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Abstract

Recent advances in VLSI and fiber optic technology are shift-
ing application performance bottlenecks from the underlying
networks to the transport system and higher-layer communi-
cation protocols. Developing process architectures that ef-
fectively utilize multi-processing is one promising technique
for alleviating these performance bottlenecks. This paper
describes a flexible framework called ADAPTIVE that sup-
ports the development of, and experimentation with, pro-
cess architectures for multi-processor platforms. ADAPTIVE
provides a modular, object-oriented framework that gener-
ates application-tailored protocol configurations and maps
these configurations onto suitable process architectures that
satisfy multimedia application performance requirements on
high-speed networks. This paper describes several alterna-
tive process architectures and outlines the techniques used in
ADAPTIVE to support controlled experimentation with these
alternatives.

1 Introduction

Transport systems must undergo significant changes to meet
the performance requirements of the increasingly demand-
ing and diverse multimedia applications that will run on the
next generation of high-speed networks. Transport systems
combine protocol processing tasks (such as connection man-
agement, data transmission control, remote context man-
agement, error protection, and presentation conversions) to-
gether with operating system services (such as memory and
process management) and hardware devices (such as high-
speed network controllers) to support diverse applications
running on diverse local, metropolitan, and wide area net-
works.

Application performance is significantly affected by the
process architectureof the transport system [1, 2, 3]. A pro-
cess architecture binds certain communication protocol en-

tities (such as layers, tasks, connections, and/or messages)
together with logical and/or physical processing elements.
This paper describes a flexible framework called ADAP-
TIVE that supports, among other things, development and
controlled experimentation with alternative process architec-
tures. A major objective of the ADAPTIVE project is to
determine process architectures that effectively utilize par-
allelism to satisfy multimedia application performance re-
quirements on high-speed networks.

The paper is organized as follows: Section 2 motivates
the need for research on high-performancetransport systems;
Section 3 briefly summarizes the architectural design of the
ADAPTIVE transport system; Section 4 outlines several al-
ternative process architectures; Section 5 discusses ADAP-
TIVE’s process architecture support in detail; and Section 6
presents concluding remarks.

2 Research Background

The throughput, latency, and reliability requirements of mul-
timedia applications such as interactive voice, video confer-
encing, supercomputer visualization, and collaborative work
are more stringent and diverse than those found in traditional
applications such as remote login or file transfer. However,
conventional transport systems possess performance limita-
tions that impede their ability to support multimedia applica-
tions running on high-speed networks such as DQDB, FDDI,
and ATM-based B-ISDN. Application performance is influ-
enced by a number of transport system factors including
(1) process management (such as context switching, syn-
chronization, and scheduling overhead), (2) message man-
agement (such as memory-to-memory copying and dynamic
buffer allocation), (3) multiplexing and demultiplexing, (4)
protocol processing tasks (such as checksumming, segmen-
tation, reassembly, retransmission timer, flow control, con-
nection management, and routing), and (5) network interface
hardware [4, 5].

A number of empirical studies have demonstrated that pro-
cess management and message management are responsi-
ble for a significant percentage of the total transport sys-
tem performance overhead [1, 3, 5, 6, 7, 8]. In general,
these sources of transport system overhead have become a
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Figure 1: The ADAPTIVE Transport System Architecture and Services

throughput preservation problemas VLSI and fiber optic
technologies continually increase network channel speeds.
In particular, the bandwidth available from high-speed net-
works is often reduced by an order of magnitude by the time
it is actually delivered to applications [9]. Furthermore, this
problem persists despite an increase in computer CPU speeds
and memory bandwidth [10]. For example, network channel
speeds have increased by 5 or 6 orders of magnitude (from
kbps to Gbps), whereas CPU speeds and memory bandwidth
have increased by 2 or 3 orders of magnitude (from 1 MIP
up to 100 MIPS for CPUs and 100ns down to 10ns access
times for high-speed cache memory) [11].

