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Abstract

The Quality Objects (QuO) middleware is a set of ex-
tensions to standard distributed object computing mid-
dleware that is used to control and adapt quality of serv-
ice in a number of distributed application environments,
from wide-area to embedded distributed applications.
This paper compares and contrasts the characteristics of
key use cases and the variations in QuO implementations
that have emerged to support them. We present these
variations in the context of several actual applications
being developed using the QuO middleware.

1. Introduction

Distributed Object Computing (DOC) middleware has
emerged and gained acceptance for the development and
implementation of a wide variety of applications in a wide
variety of environments. As DOC middleware has gained
acceptance and has been applied to a broader variety of
use cases, there has been a natural growth in extensions,
features, and services to support these use cases. For ex-
ample, the Minimum CORBA specification [15], the Real-
time CORBA 1.0 specification [16], and the Real-Time
Specification for Java (RTSJ) [2] are examples of exten-
sions and services that have grown out of a need to sup-
port embedded and real-time applications.

We have developed a DOC middleware extension
called Quality Objects (QuO) [24], which supports adap-
tive quality-of-service (QoS) specification, measurement,
and control, and which we have described in a number of
earlier papers. QuO is being used in a number of demon-
strations and applications, ranging from wide-area distrib-
uted applications to embedded real-time systems. These
diverse use-cases have led to a natural set of usage pat-
terns, tailorings, and enhancements to the QuO middle-

ware that has simultaneously broadened its applicability
and refined its focus on the specific problems of particular
environments.

This paper describes several applications developed
using QuO middleware and compares and contrasts the
usage patterns exhibited by them. We describe the par-
ticular flavors of QuO that have been developed to sup-
port the characteristics of these use-cases. Section 2 pro-
vides a brief overview of the QuO middleware. More de-
tail about QuO can be found in [12, 13, 17, 18, 21, 24].
Section 3 describes, compares, and contrasts the various
usage patterns that have emerged for the QuO middle-
ware. Section 4 describes the different implementations of
QuO available for specific use-cases. All of these imple-
mentations provide similar QuO functionality and fea-
tures, but with characteristics tailored for the specific use-
cases. Section 5 describes three specific applications be-
ing developed using QuO middleware that provide con-
crete examples of the use-cases described in Section 4.
Section 6 discusses some issues arising from the different
implementations. Finally, Section 7 provides concluding
remarks.

2. Overview of the adaptive QuO middleware

Figure 1 illustrates a client-to-object logical method
call. In a traditional CORBA application, a client makes a
logical method call to a remote object. A local ORB proxy
(i.e., a stub) marshals the argument data, which the local
ORB then transmits across the network. The ORB on the
server side receives the message call, and a remote proxy
(i.e., a skeleton) then unmarshals the data and delivers it
to the remote servant. Upon method return, the process is
reversed.

Quality Objects (QuO) is a distributed object comput-
ing (DOC) framework designed to develop distributed ap-
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Figure 1: The CORBA DOC computing model

plications that can specify (1) their QoS requirements, (2)
the system elements that must be monitored and controlled
to measure and provide QoS, and (3) the behavior for
adapting to QoS variations that occur at run-time. By pro-
viding these features, QuO opens up distributed object
implementations [11] to control an application’s func-
tional aspects and implementation strategies that are en-
capsulated within its functional interfaces.

A method call in the QuO framework is a superset of a
traditional DOC call, and includes the following compo-
nents, illustrated in Figure 2:

•  Contracts specify the level of service desired by a cli-
ent, the level of service an object expects to provide, op-
erating regions indicating possible measured QoS, and
actions to take when the level of QoS changes.
•  Delegates act as local proxies for remote objects. Each
delegate provides an interface similar to that of the remote
object stub, but adds locally adaptive behavior based upon
the current state of QoS in the system, as measured by the
contract.
•  System condition objects provide interfaces to re-
sources, mechanisms, objects, and ORBs in the system
that need to be measured and controlled by QuO con-
tracts.

