase overall system scal-
ability of many types of middleware-based (and more specif-
ically CORBA-based) distributed applications in an efficient,
transparent and portable manner. The Cygnus LB/M service
achieves scalability by distributing load across multiple back-
end servers,i.e. object group members (see Section 2.2) in
a way that avoids significant overhead, round-trip latency and
jitter.

The Cygnus LB/M service incurs minimal overhead by us-
ing per-session and on-demand client binding architectures de-
scribed in detail in [10]. Cygnus provides the following built-
in load balancing strategies (1) Round Robin (2) Random and

(3) Least Loaded. Random and Round Robin load balancing
strategies are the common non-adaptive load balancing strate-
gies while the Least Loaded load balancing strategy is a com-
mon adaptive load balancing strategy. Apart from this, Cygnus
employs the use of the strategy pattern in the design of its load
analyzer component, which allows the application developer
to write a custom load balancing strategy to make load bal-
ancing/shedding decisions. A detailed discussion of the use
of various patterns in the design of the Cygnus load balancing
and monitoring service appears in [6].

This section describes the results of a set of experiments
designed to empirically evaluate the performance of each of
the built-in load balancing strategies provided by Cygnus, as
well as to demonstrate when an adaptive load balancing strat-
egy outperforms a non-adaptive load balancing strategy. Sec-
tion 3.1 outlines the hardware and software platform used in
these benchmarking experiments. Section 3.2 outlines the ex-
periments used in these benchmarking measurements. Sec-
tion 3.3 outlines the load metrics supported by the Cygnus
load balancing/monitoring service and defines the load metric
used in these benchmarking experiments. Section 3.4 outlines
the runtime configuration for the Least Loaded load balancing
strategy used in these benchmarking experiments. Section 3.5
presents the results from a set of experiments that illustrate the
low overhead Cygnus load balancing/monitoring service adds
to the distributed application. Section 3.6 presents the results
from a set of experiments that illustrate the improved scalabil-
ity attained by introducing Cygnus’ adaptive and non-adaptive
load balancing capabilities into a representative distributed ap-
plication. Lastly, section 3.7 presents the results from a set of
experiments that illustrate when the performance of adaptive
load balancing strategy outperforms the performance of the
non-adaptive load balancing strategy built in the Cygnus load
balancing and monitoring service.

3.1 Hardware/Software Benchmarking Plat-
form

Benchmarks performed for this paper were run on Emulab2 us-
ing between 2 and 41 single CPU Intel Pentium III 850 MHz
workstations, all running RedHat Linux 7.1. The Linux kernel
is open-source and supports kernel-level multi-tasking, multi-
threading, and symmetric multiprocessing. All workstations
were connected over a 100 Mbps LAN. This testbed is de-
picted in Figure 3. Benchmarks were all run in the POSIX
real-time thread scheduling class [11] in order to enhance the
consistency of our results by ensuring the threads created dur-
ing the experiment were not preempted arbitrarily during their
execution.

2Emulab (www.emulab.net ) is an NSF-sponsored testbed that facili-
tates simulation and emulation of different network topologies for use in ex-
periments that require a large number of nodes.
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Figure 3: Load Balancing Experiment Testbed

3.2 Core Benchmarking Experiments

The core CORBA benchmarking software is based on the
single-threaded form of the “Latency ” performance test dis-
tributed with the TAO open-source software release.3 Only
stateless objects are used as targets in this test. All bench-
marks were configured to run at least 500,000 iterations. Fur-
thermore, all benchmarks use one of the following variations
of theLatency test:

1. Latency test with Round Robin load balancing strat-
egy. In this benchmark, theLatency test was config-
ured to employ the Round Robin load balancing strategy
to improve scalability. This strategy is non-adaptive (i.e.,
it does not consider dynamic load conditions) and sim-
ply chooses object group members to forward client re-
quests to by cycling through the members in a given ob-
ject group each time a new client attempts to invoke an
operation on one of the group members. In other words,
all the requests from the clients are equally distributed
among the servers.

2. Latency test with Random load balancing strategy.In
this benchmark, the Random load balancing strategy is
used to improve scalability. It is a simple non-adaptive
load balancing strategy that selects a member at random
from the object group each time a new client attempts to
invoke an operation on one of the group members.