Developing process architectures that effectively utilize
multi-processing is a promising technique for alleviating the
throughput preservation problem. However, designing and
implementing transport systems that utilize parallelism ef-
ficiently is a complex, challenging task. Therefore, this
paper describes a flexible framework called ADAPTIVE
that simplifies the development of process architectures that
utilize multi-processing. These process architectures in-
clude (1)Layer Parallelism, which associates a “process-per-
protocol-layer” (such as presentation layer, transport layer,
and network layer), (2)Task Parallelism, which associates
a “process-per-protocol-task” (such as flow control, seg-
mentation and reassembly, error detection, and routing), (3)
Connectional Parallelism, which associates a “process-per-
connection,” and (4)Message Parallelism, which associates
a “process-per-message.”

The ADAPTIVE framework also facilitates experimenta-
tion with the various process architecture alternatives. Sev-
eral studies have compared the advantages and disadvan-
tages of these process architectures via qualitative analysis
[2, 12]. However, few studies have quantitatively compared
the performance of the alternative process architectures via
controlled, empirical experimentation. In particular, existing
research that measures the performance of process architec-
tures focuses on only one or two approaches [7, 9, 13, 14].
Moreover, these empirical studies typically do not control
for critical confounding factors such as hardware platform,

operating system, and protocol implementation. By not con-
trolling for these factors, it is difficult to isolate and accu-
rately assess the performance impacts of a particular process
architecture. The ADAPTIVE system, on the other hand,
is designed to provide a controlled environment for experi-
menting with alternative process architectures. This enables
more precise measurement of a process architecture’s impact
on various aspects of application and transport system per-
formance.

3 Overview of ADAPTIVE

The ADAPTIVE system is “A Dynamically Assembled Pro-
tocol Transformation, Integration, and eValuation Environ-
ment.” ADAPTIVE provides an integrated environment for
developing and experimenting with flexible transport system
architecture services. These services support application-
tailored communication protocols for diverse multimedia ap-
plications running on high-performance networks. To en-
hance service flexibility, ADAPTIVE maintains a collection
of reusable “building block” protocol mechanisms that may
be automatically composed together and instantiated based
upon specifications of application requirements. To enhance
performance, the generated protocols may execute in paral-
lel on several target platforms such as shared memory and
message-passing multi-processors. This paper focuses pri-
marily on ADAPTIVE’s process architecture support; other
aspects of ADAPTIVE are described in [15].

Figure 1 depicts the main levels of abstraction and services
in ADAPTIVE’s architecture. Multimedia applications that
generate and receive various types of synchronized and inde-
pendent traffic (such as voice, video, text, and image) access
ADAPTIVE’s services via an interface between the transport
system and the end-user applications. This application inter-
face manages local host resources such as I/O descriptors and
communication ports. It also provides a queueing point for
exchanging application data and control messages with the
lower-level transport system components.
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The ADAPTIVE transport system maintains a collection
of protocol machinesfor each application. A protocol ma-
chine is an executable instantiation of a communication pro-
tocol that implements a uni-directionaldata streamcon-
taining customizedsession architectureservice mechanisms
such as connection management, error protection, end-to-
end flow control, remote context management, presentation
services, and routing. Session architecture services perform
“end-to-end” and “link-to-link” protocol processing tasks on
incoming and outgoing PDUs.

To support layered protocol families such as OSI and
TCP/IP, ADAPTIVE aggregates session architecture ser-
vices into distinct layers of functionality (such as the ses-
sion, transport, and network layers) via a standard, reusable
set ofprotocol family architectureservices. These services
manage the “layer-to-layer” tasks (such as message manage-
ment, multiplexing and demultiplexing, and layer-to-layer
flow control) that exchange PDUs between the protocol lay-
ers (and transport system boundaries) on a local host. In
addition, protocol family architecture services also supports
de-layered communication models (such as those described
in [10, 16, 17]). In this case, the protocol family architec-
ture services operate between the application interface, de-
layered transport system, and network interface.