In addition, QuO applications may use property man-
agers and specialized ORBs. Property managers are re-
sponsible for managing a given QoS property (such as the
availability property via replication management [5] or
controlled throughput via RSVP reservation management
[1]) for a set of QuO-enabled server objects on behalf of
the QuO clients using those server objects. In some cases,
the managed property requires mechanisms at lower levels
in the protocol stack. To support this, QuO includes a
gateway mechanism [18], which enables special purpose
transport protocols and adaptation below the ORB.

In addition to traditional application developers (who
develop the client and object implementations) and
mechanism developers (who develop the ORBs, property
managers, and other distributed resource control infra-
structure), QuO applications involve another group of de-
velopers, namely QoS developers. QoS developers are re-
sponsible for defining QuO contracts, system condition
objects, callback mechanisms, and object delegate be-

havior. To support the added role of QoS developer, we
are developing a QuO toolkit, described in earlier papers
such as [12], [13] and [21], and consisting of the follow-
ing components:

•  Quality Description Languages (QDL) for describing
the QoS aspects of QuO applications, such as QoS con-
tracts (specified by the Contract Description Language,
CDL) and the adaptive behavior of objects and delegates
(specified by the Structure Description Language, SDL).
CDL and SDL are described in [12, 13].
•  The QuO runtime kernel, which coordinates evaluation
of contracts and monitoring of system condition objects.
The QuO kernel and its runtime architecture are described
in detail in [21].
•  Code generators that weave together QDL descrip-
tions, the QuO kernel code, and client code to produce a
single application program. Runtime integration of QDL
specifications is discussed in [12].

3. Usage patterns of the QuO adaptive mid-
dleware

CORBA and other DOC frameworks, such as Java
RMI, are being used to implement diverse types of dis-
tributed applications in diverse environments, from wide-
area networks such as the Internet to embedded systems
[6, 8, 22]. These applications and environments exhibit
different characteristics and, while they are supported by
DOC middleware in general, they also use services tai-
lored to support their specific characteristics.

For example, CORBA IDL is of general use in expos-
ing the functional interfaces of objects, while hiding the
implementation details. However, it can be argued that
this is more important for heterogeneous, distributed ap-
plications, where the implementation details might include
multiple languages, platforms, operating systems, and
mechanisms than it is for embedded applications. Mean-
while, QuO has been designed to provide customized sup-
port for adaptive distributed object computing with qual-
ity-of-service requirements, above and beyond the generic
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Figure 2: QuO adds components to control, meas-
ure, and adapt to QoS aspects of an application
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features of general-purpose middleware. QuO has fea-
tures, services, and implementations that have emerged to
support the needs of specific usage patterns. This section
describes some of these usage patterns and the character-
istics that QuO provides to support them. Section 4 will
describe specific QuO-supported applications that provide
examples of these usage patterns.

3.1 Wide-area distributed object applications

Wide-area network applications, which have gained
prominence due to the emergence of the Internet and new
networking technologies, have characteristics that differ
significantly from traditional, non-networked or locally
networked applications. In this section and the next, we
contrast WAN-based distributed applications and embed-
ded distributed applications, to motivate the QuO features
that have emerged to support these two different applica-
tion contexts. This discussion is summarized in Table 1.

WAN applications often utilize components that 1)
exist on heterogeneous hosts, 2) are implemented in mul-
tiple languages, 3) are not discovered until runtime (e.g.,
through a Naming Service or DNS lookup), and 4) for
which network latency is an issue as much as, or more
than, CPU availability. Many WAN applications exhibit
some or all of the following distinguishing characteristics:

•  Widely varying data content and size – Servers often
have little control over the amount, quality, or content of
data that clients send to them.
•  Widely varying network latency times – The distance
between objects, the capacity of the networks, and the
amount and size of competing traffic can all contribute to
unpredictable delays in message and data delivery.
•  Application performance can be dominated by network
transport times – Higher and less predictable network la-
tency plays a larger role in the performance of WAN ap-
plications.
•  Heterogeneity in platforms and languages – Server
objects can be written in a variety of languages and be
hosted on a variety of platforms within an application. The
specifics of language and platform are often hidden be-

hind a common interface language, like CORBA IDL or
HTML.
•  Dynamic distribution of objects – References to ob-
jects can be obtained dynamically, using a service such as
the CORBA Naming Service, the CORBA Trading Serv-
ice, or DNS. This means that objects can migrate, differ-
ent objects can service subsequent requests, and so forth.