3. Latency test with Least Loaded load balancing strat-
egy. This final benchmark configuration uses Cygnus’
Least Loaded load balancing strategy to improve scala-
bility. Unlike the Round Robin and Random tests, it uses
an adaptive on-demand load balancing strategy. As its

3TAO/orbsvcs/performance-tests/LoadBalancing in the
TAO release contains the source code for this benchmark.

name implies, it chooses the object group member with
the lowest load, which is computed dynamically.

3.3 Load Metrics Supported

The Cygnus load balancing and monitoring (LB/M) service
supports the following load metrics: (1) CPU load, and (2)
requests-per-second. An application can be configured to use
one of these load metrics. The load monitors are used to mea-
sure the loads at each resource based on the load metrics cho-
sen. The core experiments in this benchmarking suite uses
requests-per-second as the load metric. This metric calculates
the average number of requests arriving per second at each
server. For example, if the application chooses to use the Least
Loaded load balancing strategy and the requests-per-second
metric, load balancing and load shedding decisions are based
on the average number of client requests arriving at a particu-
lar server at the particular instant.

3.4 Least Loaded Strategy Run-time Configu-
ration

The Least Loaded load balancing strategy used for these
benchmarking experiments was designed to exercise the adap-
tive load balancing support in Cygnus explicitly. In particular,
the following configuration was used:

� A load monitor that measured the average number of
requests arriving per second and residing within the
server was registered with the Cygnus load balanc-
ing/monitoring service.

� A reject thresholdof 25,000 events/second was set,
which is the threshold at which Cygnus will avoid se-
lecting a member with a load greater than or equal to that
load.

� A critical threshold of 35,000 events/second was set,
which is the threshold at which Cygnus informs servers
to shed loads by redirecting requests back to Cygnus.

� A dampeningvalue of 0.1 was set, which is the value
that determines what fraction of a newly reported load is
considered when making load balancing decisions.

The reject and critical threshold values were chosen in a
manner so that the load experienced by the servers did not
cause the load balancing service to alert the servers to shed
load. This may cause the load balancing service to be con-
tacted every now and then and this may incur serious over-
head over the distributed application. Hence the clients may
experience lesser throughout and increased roundtrip latency.

A dampening value of 0.1 was chosen so that the Cygnus
load balancing/monitoring service takes into account a higher
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Figure 4: Overhead Measurements

percentage of the load experienced at the server at the par-
ticular moment, when the load balancing/shedding decision is
made. The dampening factor can be chosen to range between
0 and 1. The higher the value, the lower the percentage of the
newly reported load is taken into account.

Cygnus was configured to query the load monitor every 3
seconds instead of the 5 second default.

3.5 Overhead Measurements

Figure 1 shows how the client requests are initially handled
by the load balancer component, before being bound to the
appropriate servers. This section presents the results of the
experiments that illustrate how this initial call to the load bal-
ancer incurs minimal overhead on the distributed application
and hence does not affect the performance of the distributed
application.

In these sets of experiments, the number of clients were var-
ied between 2, 4, 8, and 16 and all clients were made 500,000
invocations on a single server. The experiments were repeated
for the following set of configurations: (1) TAO Latency test
with no load balancing support added, (2) TAO Latency test
with load balancing support added and using the Round Robin
load balancing strategy, (3) TAO Latency test with load bal-
ancing support added and using the Random load balancing
strategy and (4) TAO Latency test with load balancing support
added and using the Least Loaded load balancing strategy.

Figure 4 shows how client request throughput varies as the
number of clients and servers are changed when using each
of the configurations described above. The throughput expe-
rienced by the clients, using any of the strategies described
above, decreased as the number of clients increased. This is

quite expected for any distributed application. The fact that
the distributed application behaves the same even after adding
the load balancing support built in the Cygnus load balancing
and monitoring service illustrates that the load balancing ser-
vice does not add any overhead that affects the performance of
the distributed application.