Applications, session architecture services, and protocol
family architecture services all execute within a process en-
vironment provided by services in thekernel architecture.
These services manage the process architecture, virtual and
physical memory, event timers, and device drivers to provide
a portable “software veneer” for hardware devices such as
processing elements, primary and secondary storage, hard-
ware clocks, and network controllers (which implement the
link-level protocols for various networks such as FDDI, To-
ken Ring, ATM, Ethernet, and DQDB).

To permit meaningful experiments on alternative process
architectures, ADAPTIVE is designed to control many of
the confounding factors in the transport system. To facil-
itate this, ADAPTIVE utilizes a modular architecture that
decouples the policies and mechanisms in each level of the
transport system. This decoupling enables experimenters to
hold the higher-level protocol family architecture and ses-
sion architecture components constant, while varying certain
process architecture components and accurately measuring
the resulting performance impacts. ADAPTIVE’s modular-
ity also increases its portability, allowing it to run in mul-
tiple underlying kernel architectures (such as UNIX, Mach,
and transputer platforms) and protocol family architectures
(such as STREAMS andx-kernel). This paper focuses pri-
marily on a version of ADAPTIVE that is hosted the UNIX
STREAMS environment [18]. An alternative approach that
describes hosting ADAPTIVE in thex-kernel is presented in
[19].

4 Process Architecture Models

To address the throughput preservation problem, ADAP-
TIVE provides a flexible framework for developing and ex-
perimenting with alternative process architectures. A pro-
cess architecture binds communication protocol entities to
logical and/or physical processing elements (PE). Proto-
col entities include abstractions such as layers, tasks, con-
nections, and/or messages. Likewise, operating system
processes1 are abstractions of hardware PEs. On a multi-
processor separate processes may execute on multiple PEs,
whereas on a uni-processor each process may be “time-
sliced” on a single PE.

Regardless of whether multiple or single PEs are used, the
process architecture significantly impacts the performance
of applications and transport systems. In particular, certain
process architectures are capable of exploiting available OS
and hardware parallelism more effectively compared with
other architectures. For example, certain process architec-
tures increase the overhead of interprocess communication
and memory-to-memory copying, whereas others increase
the overhead of synchronization and/or context switching.
In general, the suitability of a particular process architecture
depends on a variety of factors such as (1) the type of traf-
fic generated by applications (such as bursty vs. continuous
and short-duration vs. long-duration ), (2) the architecture of
the hardware and operating system (such as message pass-
ing vs. shared memory, lightweight processes vs. heavy-
weight processes, and micro-kernel vs. macro-kernel), and
(3) the underlying network environment (such as high-speed
vs. low-speed and large frame size vs. small frame size).

This section outlines the distinguishing features of four
process architectures supported by ADAPTIVE. These pro-
cess architectures fall into three general categories:horizon-
tal, vertical, andhybrid [12]. Although each process archi-
tecture has different structural and performance character-
istics, it is possible to implement the same protocol family
functionality (such as the OSI, TCP/IP, and F-CSS [16]) with
any approach.

4.1 Horizontal Process Architectures

Horizontal process architectures associate PEs with protocol
layers or protocol tasks. Each PE performs certain protocol
operations on PDUs that are then exchanged with neighbor-
ing PEs. Two common examples of horizontal process archi-
tectures areLayer ParallelismandTask Parallelism.