3.2 Embedded distributed object applications

In contrast, embedded distributed applications, such as
avionics sensor-actuator applications, typically operate
within more resource constrained, but more predictable,
environments. They usually must operate within tight
timing deadlines (e.g., sensor data must be processed be-
fore the next data element is acquired from the same sen-
sor) and therefore cannot abide varying data size or con-
tent. However, since they typically exist within LANs,
across a hardware bus, or on a single processor, there is
significantly more predictability in resource availability,
communication latency, object location, and nature of
object implementation.

In this paper, we are concentrating on a class of em-
bedded avionics and shipboard embedded applications,
which exhibit some or all of the following distinguishing
characteristics:

•  Predictable data content and size – Data size is gener-
ally constrained so that it can be processed within a fixed
period. Likewise, a single sensor, or a small set of sensors,
generally provides data with predictable content and size.
•  Fewer variances in network latency – Embedded ap-
plications often exist on a single processor or on a LAN,
so that network latency is low and fairly predictable.
There is some external data input, but most data transport
between embedded components is local, with smaller,
more controlled network latency times.
•  Application performance is often dominated by CPU
allocation – Scheduling the CPU so that all real-time tasks
meet their deadlines is a dominant feature of many em-
bedded applications. Message processing is equally likely
to be constrained by processor contention as by network
contention.

WAN Distributed Applications Embedded Distributed Applications
Data Content and Size Can vary widely Often predictable and constrained
Network Latency Can vary widely Often local or non-existent
Dominant Resource Network bandwidth CPU cycles
Platforms Often heterogeneous and remote Typically homogeneous
Languages Sometimes heterogeneous Typically one
Object Distribution Can be dynamic Typically fixed and local
Object Location Can be dynamic Often preset and fixed

Table 1: Comparison of characteristics of WAN and (avionics) embedded applications
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•  Homogeneity in platforms and languages – Embedded
applications typically run on only one processor or a few
identical processors in a LAN, using a single operating
system, and are typically written in one language.
•  Objects are typically fixed and predefined – The num-
bers and types of objects are often predefined and object
instances are usually local and created up front.

3.3 Event channel, periodic tasking

Sensor-actuator applications, such as those found on
avionics platforms, often follow an event-driven, periodic
tasking model. In such a model, an avionics application
consists of many periodic tasks with real-time deadlines
(traditionally all are hard real-time deadlines, however
hybrid hard real-time/soft real-time scheduling is becom-
ing more prevalent in embedded real-time systems). These
tasks are scheduled at a particular rate and allocated the
CPU at that rate. The deadline for each task is chosen to
allot enough time for the task to perform its function (e.g.,
process sensor data, compute navigation heading). The
period of tasks are chosen to ensure that all tasks can be
scheduled.

The traditional DOC benefits, e.g., the hiding of im-
plementation details behind functional interfaces and a
common data transport protocol, may ease the program-
ming of such embedded real-time applications. However,
modularization and decomposition are still the primary
benefits, because these embedded real-time applications
do not utilize a variety of implementations, platforms, and
languages. Furthermore, the real-time embedded software
industry has not yet widely adopted the DOC computing
paradigm [3].

Because of this, and to extend the current state-of-the-
practice in real-time embedded computing, DOC services
are emerging that support event-driven, periodic tasking
models. Two examples of these are the real-time CORBA
Event Service [10] and the real-time CORBA Scheduling
Service [9] in TAO [20], a real-time CORBA compliant
ORB. Another example is the real-time specification for
Java (RTSJ) [2]. The use of TAO’s real-time CORBA
Event Service and real-time CORBA Scheduling Service
in an avionics application is described in Section 5.2.