The throughput experienced by the clients while using
any of the strategies built in the Cygnus load balancing ser-
vice is slightly less than the throughput experienced without
adding the load balancing support. This slight decrease in the
throughout is attributed to the initial call to the load balancer
while binding the client to the appropriate server. The load
balancer is thereafter not involved in any of the other invoca-
tions made by the client on the server, unless the server gets
overloaded and the load balancer has to rebind the client to
any other less loaded server. This case does not occur in these
experiments, because of the properly chosen threshold values
for the Least Loaded strategy runtime configuration.

The fact that the throughput values experienced are the same
does not mean that we do not need to use the load balancing
service at all. The primary use of the load balancer is to help in
achieving improved scalability for a wide range of distributed
applications and doing that without adding any extra overhead
to the application infrastructure. Having proved that the load
balancing service does not incur any extra overhead, we pro-
ceed to the next section where we illustrate how the different
load balancing strategies built in the Cygnus load balancing
service assist in improving the scalability for a wide range of
distributed applications.

3.6 Scalability Results

The primary use of a load balancer is to improve scalability.
As such, it is important to demonstrate that a particular load
balancer configuration actually improves distributed applica-
tion scalability. Three sets of benchmarks are shown below,
one each for the Round Robin, Random, and Least Loaded
load balancing strategies. Each set of benchmarks shows how
throughput and latency vary as the number of clients is in-
creased between 1 and 32 clients, and the number of servers
is increased between 2 and 8 servers. All the experiments in
these benchmarks are designed with all the clients generating
uniform loads on the server. In general, only two or three
server data sets are shown to illustrate trends without clutter-
ing the benchmark graphs.

3.6.1 Round Robin Strategy Benchmarks

Figure 5 shows how client request throughput varies as the
number of clients and servers are changed when using the
Round Robin load balancing strategy. This figure shows how
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the throughput varies as the number of clients and the num-
ber of servers are changed. For example, throughput remained
essentially unchanged as long as the number of clients was
less than or equal to the number of servers. As the number of
clients became larger than the number of servers, the through-
out experienced by the clients became lesser and lesser. For
example. when the number of servers is 4, the throughput ex-
perienced by 8 clients is less than the throughput experienced
by 4 clients.

Figure 5 shows that the throughput experienced by the
clients increased as the number of servers increased. For
example, when the number of clients is 8, the throughput
experienced when the number of servers is 4 is more than
the throughput experienced when the number of servers is 2.
These results show that the Cygnus load balancing/monitoring
service helps the distributed application to scale well as the
number of servers increase,i.e., the increase in the number
of servers does not incur extra overhead and the through-
put increases as expected. Thus the Cygnus load balanc-
ing/monitoring service allowed access to increased number of
servers without adding any extra overhead to the distributed
application. Also, these results show that the Cygnus load bal-
ancing/monitoring service is able to handle increasing number
of client requests by making use of the available servers in an
efficient and transparent manner.

Figure 6 illustrates how request latency varied as the num-
ber of clients and servers were changed. This figure shows
how employing Cygnus in theLatency performance test im-
proved the latency. The latency experienced by the clients in-
creased as the number of clients became larger than the num-
ber of servers. For example, when the number of servers is 4,
the latency experienced by 4 clients is smaller than the latency
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Figure 6: Round Robin Strategy Latency

experienced by 16 clients.
Increasing the number of servers improved the latency. For

example, the latency for the 32 client and 2 server case is
approximately 400 microseconds. Increasing the number of
servers to 8 reduced the roundtrip latency to about 250 mi-
croseconds. This decrease in latency in turn enabled the
servers to handle more requests and hence the throughput in-
creased as more servers were added. The above claim is amply
demonstrated in the Figure 5.

3.6.2 Random Strategy Benchmarks

Figure 7 depicts how the Random load balancing strategy im-
plemented in Cygnus behaved when varying the number of
clients and servers. This figure shows how the Random load
balancing strategy behaves basically the same as the Round
Robin load balancing strategy presented in Section 3.6.1. Both
strategies exhibit similar scalability characteristics due to the
fact that they are non-adaptive and use fairly simple member
selection algorithms.