� Layer Parallelism: Layer Parallelism is a coarse-
grained horizontal process architecture. As shown in Fig-
ure 2 (1), a PE is associated with each protocol layer (such
as the session, transport, and network layers) in the protocol
stack. Messages flow through the layers in a coarse-grain
“pipelined” manner. Inter-layer buffering, flow control, and

1The term “process” is used in this paper to refer to a thread of control
executing within an address space. Other systems use different terminology
(such as lightweight processes [20] or threads [21]) to denote essentially the
same concept.
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Figure 2: Horizontal Process Architectures

“stage balancing” [22] are typically necessary since the pro-
cessing activities at each layer may not execute at the same
rate. The primary advantage of Layer Parallelism is the sim-
plicity of its design, which corresponds closely to standard
layered communication architecture specifications [23]. In
addition, it is also suitable for systems that possess a limited
number of PEs. The primary disadvantages of this approach
are (1) its fixed amount of parallelism, which is limited by
the number of protocol layers, (2) the high synchronization
and communication overhead required to move messages be-
tween layers, and (3) limited support for PE load balancing
since PEs are dedicated to specific protocol layers.

� Task Parallelism: Task Parallelism is a fine-grained hor-
izontal process architecture. This approach utilizes multi-
ple PEs to perform many protocol processing tasks in par-
allel via a “pipeline” [9]. Common protocol tasks include
(1) connection management (e.g.,connection establishment
and termination), (2) header composition and decomposition
(e.g.,address resolution and demultiplexing), (3) PDU-level
and bit-level error protection (e.g.,detecting, reporting, and
retransmitting out-of-sequence PDUs and computing check-
sums), (4) segmentation and reassembly, (5) routing, and (6)
flow control. Figure 2 (2) illustrates a fine-grain pipeline
configuration where multiple PEs execute individual proto-
col tasks on messages flowing through the sender-side and
receiver-side of a protocol session. The primary advantages
of this approach are (1) the potential performance improve-
ments from using multiple PEs and (2) the ability to substi-
tute alternative mechanisms for certain protocol tasks [16].
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Figure 3: Vertical Process Architectures

However, the disadvantages are that (1) careful program-
ming is required to minimize the memory contention and
synchronization overhead resulting from the communication
between separate PEs, (2) load balancing is difficult, and (3)
non-standard, “de-layered” communication models are typ-
ically required to increase the number of tasks available for
parallel execution [10, 16].

4.2 Vertical Process Architectures

Vertical process architectures associate OS processes with
connections and messages rather than with protocol layers
or tasks [2, 7]. This approach assigns a separate process to
escort incoming and outgoing messages through the protocol
stack, delivering messages “down” to network interfaces or
“up” to applications. Two examples of vertical process ar-
chitectures areConnectional ParallelismandMessage Par-
allelism.

� Connectional Parallelism: Connectional Parallelism is
a coarse-grain vertical process architecture that dedicates a
separate PE for each connection. Figure 3 (1) illustrates this
approach, where connectionsC1; C2; C3, andC4 are bound
to separate PEs that process all messages associated with
their connection. This approach is useful for network servers
that handle many open connections simultaneously. The
advantages of Connectional Parallelism are (1) inter-layer
communication overhead is reduced (since moving between
protocol layers may not require a context switch), (2) syn-
chronization and communication overhead is relatively low
within a given connection (since synchronousintra-process
subroutine calls and upcalls [24] may be used to commu-
nicate between the protocol layers), and (3) the amount of
available parallelism is determined dynamically (rather than
statically) since it is a function of the number of active con-
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nections rather than the number of layers or tasks. One dis-
advantage with Connectional Parallelism is the difficulty of
PE load balancing. For example, a highly active connection
may swamp its PE with messages, leaving other PEs tied up
at less active or idle connections. In addition, to increase
the opportunity for exploiting parallelism, packet filters2 are
typically required for Connectional Parallelism since the net-
work interface must demultiplex on the basis of PDU address
information (such as connection identifiers, port numbers, or
IP addresses) that is actually associated with protocols resid-
ing several layers “above” in a protocol stack.