3.4 Adaptation at many levels

QuO’s contracts and delegates support adaptation at
many levels, from managers mediating adaptation for
many applications, to adaptation within an application, to
adaptive resource control mechanisms, to adaptation at the
transport layer. QuO’s contracts and delegates provide the
adaptation that can be used within a single application and
also within system managers. QuO’s system condition
objects provide a uniform interface to system resources,

mechanisms, and managers to translate between applica-
tion-level concepts, such as operating modes, to resource
and mechanism-level concepts, such as scheduling meth-
ods and real-time attributes.

Finally, QuO provides a gateway component, which
allows low-level communication mechanisms and special-
purpose transport-level adaptation to be plugged into an
application [18]. The QuO gateway resides between the
client and server ORBs. It is a mediator [7] that intercepts
IIOP messages sent from the client-side ORB and delivers
IIOP messages to the server-side ORB (on the message
return the roles are reversed). On the way, the gateway
translates the IIOP messages into a custom transport pro-
tocol, such as group multicast in a replicated, dependable
system.

The gateway also provides an API that allows adaptive
behavior or processing control to be configured below the
ORB layer. For example, the gateway can select between
alternate transport mechanisms based on low-level mes-
sage filtering or shaping, as well as the overall system's
state and condition objects. Likewise, the gateway can be
used to integrate security measures, such as authenticating
the sender and verifying access rights to the destination
object.

3.5 Synchronous and asynchronous adaptation

QuO contracts and delegates support two means for
triggering manager-level, middleware-level, and applica-
tion-level adaptation. The delegate triggers in-band adap-
tation by making choices upon method calls and returns.
The contract triggers out-of-band adaptation when
changes in observed system condition objects cause re-
gion transitions.

Figure 3 illustrates QuO’s in-band and out-of-band ad-
aptation. The QuO delegate supports in-band adaptation
(Figure 3a) whenever a client makes a method call and
whenever a called method returns. The delegates (on the
client and server side) check the state of the relevant con-
tracts and choose behaviors based upon the state of the
system. These behaviors can include shaping or filtering
the method data, choosing alternate methods or server
objects, performing local functionality, and so on.

QuO contracts and system condition objects support
out-of-band adaptation (Figure 3b) by monitoring condi-
tions in the system, whether they are the states of re-
sources, mechanisms, or managers. Whenever the moni-
tored conditions change (or whenever they change beyond
a specified threshold), the system condition object triggers
an asynchronous evaluation of the relevant contracts. If
this results in a change in contract region (i.e., state), it in
turn triggers adaptive behavior that occurs asynchronous
to any object interactions.
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System condition objects can interface to other, lower-
level system condition objects, and can be either observed
or non-observed. Changes in the values measured by ob-
served system conditions trigger contract evaluation, pos-
sibly resulting in region transitions and triggering out-of-
band adaptive behavior. Observed system condition ob-
jects are suitable for measuring conditions that either
change infrequently or for which a measured change can
indicate an event of notice to the application or system.
Non-observed system condition objects represent the cur-
rent value of whatever condition they are measuring, but
do not trigger an event whenever the value changes. In-
stead, they provide the value upon demand, i.e., whenever
the contract is evaluated due to a method call or return or
due to an event from an observed system condition object.

This combination of observed and non-observed sys-
tem condition objects, along with the nesting of system
condition objects, provides flexibility to support a wide
variety of in-band and out-of-band adaptation, while pro-
viding needed support to avoid instability problems and
hysteresis effects. Observed system condition objects can
measure frequently changing system conditions by
smoothing out continuous changes (e.g., by measuring
statistical average of changes over time) or by reporting
only when the system condition crosses a threshold. This
can be implemented by a single system condition object or
an observed system condition that periodically polls a
non-observed system condition object monitoring the fre-

quently changing condition. The threshold can be dynami-
cally supplied by another system condition object.