The results in Figure 7 do not mean, however, that all non-
adaptive strategies will have the same throughput characteris-
tics. It simply happens that in this case, client requests were
distributed fairly equitably among the object group members
chosen at random. Other cases could potentially result in mul-
tiple clients being bound to the same randomly chosen object
group member. In those cases, and assuming that loads gen-
erated by all clients are uniform (as is the case in this test),
throughput would be less than the Round Robin case because
the strategy would not make use of all the available hardware
resources. This could result in huge loss in money as we would
waste the initial overcommiting of hardware resources.
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Figure 8 shows how the roundtrip latency characteristics for
the Random load balancing strategy behaves the same way as
the Round Robin load balancing strategy.

3.6.3 Least Loaded Strategy Benchmarks

The Least Loaded load balancing strategy used for this test
configuration was designed to exercise the adaptive load bal-
ancing support in Cygnus explicitly. The runtime configura-
tion described in section 3.4 was used in these benchmarking
experiments.

Figure 9 illustrates how Cygnus’ Least Loaded load balanc-
ing strategy reacts as the number of clients and servers are var-
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Figure 9: Least Loaded Strategy Throughput

ied. This figure illustrates how Cygnus’ Least Loaded strategy
results in a better performance for the distributed application,
when compared to the Round Robin and Random load balanc-
ing strategies. For example, when the number of servers is 2
and the number of clients is 32, the throughput experienced
by the clients while using the Least Loaded load balancing
strategy is much more than the throughput experienced by the
clients when using the Round Robin or Random load balanc-
ing strategies.

Figure 9 also illustrates that the overall system scalabil-
ity improved. In particular, increasing the number of servers
showed further improvements in scalability. For example, the
throughput experienced by 16 clients when the number of
servers is 2 is 1800 events/second, while the throughput ob-
tained by 16 clients when the number of servers is 4 is 2800
events/second. So the Least Loaded strategy is able to make
available increased number of servers to existing clients in a
way that improves scalability without incurring any extra over-
head.

The results shown in figure 9 is obtained mainly because of
using the runtime configuration for Least Loaded strategy as
discussed in section 3.4. The performance of the Least Loaded
load balancing strategy mainly depends upon the values for
the threshold variables being used by the experiments. This
choice of values for the threshold variables varies between ex-
periments and the value has to be determined by repeated run-
ning of the experiments. An improperly chosen value for the
threshold variables may end up giving a performance as illus-
trated in figure 10.

As the results in figure 10 indicate, the performance of the
Least Loaded strategy can be substantially less than the per-
formance of the common non-adaptive load balancing strate-
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Figure 10: Least Loaded Strategy Throughput

gies because of the improper values chosen for the thresh-
old variables. For example, the throughput experienced by
32 clients when the number of servers is 2, when using the
Least Loaded strategy is much less than the throughput expe-
rienced by the clients when using the common non-adaptive
strategy like Round Robin strategy. This is because of the
extra overhead incurred by the Least Loaded load balancing
strategy over the common non-adaptive load balancing strat-
egy like Round Robin strategy.

Cygnus’s overhead is more apparent in the Least Loaded
case when the number of clients is much larger than the num-
ber of servers. This overhead includes:

� Additional periodic requests on the server emanating
from Cygnus when querying the server for its current
load,

� Delays in client request binding as Cygnus waits for
member loads to fall under a suitable value,i.e., the reject
threshold, and

� Request redirection incurred when servers forward re-
quests back to Cygnus when their current load is over the
configured critical threshold.

Despite the additional overhead, Figure 10 illustrates that
overall system scalability still improved. More importantly,
the throughput experienced by the clients did not change much
when the number of clients is very less. For example, when
comparing both the experiments when Least Loaded strategy
was used, we can figure out that the throughput experienced
by 4 clients when the number of servers is 4 is the same. The
overhead gets more and more concrete, when the number of
clients become larger and larger.
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Figure 11: Least Loaded Strategy Latency

The latency results shown in Figure 11 illustrate reductions
in roundtrip latency as the number of servers are increased.
This figure shows how employing Cygnus in theLatency
performance test improved the latency. The latency experi-
enced by the clients increased as the number of clients became
larger than the number of servers. For example, when the
number of servers is 8, the latency experienced by 4 clients
is smaller than the latency experienced by 16 clients.