� Message Parallelism: Message Parallelism is a fine-
grain vertical process architecture that associates a separate
PE with every incoming or outgoing message. Each mes-
sage is typically stored in a buffer residing in shared mem-
ory. As illustrated in Figure 3 (2), a pointer to the message
is passed to the next available PE, which performs all the
protocol processing tasks on that message. The advantages
of Message Parallelism are similar to those for Connectional
Parallelism. Moreover, the degree of available parallelism
may be higher since it depends on the number of messages
exchanged, rather than the number of connections. Likewise,
processing loads may be balanced more evenly between PEs
since each incoming message may be dispatched to an avail-
able PE. The primary disadvantages of Message Parallelism
are the overhead resulting from (1) resource management
and scheduling support necessary to associate a process-per-
message and (2) synchronization and mutual exclusion prim-
itives required to serialize access to shared resources (such as
memory buffers and control blocks that reassemble protocol
segments addressed to the same higher-layer session).

In general, the coarse-grained Layer Parallelism and Con-
nectional Parallelism process architectures are simpler to de-
sign and implement than the fine-grain Message Parallelism
and Task Parallelism architectures since there is less interac-
tion between the PEs. However, the coarse-grain approaches
typically provide less parallelism, which limits their scalabil-
ity. For example, Layer Parallelism possesses a small, fixed
amount of parallelism determined by the number of protocol
layers. The parallelism available in the Message Parallelism
approach, on the other hand, is a function of the number of
messages, which may be much larger than the number of
layers, tasks, and/or connections. Note that there are hybrid
approaches that combine horizontal and vertical process ar-
chitectures. For instance, it is possible to assign multiple PEs
to each connection, thereby combining Task Parallelism and
Connectional Parallelism [22]. This composite approach re-
quires a large number of PEs, special contention-free mem-
ory, and careful programming to significantly improve per-
formance, however.

2Packet filters [25] are devices that allow applications and higher-level
protocols to “program” the network interface so that particular types of
incoming PDUs are demultiplexed directly to them, rather than passing
through a series of intervening protocol layers first.

5 Process Architecture Support in
ADAPTIVE

This section describes the various components available in
ADAPTIVE for developing and experimenting with alter-
native process architectures. Section 5.1 briefly describes
ADAPTIVE’s resource and tool components and outlines
how they interact with its process architecture framework.
Section 5.2 describes ADAPTIVE’s process architecture
framework in detail.

5.1 Resource and Tool Components in ADAP-
TIVE

ADAPTIVE contains an integrated set of resource and tool
components that automate many steps required to generate
and execute application-tailored protocol machines (illus-
trated in Figure 4). In the generation stage, ADAPTIVE’s
tools may be used to create executable protocol machines
that are customized for the performance requirements of
applications (or classes of applications). In the execution
stage, applications invoke the previously generated proto-
col machines to perform their data transport activities effi-
ciently. In addition, if the preconfigured collection of pro-
tocol machines is inadequate, applications may adaptively
“fine-tune” protocol machine functionality at run-time using
ADAPTIVE’s reconfiguration services [26]. The primary re-
sources and tools used in the generation and execution stages
are described below.

5.1.1 Protocol Machine Generation Stage

As shown in Figure 4 (1), the generation stage transforms
descriptions of protocol machine functionality (calledpro-
tocol machine configurations) into executableprotocol ma-
chine instantiations. A protocol machine configuration de-
scribes the peer-to-peer tasks (such as connection manage-
ment, segmentation, or duplicate control) and ordered in-
terrelations between tasks (such as “perform resequencing
before reassembly” or “compute checksum before flow con-
trol”) that process PDUs flowing through the protocol ma-
chine. A protocol machine configuration is submitted to
thesynthesizer tools. These tools perform syntactic and se-
mantic analysis, optimization, and code generation to pro-
duce a protocol machine instantiation that may be specially-
tailored for a particular process architecture. Each proto-
col machine implements the minimal set of functionality re-
quired to process a uni-directional stream of PDUs. Protocol
machines are composed of C++ objects residing in aproto-
col resource pool. This resource pool contains reusable im-
plementations of various mechanisms for connection estab-
lishment, retransmission, data transmission control, remote
context management, demultiplexing, event timing, message
management, routing, and presentation services. The pro-
tocol processing mechanisms in each protocol machine may
be customized for (1) the quantitative and qualitative require-
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Figure 4: ADAPTIVE Protocol Machine Generation and Execution Stages

ments of the application and (2) the underlying network ca-
pabilities [27].