4. Implementation choices for QuO middle-
ware

The initial prototype implementation of QuO middle-
ware, covered briefly in Section 4.1, has been described in
earlier papers [13, 17, 18, 21]. In addition, we have de-
veloped other implementations and services supporting
specific use-cases of QuO. These are described in Sec-
tions 4.2 and 4.3 and have led to the following variants of
QuO that are more suitable for particular applications.
These variants advance QuO in a complementary direc-
tion to other DOC middleware, such as TAO, CORBA,
and Java.

4.1 Java QuO with threading

The initial prototype of QuO had two goals that led to
specific implementation decisions: (1) rapid prototyping
for early baseline functionality and (2) maximum flexibil-
ity. To achieve these goals, the baseline version of QuO is
written in Java, is multi-threaded, and takes maximum ad-
vantage of Java’s meta-object support.

This baseline version of QuO supports multiple lan-
guages (Java and C++ clients and objects) and multiple
ORBs (Visibroker and TAO). The QuO kernel, system
condition objects, and contracts are implemented in Java
and the QuO kernel and many system condition objects
run in their own thread. Contracts are scheduled for
evaluation by placing them on a queue and a QuO kernel
thread runs in a tight loop that pulls one contract at a time
from the queue and evaluates it. Contracts, regions, tran-
sitions, predicates, elements of predicates, and so on are
all represented as Java objects. This facilitates runtime
interpretation of contract elements and keeps the QDL
languages from having to implement typing features or
type inference. System condition objects maintain their
values and return them immediately upon demand, thereby
ensuring predictable execution times of contract region
predicates.

All interactions with the QuO kernel and between QuO
objects are through CORBA interfaces. Therefore, C++
clients would have a C++ delegate (which resembles a
CORBA IDL stub) that checks the state of a contract with
a CORBA call to the contract. We have also developed a
configuration of this QuO prototype that supports the Java
RMI inter-object protocol, in place of CORBA, for the
DARPA Advanced Logistics Program (ALP). This pro-
vides the same QuO functionality but it is provided by
RMI servants instead of CORBA servants.
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(a) QuO’s delegates provide in-band adaptation on mes-
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Figure 3: QuO supports adaptation upon method
call/return and in response to changes in the system
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The kernel can be integrated or non-integrated. An
integrated kernel runs in the JVM of the client or servant
(with a Java application), while a non-integrated kernel
has its own JVM.

4.2 Non-threaded C++ and Java QuO

To support the application of QuO to an embedded dy-
namic mission planning avionics application, described in
Section 5.2, we developed a passive C++ version of QuO.
The existing Java version of QuO was not suitable for the
avionics environment for the following reasons:

•  Java – The embedded avionics environment does not
have the spare memory and CPU to host a JVM and the
extra Java ORB (Visibroker) needed by the Java QuO im-
plementation.
•  Threading – The embedded avionics environment has
a fixed number of threads and closely controls access to
these threads.
•  Overhead – The overhead introduced by QuO dele-
gates and contract evaluations must be minimized in the
avionics environment, because of the lower latencies in-
volved and the need to fit processing within a task’s pe-
riod. We have measured the threaded Java QuO kernel as
imposing approximately 3 ms extra processing per method
call on a 200 MHz Linux host using JDK 1.1.5, which is
likely insignificant for a WAN application, but can be sig-
nificant in a real-time application.

Accordingly, we implemented a version of the QuO
kernel, contracts, and system condition library in C++ on
top of the Adaptive Communication Environment (ACE)
framework [19]. The QuO kernel, contracts, and system
condition objects are all passive. They are implemented
simply as function calls that get linked in with the appli-
cation. Contract evaluation and QuO kernel services (such

as system condition monitoring) execute in the thread of
the calling process. In the case of in-band contract
evaluation, the delegate call, the contract evaluation, and
any system condition object processing used to evaluate
contract regions execute in the thread of the client (or ser-
vant). In the case of out-of-band contract evaluation, the
contract evaluation, any system condition object process-
ing, and any triggered adaptation execute in the thread of
the observed condition, e.g., a system resource manager or
a host load monitor.