Increasing the number of servers improved the latency. For
example, the latency for the 32 client and 2 server case is
approximately 350 microseconds. Increasing the number of
servers to 8 reduced the roundtrip latency to about 250 mi-
croseconds. This decrease in latency in turn enabled the
servers to handle more requests and hence the throughput in-
creased as more servers were added. The above claim is amply
demonstrated in the Figure 9.

3.7 Performance Comparison

Section 3.6 and section 3.5 showed that the non-adaptive and
adaptive CORBA LB/M strategies (i.e., Round Robin, Ran-
dom, andLeast Loaded) supported by Cygnus can be quite ef-
fective in increasing overall scalability of CORBA-based dis-
tributed applications. The strategy configurations used in these
benchmarks caused the Least Loaded adaptive load balancing
strategy benchmark to have similar throughput and latency as
their non-adaptive counterparts when the clients generate uni-
form loads. These results also demonstrate that the load mon-
itor component added as part of the Least Loaded strategy in-
curs low overhead when reporting the load information to the
load balancer. The overhead experienced while using the load
balancer is due to the initial call to the load balancer and the
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immediate forwarding of the calls from the clients to their re-
spective servers.

Given a test configuration with clients generating non-
uniform loads, the benefits of adaptive load balancing would
be more evident. The benchmarking experiments were mod-
ified to make the clients generate non-uniform loads. The
following experiments are designed to compare the perfor-
mance of the adaptive and non-adaptive load balancing strate-
gies built in Cygnus load balancing and monitoring service.
Round Robin strategy is used as an example for non-adaptive
load balancing strategy while Least Loaded strategy is used as
an example for adaptive load balancing strategy.

The benchmarking experiments were again based on the
single-threaded form of the “Latency ” performance test dis-
tributed with the TAO open-source software release. The
benchmarking experiments were modified with the following
variations in theLatency test:

1. Latency test with Round Robin load balancing strat-
egy with clients generating non-uniform loads.In this
benchmark, theLatency test was configured to employ
the Round Robin load balancing strategy to improve scal-
ability. Half of the clients were made to just invoke the
intended operation on the server, while half of the clients
were made to burn some CPU time before making the ac-
tual invocation on the server. This ensured that the load
generated by the clients on the servers is not uniform.
Half of the clients were made to invoke 100,000 iterations
while half of the clients were made to invoke 500,000 it-
erations.

2. Latency test with Least Loaded load balancing strat-
egy with clients generating non-uniform loads.This fi-
nal benchmark configuration uses Cygnus’ Least Loaded
load balancing strategy to improve scalability. A request
monitor was added that queried the servers for the to-
tal number of requests being handled per second by the
server at that particular moment. The request monitor
queried the server every 3 seconds. Half of the clients
were made to just invoke the intended operation on the
server, while half of the clients were made to burn some
CPU time before making the actual invocation on the
server. Half of the clients were made to invoke 100,000
iterations while half of the clients were made to invoke
500,000 iterations. This ensured that the load generated
by the clients on the servers is not uniform.

3.7.1 Number of clients equal or very much larger than
number of servers

The following experiments analyze the performance of the
adaptive and non-adaptive load balancing strategies when the
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Figure 12: Throughput Comparison

number of servers is varied between 2 and 8 and the number
of clients is varied between 8 and 32.

Figure 12 shows how client request throughput varies as the
number of clients ranges between 8 and 32 and the number
of servers is 2. The results are shown for both the adaptive
and non-adaptive load balancing strategies used in the experi-
ments. As the results indicate, the performance of the adaptive
load balancing strategy is much better than the performance
of the non-adaptive load balancing strategy. As the differ-
ence between the number of servers and the number of clients
increases, the throughput difference between the throughput
achieved by adaptive load balancing strategy and the through-
put achieved by non-adaptive load balancing strategy also in-
creases. For example, the throughput difference between the
adaptive load balancing strategy and the non-adaptive load bal-
ancing strategy, when the number of clients is 8 is about 200
while the throughput difference when the number of clients is
32 is about 800.