5.1.2 Protocol Machine Execution Phase

Figure 4 (2) illustrates several activities performed by ap-
plications and ADAPTIVE transport system components at
run-time. As shown in the upper half of the figure, applica-
tions open certain communication devices (such as an FDDI
controller) and dynamically insert and/or configure protocol
machines (such as a machine that implements a Remote Pro-
cedure Call (RPC) protocol) via ADAPTIVE’s application
service interface. This service interface supports the inser-
tion, removal, and/or modification of services at run-time via
user-level or kernel-level commands.

As shown in the lower half of Figure 4, variousmapping
toolsare responsible for loading user-specified protocol ma-
chine(s) into the ADAPTIVE run-time environment. When a
protocol machine is selected and invoked by an application,
the mapping tools perform a sequence of operations that (1)
allocate and initialize the appropriate system control blocks,
(2) dynamically link protocol machine mechanisms into the
kernel address space and interconnect them to form complete
protocol machines, and (3) map selected portions of the pro-
tocol machine onto one or more operating system processes.
Depending on the underlying operating system and hardware
platform, these processes may be mapped onto one or more
hardware processing elements.

During the data transfer phase, protocol machines process
PDUs that are sent by applications and/or received from net-
work interfaces. If applications or the transport system re-
configure the functionality of a protocol machine at run-time,
the mapping tools are invoked to perform the necessary mod-
ifications. This enables protocol machines to adapt dynam-
ically to changes in application requirements, transport sys-

tem resources, and network characteristics [26].

5.2 Process Architecture Components

This section focuses on techniques for implementing ADAP-
TIVE’s process architecture framework within the proto-
col family architecture and kernel architecture provided by
STREAMS [18]. To avoid extraneous development effort,
ADAPTIVE is initially being hosted in several existing oper-
ating environments including STREAMS in UNIX. The gen-
eration and execution components described in Section 5.1
utilize various STREAMS features and capabilities. How-
ever, these components are designed in a modular manner to
minimize their dependency on the underlying platform. This
modularity facilitates (1) controlled experimentation with
different configurations of protocol machines and process
architectures and (2) provides additional portability and plat-
form transparency for protocol developers. The remainder of
this section briefly summarizes the primary components in
STREAMS and explains how the ADAPTIVE components
described in Section 5.1 are implemented by the STREAMS
components.

5.2.1 Overview of STREAMS

STREAMS provides ADAPTIVE with modular protocol
family and kernel architectures that possess components with
uniform interfaces [18]. As shown in Figure 5, STREAMS
components include STREAMheads, STREAM modules,
STREAM multiplexors, and STREAMdrivers. STREAM
heads provide a queueing point that segments and reassem-
bles application data into discrete messages. These messages
are passed “downstream” from a STREAM head through
zero or more modules and/or multiplexers to a STREAM

6



WRITE

QUEUE

READ

QUEUE
MESSAGES

WRITE
QUEUE

READ
QUEUE

STREAM
DRIVER

WRITE
QUEUE

READ
QUEUE

APPLICATION

STREAM
MODULE

USER

KERNEL

U
P

ST
R

E
A

M

STREAM
MULTIPLEXOR

APPLICATION

WRITE
QUEUE

READ
QUEUE

STREAM
HEADS

STREAM
MODULE

D
O

W
N

ST
R

E
A

M

NETWORK

INTERFACE

WRITE
QUEUE

READ
QUEUE

WRITE
QUEUE

READ
QUEUE

Figure 5: System V STREAMS Architecture

driver that transmits them to the appropriate underlying net-
work. Likewise, drivers receive messages from the net-
work. These messages are passed “upstream” through mod-
ules and/or multiplexors to a STREAM head, which coa-
lesces the messages into buffers provided by applications.