This model, where contract evaluations and all the ac-
tions spawned by them run in the thread of an existing cli-
ent or manager, adds slightly different semantics to the
QuO infrastructure over the previous prototype. In the
previous prototype, system condition objects are defined
as returning a value immediately when requested. The
work needed to determine the values is done continuously
in anticipation of their need. That is, the updating of sys-
tem condition object values is performed asynchronously
with respect to contract evaluation, delegate execution,
and client execution. This enables contract evaluation to
be bounded because system condition objects can run in
other threads.

In the non-threaded model, the system condition object
code executes to determine its value only when a contract
evaluation accesses it to determine the current operating
region. That is, the values of system condition objects are
now computed in-band. This is necessary because there
are no extra threads for system condition objects to run
asynchronously. It still results in predictable contract
evaluation time, however, as long as the system condition
objects are written to execute within predictable time
bounds.

The passive C++ version of QuO reduces the overhead
of QuO adaptation through its reduced use of CORBA
calls, its use of C++ native types instead of Java objects,

Bottleneck Avionics UAV
Performance Dominated by IIOP data de-

livery, overhead of delegate
small when compared to mar-
shalling and delivery of data

Requires low overhead to be
small percentage of task dead-
line

Streaming data, can incur no
overhead per data item

Components Distributed across WAN, het-
erogeneous hosts, heterogeneous
languages

Two heterogeneous nodes, but
single processor and language
on each node

Multiple homogeneous nodes,
with one common language

Resource Conten-
tion

Network and CPU usage can
vary dynamically

Network is constrained, but
main contention is between
tasks for CPU cycles

Initial focus is CPU utilization,
but later plans to address net-
work contention

Threading, Dis-
tribution

Non-deterministic number and
distribution of objects. Dy-
namic, changing number of
threads.

Controlled, fixed number of
threads and objects (and tasks).

Controlled, but not fixed, num-
ber of threads. Objects can be
created and destroyed, but are
deterministic.

Table 2: Comparison of the three example applications
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and the improved performance of compiled C++ over in-
terpreted Java.

After implementing the passive C++ version of QuO,
we used the same approach to rework the original proto-
type and develop an additional passive Java version of
QuO, offering a Java choice to programmers that need
strict control over the threads in their applications.

5. Examples of applications using these im-
plementation choices

This section examines three demonstration applications
that use QuO to perform adaptive QoS management. The
three applications exhibit many of the characteristics of
the use-cases described above and motivate the need for
the various variants of QuO to support them. Table 2
summarizes the differences and similarities between these
applications.

5.1 Case study 1: data dissemination in a wide-
area network

This is one of the earliest examples that we developed
using the QuO adaptive middleware. Dubbed Bottleneck,
it consists of a client requesting still images from a remote
data server and adapting to the response time it requires to
receive the images. When round-trip image delivery and
processing slows, the Bottleneck application examines re-
source and instrumentation data to determine whether the
source of the slowdown is network or CPU degradation.

If the source of the slowdown is the network, the QuO
middleware triggers adaptation to attempt to reserve
bandwidth, using RSVP [23] or Darwin [4], if either is
available. If this is not successful, the QuO middleware
triggers application adaptation, in which the application
trades off its data quantity or data quality requirements for
its timing requirement, by requesting smaller images
(lower data quantity) or lower resolution images (lower
data quality) to reduce the amount of network traffic.

If the source of the slowdown is the CPU, the applica-
tion responds by requesting unprocessed images. This re-
duces the load on the CPU used to process the images and
enables them to be received faster, but reduces the quality
of the display or analysis of the images, as illustrated in
Figure 4.