Figure 13 shows how client request throughput varies as the
number of clients ranges between 8 and 32 and the number
of servers is 4. The results are shown for both the adaptive
and non-adaptive load balancing strategies used in the exper-
iments. As the results indicate the performance of both the
strategies when the number of servers is 4 is very much sim-
ilar to the performance of the strategies when the number of
servers is 2. More importantly, irrespective of the number
of clients, the throughput difference between the strategies is
much lesser in the 4-server case than in the 2-server case.

Figure 14 shows how client request throughput varies as the
number of clients ranges between 8 and 32 and the number
of servers is 8. The results are shown for both the adaptive
and non-adaptive load balancing strategies used in the exper-
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iments. As the results indicate the performance of both the
strategies when the number of servers is 8 is very much sim-
ilar to the performance of the strategies when the number of
servers is 2. More importantly, irrespective of the number
of clients, the throughput difference between the strategies is
much lesser in the 4-server case than in the 2-server case. Also
the point to be noted, is that when the number of clients is 8,
the throughput obtained by adaptive load balancing strategy
is slightly lesser than the throughput obtained through non-
adaptive load balancing strategy.

The results from the three figures indicate that the perfor-
mance of the adaptive load balancing strategy is much better
than the performance of non-adaptive load balancing strategy,
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when the number of clients is very much larger than the num-
ber of servers. As the difference between the number of clients
and the number of servers increase, the performance of the
adaptive load balancing strategy keeps increasing.

3.7.2 Number of clients less than, equal or slightly more
than the number of servers

The following experiments analyze the performance of the
adaptive and non-adaptive load balancing strategies when the
number of servers is varied between 2 and 8 and the number
of clients is varied between 2 and 8.

Figure 15 shows how client request throughput varies as
the number of clients ranges between 2 and 8 and the num-
ber of servers is 2. The results are shown for both the adaptive
and non-adaptive load balancing strategies used in the exper-
iments. The results indicate that the performance of both the
strategies are exactly similar when the number of clients is
ranging between 2 and 6. There is a slight performance dif-
ference when the number of clients is 8. This shows that there
is nothing to choose between adaptive and non-adaptive load
balancing strategies when the number of clients is very much
equal or slightly greater than the number of servers.

Figure 16 shows how client request throughput varies as
the number of clients ranges between 2 and 8 and the num-
ber of servers is 4. The results are shown for both the adap-
tive and non-adaptive load balancing strategies used in the ex-
periments. The results indicate that the performance of both
the strategies are exactly similar irrespective of the number of
clients.

Figure 17 shows how client request throughput varies as
the number of clients ranges between 2 and 8 and the num-
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ber of servers is 8. The results are shown for both the adap-
tive and non-adaptive load balancing strategies used in the ex-
periments. The results indicate that the performance of both
the strategies are exactly similar irrespective of the number of
clients.

3.8 Lessons Learned

3.9 Summary of Empirical Results

The goal of the experiments in this paper was to show the ex-
tent to which employing a CORBA-compliant LB/M imple-
mentation, such as Cygnus, can improve distributed applica-

tion scalability without adding any extra overhead to the in-
frastructure. As our results show, scalability was indeed im-
proved in all test cases.

4 Related Work

This section describes other efforts on load balancing at var-
ious levels of abstraction and compares and contrasts our re-
search on middleware-based load balancing and Cygnus with
representative related work.

4.1 Load Balancing at Various Levels of Ab-
straction

A significant amount of work has been done on load balancing
services at the network, the operating system, and middleware
levels, as described below.

4.1.1 Network-based Load Balancing

Network-based load balancing services make decisions based
on the frequency at which a given site receives requests [12].
For example, routers [1] and DNS servers often perform
network-based load balancing, as depicted in Figure 18. Load

Text

Router
Server Server

Client

Client

ServerVirtual Server

Figure 18: Network-level Load Balancing

balancing performed at the network level has the disadvantage
that load balancing decisions are based solely on request des-
tinations rather than request content.