STREAM modules and multiplexors implement protocol
processing services such as encryption, compression, reli-
able message delivery, and routing. A STREAM module is
linked together with its two adjacent components by a sin-
gle pair ofreadandwrite queues. A STREAM multiplexor,
on the other hand, may be linked together with one or more
adjacent components via multiple pairs of read and write
queues. Read queues process messages arriving from net-
work devices and write queues process messages generated
by applications. Queues may contain a linked list of con-
trol and data messages that are stored in “priority-order” and
passed between modules and/or multiplexors. The overhead
of passing messages between modules and multiplexors is
minimized by passing pointers to messages rather than copy-
ing the data directly.

Queues contain several standard subroutines that imple-
ment eitherimmediateand/ordeferredmessage processing.
Immediate processing is performed by theput() subrou-
tine. This subroutine is run when synchronous or asyn-
chronous events occur at a particular queue (such as when
an application sends a message downstream or a message
arrives on a network interface). Protocol processing op-
erations that must be invoked immediately (such as han-
dling high-priority TCP “urgent data” messages) are per-
formed byput() . Deferred processing is performed by the
service() subroutine. This subroutine is used for pro-
tocol operations that do not execute in short, fixed amounts
of time (e.g.,performing a three-way handshake to establish
an end-to-end network connection) or that will block indefi-

nitely (e.g.,due to layer-to-layer flow control).
To enhance performance, the STREAMS components de-

scribed above execute within the operating system kernel.
To enhance flexibility, these components may be linked to-
gether dynamically from user-level or kernel-level to form
protocol suites such as those specified by the Internet or ISO
OSI reference models. For example, modules and multiplex-
ors may be inserted and/or removed dynamically between a
STREAM head and a STREAM driver at run-time.

5.2.2 Implementing Alternative Process Architectures
in STREAMS

By associating OS processes with different configurations of
modules and multiplexors, several process architectures may
be implemented in STREAMS. Recent implementations of
STREAMS [20] utilize shared memory multi-processors and
support various types of parallelism, ranging from fine-grain
parallelism controlled by explicit use of kernel synchroniza-
tion primitives to various synchronization models that are
supported automatically by the STREAMS framework. The
STREAMS-based version of ADAPTIVE supports Layer
Parallelism, Task Parallelism, and Connectional Parallelism,
as well as a hybrid process architecture that combines the
Task and Connectional approaches.3

A particular process architecture may be selected explic-
itly by developers and/or implicitly by ADAPTIVE’s higher-
level tool components. During the generation stage for in-
stance, developers may instrument protocol machines with
various synchronization primitives such as mutual exclusion
locks, condition variables, counting semaphores, and read-
ers/writer locks. These synchronization constructs enable
protocol machine instantiations to execute efficiently and
correctly in one or more process architectures with a min-
imal amount of redevelopment effort. This instrumentation
process is facilitated by several C++ features used in the pro-
tocol resource pool such as (1) abstract base classes, inher-
itance, and dynamic binding, (2) parameterized types, (3)
transparently extensible free store management, (4) condi-
tional compilation, and (5) member function inlining. For
example, protocol machines that run in several cooperating
processes may contain C++ protocol mechanism objects that
are allocated in shared memory. The use of shared mem-
ory enables multiple processes to inspect and/or modify cer-
tain protocol mechanisms efficiently. Depending on the pro-
cess architecture, these protocol mechanism objects may be
conditionally compiled to activate the mutual exclusion code
required to synchronize multiple accesses and/or updates to
these objects.