The flexibility of the threaded Java QuO implementa-
tion is the best choice for this implementation. The QuO
components are separate objects and have separate
threads, so they are subject to dynamic configuration and
modification, without relinking the whole application,
which can be distributed across many remote hosts. Fur-
thermore, this version of QuO supports more rapid
prototyping and easier modification of Bottleneck, since

the QuO objects and threads are decoupled from the ap-
plication objects and threads.

5.2 Case study 2: dynamic mission planning in an
avionics platform

As part of a collaborative research effort, we have been
using QuO as part of a dynamic mission planning avionics
application. The application, illustrated in Figure 5, con-
sists of a command and control (C2) aircraft and a fighter
aircraft collaborating during flight to redirect the fighter’s
mission parameters. The C2 aircraft sends virtual target
folders (VTFs), consisting of image data (as in case study
1), to the fighter aircraft, where they are processed to up-
date the fighter’s mission.

This has aspects of the WAN use-case, in that there is a
(wireless) connection between the C2 and the fighter
nodes, across which VTF image data is sent. This appli-
cation uses QuO for in-band and out-of-band adaptation
on the fighter side, as illustrated in Figure 6. During VTF
image download QuO manages the tradeoffs of timeliness
versus image quality. This is accomplished through image
compression, image tiling, processor resource manage-
ment, and network resource management.

When the fighter node requests an image from the C2
node, a QuO delegate breaks the image request into a se-
quence of smaller tile requests. The number of tiles that
the delegate requests is based upon the image size while
the compression level of an individual tile is based upon
the deadline for receiving the full image and the expected
download time for the tile. During image downloading a
contract monitors the progress of receiving the tiles and
influences the compression level of subsequent tiles based
upon whether the image is behind schedule, on schedule,
or ahead of schedule. The image is tiled from the point of
interest first, with the early tiles containing the most im-
portant target data, so that decreased content of the later

Processed UnProcessed

Big

Small

Figure 4: QuO middleware requests smaller im-
ages if the network is the bottleneck and unproc-

essed images if the CPU is the bottleneck
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tiles will have minimal impact on the dynamic planning
capabilities.

In addition to the in-band adaptation of tiling and com-
pression, QuO provides out-of-band adaptation in con-
junction with the processor resource manager and dy-
namic scheduler components of the system. The processor
resource manager selects task event rates from the ranges
available for different tasks to optimally utilize the CPU.
The contract monitors the progress of the image download
through system condition objects interfacing to the net-
work and CPU monitors. If the processing of the image
tiles falls behind schedule, the contract prompts the proc-
essor resource manager to attempt to adjust the rates to
allocate more CPU cycles to the decompression routine.
This is in addition to, and orthogonal to, the in-band ad-
aptation to adjust the compression level of the next tile.

If these adaptation attempts are not successful the QuO
middleware triggers application adaptation. The applica-
tion adjusts its timeliness or image quality requirements,
by requesting longer deadlines or lower image resolution
to reduce the urgency or amount of processing needed.
Figure 7 illustrates the regions of the
contract and the available adaptation
options when the contract indicates
that image receipt is early or late.

This application uses the passive
C++ version of the QuO middleware
for the reasons described in Section
4.2, i.e., the avionics software uses a
fixed number of threads, has no JVM,
and demands minimal overhead.

5.3 Case study 3: shipboard dis-
semination of UAV video

As part of an activity for the US
Navy, we have been developing a
demonstration application utilizing
QuO to control the dissemination of
Unmanned Air Vehicle (UAV) data
throughout a ship. Figure 8 illustrates

the initial architecture of the demonstration. It is a three-
stage pipeline, with an off-board UAV sending MPEG
video to an on-board video distribution process. The off-
board UAV is simulated in early prototypes by a process
that continually reads an MPEG file and sends it to the
distribution process. The video distribution process sends
the video frames to video display processes throughout the
ship, each with their own mission requirements.