4.1.2 OS-based Load Balancing

Load Balancing has been supported at the operating system
level via process migration and memory ushering [13]. Us-
ing process migration, overloaded processes can be shifted to
less loaded hosts to reduce overall execution time, as shown in
Figure 19. These hosts can be present locally or in a remote
workstation. Depending on the location, migrated processes
can be scheduled immediately or after a slight delay. Process
migration decisions can be made using various metrics, in-
cluding node workload [14, 15], job memory utilization [16],
and CPU-usage [17]. Load balancing at the operating system
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Figure 19: OS-level Load Balancing

level [18, 19, 2] has the advantage of performing the balanc-
ing at multiple levels (i.e., at both the network and operating
system levels) that are largely transparent to applications.

OS-level load balancing suffers from many of the same
problems that network-based load balancing does, such as in-
flexible load metric selection and not being able to take advan-
tage of request content. OS-based load balancing may also
be too coarse-grained for some applications where it is the
server process itself, rather than the object residing within the
server, that must be load balanced. In addition, load balancing
via process migration has several disadvantages. For instance,
when processes are migrated to a new node, the resources they
used at the previous node may not be available, which may
cause significant reduction in the execution time. MOSIX [13]
solves this problem by contacting the user’s “home” node for
interactions and resource use. However, frequent remote calls
to the user’s home can increase network traffic significantly,
thereby obviating the benefits of load balancing.

4.1.3 Middleware-based Load Balancing

Middleware-based load balancing provides significant flexibil-
ity in terms of influencing how a load balancing service makes
decisions, and in terms of applicability to different types of ap-
plications [20, 21]. In particular, only middleware-based load
balancing is effective fordistributedapplications, for exam-
ple, since it is able to distributed system behavior and state int
account. As shown in Figure 20, middleware-based load bal-
ancing enables flexible application-defined selection of load
metrics, in addition to the ability to make load balancing deci-
sions based on request content.
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Figure 20: Middleware-level Load Balancing

Some middleware implementations [22, 23] integrate load
balancing functionality into the object request broker (ORB)
level of the middleware itself, whereas others [24, 25, 26, 27,
28] implement load balancing support at a higher level, such
as the common middleware services level. The latter is the
approach taken by the Cygnus load balancing and monitoring
service described in Section 2. The remainder of this section
compares and contrasts our work on middleware load balanc-
ing and Cygnus with representative related work.

4.1.4 CORBA Load Balancing

A number of projects focus on CORBA load balancing, which
can be implemented at the following levels in the OMG mid-
dleware reference architecture.

Service-level Load balancing can be implemented as a
CORBA service. For example, the research reported in [24]
extends the CORBA Event Service to support both load bal-
ancing and fault tolerance via a hierarchy ofevent channels
that fan out from event sourcesuppliersto the event sinkcon-
sumers. Each event consumer is assigned to a different leaf in
the event channel hierarchy and load balancing is performed to
distribute consumers evenly. In contrast, TAO’s load balancing
service is more general and can be used both for event services
and for requests on application-defined CORBA objects.

[25] extends the CORBA Naming Service to add
load balancing capabilities. When a client calls the
NamingContext::resolve() operation it receives the
IOR of the least-loaded server registered with the given name.
This approach, however, introduces a problem in which many
servers may register themselves with the same name and this
practice is not standards-compliant. In contrast, Cygnus uses
its LoadBalancer component to provide clients with the
IOR of the next available least-loaded server, which ensures
there are no naming conflicts with the available servers.

[26] presents a load balancing service for CORBA-based
applications that is analogous to the CORBA Trading Service.
Their load balancing service uses an independent central com-
ponent that monitors and balances the loads. Since their load
balancer is a centralized component it is not only a single-point
of failure but is also not fully scalable,i.e., the service can be-
come overloaded and result in significant delays. In contrast,
the Cygnus load balancing service has a load monitor compo-
nent that monitors loads on a given resource. This component
implements the Strategy and Mediator patterns [8] to define
an interface that can be used to (1) report loads to the load
balancer or (2) obtain loads from the load monitor. The load
monitor component minimizes the amount of communication
between the servers and the load balancer so that there is a
loose coupling between them, thereby providing a load bal-
ancer that is independent of the selected load metric and to
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minimize the amount of work performed by the load balancer
component.