The following paragraphs describe how ADAPTIVE sup-
ports Connectional Parallelism and Task Parallelism via cer-
tain STREAMS components. Both examples illustrate a
STREAMS-based implementation of the data transfer and
reception portions of a reliable connection-oriented proto-
col. To improve flexibility and adaptivity, the tasks shown in

3Supporting Message Parallelism efficiently in STREAMS is difficult
since it requires a large number of kernel processes.
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Figure 6: Connectional Parallelism in STREAMS

the example code are implemented as pointers-to-functions.
During protocol generation, the synthesis tools extract the
appropriate functions from the protocol resource pool. In ad-
dition, the mechanisms that implement these functions may
be updated at run-time using a combination of dynamic link-
ing and dynamic binding. This flexibility enables adaptive
reconfiguration of protocol machine functionality to account
for changes in the run-time environment of the application,
transport system, or network.

� Connectional Parallelism Example: The protocol ma-
chines illustrated in Figure 6 use Connectional Parallelism to
associate a “process-per-connection.” The write queue sub-
routines perform all the “outgoing” protocol processing op-
erations on PDUs sent from an application before passing
the PDU to the network interface. Likewise, the read queue
subroutines perform all the “incoming” protocol processing
operations on PDUs received from the network before pass-
ing them up to applications.

ADAPTIVE’s modularity enables controlled, precise
measurement of the performance impact that results from re-
configuring the process architecture. For example, by asso-
ciating separate processes with the sender-side and receiver-
side of each connection (rather than one per-connection, as
portrayed in Figure 6), it is possible to extend the process ar-
chitecture described above to utilize additional parallelism.
Note that most of the other session architecture and protocol
family architecture factors remain unchanged, however.

� Task Parallelism Example: The protocol machines il-
lustrated in Figure 7 use fine-grain Task Parallelism to as-
sociate separate processes with certain clusters of protocol
tasks. In this approach, processes cooperate in a “pipeline
fashion” to operate on multiple incoming and outgoing
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(Message_Block *mb)
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{ /* outgoing */ }

LP_DLP::svc (void)
{ /* incoming */ }
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QUEUE
OBJECT

READ
QUEUE
OBJECT

MODULE
OBJECT

MESSAGE
OBJECT

Figure 7: Task Parallelism in STREAMS

PDUs in parallel. Each queues’ subroutines perform a small
number of protocol tasks on each PDU before passing the
PDUs to an adjacent queue that may be accessed via a dif-
ferent process.

Depending on the ratio of protocol tasks (which are rel-
atively fixed) to connections (which vary dynamically), this
process architecture may utilize a larger amount of available
parallelism, compared with the Connection Parallelism ap-
proach described above. However, careful programming and
“stage balancing” may be required to efficiently coordinate
and minimize the overhead of managing the multiple com-
municating processes [22]. As with the Connectional Paral-
lelism example, it is possible to modify these protocol ma-
chines to utilize a more coarse-grain Layer Parallelism pro-
cess architecture. For instance, rather than associating pro-
cesses with a small number of application-tailored tasks, cer-
tain tasks may be clustered into the standard OSI or TCP/IP
protocol layers, with OS processes then associated with the
larger clusters.

6 Concluding Remarks

ADAPTIVE is a flexible transport system development en-
vironment that addresses the performance requirements of
multimedia applications running on high-speed networks.
ADAPTIVE provides a framework for experimenting with
alternative process architectures in order to help improve
protocol performance and reduce transport system overhead.
We are currently designing and implementing a prototype
implementation of ADAPTIVE written in C++. To exper-
iment with alternative process architectures, this prototype
is hosted in the STREAMS framework on a multi-processor
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UNIX platform [20]. The multi-processing framework of
STREAMS in UNIX provides the basis for developing a
number of different process architectures and determining
the impact on application and transport system performance
in a controlled manner. We are using ADAPTIVE to im-
plement and evaluate a number of protocol machines that
are customized for several classes of multimedia applica-
tions such as real-time audio and video applications running
on several different networks (such as Ethernet, DQDB, and
FDDI).
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