QuO adaptation is used as part of an overall system
concept to provide load-invariant performance. The video
displays throughout the ship must display the current im-
ages observed by the UAV with acceptable fidelity, re-
gardless of the network and host load, in order for the
shipboard operators to achieve their missions (e.g., flying
the UAV or tracking a target). To accomplish this, system
condition objects monitor the frame rate and the host load
on the video display hosts. As the frame rate declines
and/or the host load exceeds a threshold, they cause re-
gion transitions, which trigger the following adaptation:

•  The video distribution process is told to drop frames
going to the display on the overloaded host.
•  The video display on the overloaded host is told to re-
duce its display frame rate to the rate at which frames are
being sent it.

Simultaneously, system condition objects on the video
distribution host are monitoring the host load, the input
and output queues, and the frame rate. If the queues fill up
or if the host load exceeds a threshold, the contract tells
the video distribution process to drop frames to compen-
sate. In this way, the adaptation attempts to maintain the
video display processes displaying the current images that
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the UAV is observing with appropriate fidelity, regardless
of the load on the various hosts.

The contracts on each host are simultaneously report-
ing the current contract region and video distribution met-
rics (e.g., queue lengths, frame rate, and number of
dropped frames) to a system resource manager (RM).
When QuO recognizes that the load on the video distribu-
tion host has become unacceptable, it notifies the RM.
The RM then has the option of starting a video distribu-
tion process on another, less loaded host, and hooking it
up to the UAV video source process and the video display
processes. It then kills the processes on the overloaded
host.

This application uses the passive C++ version of QuO
and exhibits only out-of-band adaptation. The application
maintains a data path, across which video frames are sent,
and a separate control path, using CORBA IIOP, across
which QuO adaptive control is sent. This seemed a better
approach than putting a delegate in the path of the video
frames because adaptation decisions do not need to be
made between each frame and doing so could lead to
hysteresis, rather than the desired load invariant perform-
ance.

6. Issues

Development of the variants of QuO middleware de-
scribed in this paper raises a number of issues. We discuss
a few of these here.

Choice of QuO implementation. For ease of
prototyping, the original version of QuO is usually still the
best choice. It has been used in many example applica-
tions, with different languages and different platforms.
However, for applications that require a smaller footprint
and fewer threads, either the passive Java or C++ version
is necessary. Ultimately, our goal is a single design for
QuO with an implementation in each language, each of
which is configured differently for different use cases.

Unification of implementations. The original effort to
develop the passive C++ version of QuO began as a
porting effort from the original prototype. However, as we
improved on the design to take advantage of C++ fea-
tures, to take advantage of the portable ACE interface,
and to improve the performance and footprint, we began
to fold some of these improvements back into the original
prototype. We are currently working on unifying the de-
signs as much as possible, with the best features of each
variant.

Maintenance and extending QuO. As long as there are
different variants of QuO, the burden of maintaining,
testing, and extending QuO will be increased. However,
as we unify the variants around a single design, this bur-
den should be reduced. We are also currently developing
an extensive regression test suite to help support and ease
the maintenance burden.

Combination and dynamic configuration of QuO. In
theory, applications or components built around one vari-
ant of QuO or another should interoperate seamlessly.
However, we have yet to develop any use cases or exam-
ples to test this. Other ideas to consider are whether the
variants described in this paper are separate implementa-

tions, whether features of them can be mixed and matched
in a QuO configuration, and whether it makes sense to dy-
namically change from one variant to another.

7. Conclusions

During the course of transitioning our QuO adaptive
middleware to real-world environments, we have had to
extend and enhance it to provide new features, imple-
mentations, and services to support the specific charac-
teristics of the target environments. These new imple-
mentations and features complement the development of
other middleware supporting similar environments, such
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as a real-time event service [10] and a hybrid
static/dynamic scheduling service [9] for a Real-Time
CORBA[16] ORB.

This paper has compared and contrasted the character-
istics of the wide-area and embedded applications that
have led to the emergence of different variants of the QuO
middleware. In addition, we described three specific ex-
ample applications that use different aspects of the QuO
implementations to address their respective requirements
and use-cases.
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