Various commercial CORBA implementations provide
service-level load balancing. For example, IONA’s Orbix [27]
can perform load balancing using the CORBA Naming Ser-
vice. Different group members are returned to different clients
when they resolve an object. This design represents a typical
non-adaptive per-session load balancer, which suffers from the
disadvantages described in [4]. BEA’s WebLogic [28] uses a
per-request load balancing strategy, also described in [4]. In
contrast, TAO’s load balancing service Cygnus does not in-
cur the per-request network overhead of the BEA strategy, yet
can still adapt to dynamic changes in the load, unlike static
load balancing services, such as Orbix’s Naming Service im-
plementation.

ORB-level. Load balancing can also be implemented inside
the ORB itself. For example, a load balancing implemen-
tation can take direct advantage of request invocation infor-
mation available within the POA when it makes load balanc-
ing decisions. Moreover, middleware resources used by each
object can also be monitored directly via this design, as de-
scribed in [22]. For instance, Inprise’s VisiBroker implements
an ORB-level load balancing strategy, where Visibroker’s ob-
ject adapter [23] creates object references that point to Visi-
broker’s Implementation Repository (called the OSAgent) that
plays the role of an activation daemon and a load balancer.

The advantage of ORB-level techniques is that the amount
of indirection involved when balancing loads can be reduced
because load balancing mechanisms are closely coupled with
the ORBi.e., the length of communication paths is shortened.
The disadvantage of ORB-level load balancing, however, is
that it requires modifications to the ORB itself, so until such
modifications are adopted by the OMG, they will be propri-
etary, which reduces their portability and interoperability. The
Cygnus service-level load balancer therefore does not rely on
ORB-level extensions or non-standard features,i.e., it does
not require any modifications to TAO’s ORB core or object
adapter. Instead, it takes advantage of standard mechanisms
in CORBA 3.0 to implement adaptive load balancing. Unlike
ORB-based load balancing approaches, however, Cygnus uses
only standard CORBA features, so it can be ported to any C++
CORBA ORB that implements the CORBA 3.0 or newer spec-
ification.

5 Concluding Remarks

Middleware-based load balancing is an important technol-
ogy for improving the scalability of distributed applications.
This paper analyzes the performance of Cygnus, which is a

middleware-based load balancing and monitoring (LB/M) ser-
vice capable of performing both non-adaptive and adaptive
load balancing. Our results show how Cygnus allows dis-
tributed applications to be load balanced adaptively and effi-
ciently. Cygnus increases the scalability of distributed applica-
tions by distributing requests across multiple back-end server
members without increasing round-trip latency substantially
or assuming predictable, or homogeneous loads. The empir-
ical results in Section 3 show that introducing the Cygnus
LB/M service into distributed applications can substantially
improve scalability while incurring minimal run-time over-
head. As a result, developers can concentrate on their core
application behavior, rather than wrestling with complex mid-
dleware mechanisms needed to make their distributed applica-
tions scalable.

While our work on Cygnus has shown that it is a strong
scalability solution for middleware-based distributed applica-
tions, there are a number of enhancements that can be made.
Our ongoing work on Cygnus therefore involves the following
topics:

� Support for stateful object group members.Load balanc-
ing of statelessobjects may not always be possible or the
best choice, but load balancing ofstatefulobjects is non-
trivial.

� Decentralized load balancing.The currentcentralized
design introduces a single point of failure that may affect
reliability and scalability of the load balancer itself.

� Fault tolerant load balancing.Load balancers are often
used in high availability systems with stringent fault tol-
erance requirements. Determining how to improve load
balancer fault tolerance characteristics is essential prior
to wide scale deployment.

� Self-adaptive Load Balancing Strategies.Adaptive load
balancing strategies may not perform as well if not con-
figured properly, but knowing which configuration is best
is difficult. Self-adaptive load balancing strategies that
alter their configuration on-the-fly to better handle non-
deterministic load conditions are key for ease of deploy-
ment and maximizing scalability.

� Object group conflicts.Multiple object group members
from different object groups residing at the same location
may have potential resource conflicts due to incompatible
load balancing strategies configured for each group. It is
conceivable that such a scenario will occur in a real world
application, meaning that learning how to deal with this
problem is important.

These issues will be addressed as our work on Cygnus pro-
gresses.
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