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Abstract

A communication subsystem consists of protocol functions
and operating system mechanisms that support the imple-
mentation and execution of protocol stacks. To effectively
parallelize a communication subsystem, careful considera-
tion must be given to the process architecture used to struc-
ture multiple processing elements. A process architecture
binds one or more processing elements with the protocol tasks
and messages associated with protocol stacks in a commu-
nication subsystem. This paper outlines the two fundamen-
tal types of process architectures (task-based and message-
based) and describes performance experiments conducted
on three representative examples of these two types of pro-
cess architectures – Layer Parallelism, which is a task-based
process architecture, and Message-Parallelism and Connec-
tional Parallelism, which are message-based process archi-
tectures. These experiments measure the impact of the pro-
cess architecture on connectionless and connection-oriented
protocol stacks (based upon UDP and TCP) in a shared-
memory multi-processor operating system. The results from
these experiments indicate that the choice of process archi-
tecture significantly affects communication subsystem per-
formance.

1 Introduction

Advances in VLSI and fiber optic technology are shifting
performance bottlenecks from the underlying networks to
the communication subsystem. A communication subsystem
consists of protocol functions (such as connection manage-
ment, end-to-end flow control, remote context management,
segmentation/reassembly, demultiplexing, message buffer-
ing, error protection, session control, and presentation con-
versions) and operating system mechanisms (such as pro-
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cess management, asynchronous event invocation, message
buffering, and layer-to-layer flow control) that support the
implementation and execution of communication protocol
stacks composed of protocol functions.

Executing protocol functions and OS mechanisms in par-
allel on multi-processor platforms is a promising technique
for increasing protocol processing rates and reducing latency.
To significantly increase communication subsystem perfor-
mance on shared memory multi-processor platforms, how-
ever, the speed-up obtained from parallelism must outweight
the context switching and synchronization overhead associ-
ated with parallel processing. A context switch is triggered
when an executing process relinquishes its associated pro-
cessing element (PE) voluntarily or involuntarily. Depend-
ing on the underlying OS and hardware platform, performing
a context switch may involve dozens to hundreds of instruc-
tions to flush register windows, memory caches, instruction
pipelines, and translation look-aside buffers. Synchroniza-
tion overhead arises from locking mechanisms that serialize
access to shared objects (such as messages, message queues,
protocol connection records, and demultiplexing tables) used
when processing protocols in parallel.

A number of process architectures have been proposed
as the basis for parallelizing communication subsystems
[1, 2, 3, 4]. There are two fundamental types of process
architectures: task-based and message-based. Task-based
process architectures are formed by binding one or more
PEs to units of protocol functionality (such as presentation
layer formatting or transport layer segmentation/reassembly,
acknowledgment processing, end-to-end flow control, and
retransmission timer processing). In a task-based process
architecture, parallelism is achieved by executing protocol
tasks in separate PEs and passing data messages and control
messages between the tasks/PEs. In contrast, message-based
process architectures are formed by binding the PEs to data
messages and control messages received from applications
and network interfaces. In a message-based process archi-
tecture, parallelism is achieved by escorting multiple data
messages and control messages on separate PEs through a
stack of protocol tasks.

Protocol suites (such as the Internet and ISO OSI refer-
ence models) may be implemented using either task-based
or message-based process architectures. However, these two



types of process architectures exhibit significantly different
performance characteristics that are affected by the underly-
ing operating system and hardware platform. For instance, on
shared memory multi-processor platforms, task-based pro-
cess architectures often result in high data movement and
context switching overhead [5]. Likewise, in a message-
passing transputer multi-processor environment, message-
based process architectures typically result in high levels of
synchronization overhead [2].

Existing research has generally selected a single type of
process architecture (either task-based or message-based) and
studied it in isolation. Moreover, since different studies have
been performed on different OS and hardware platforms, us-
ing different protocols and implementation techniques, it is
difficult to compare the results obtained from these studies
in a controlled manner. This paper describes results obtained
from systematic comparisons of the performance impact of
task-based and message-based process architectures. These
results were obtained using an object-oriented framework that
facilitates controlled experiments with alternative process ar-
chitectures on shared memory multi-processor platforms [6].
The framework controls for a number of key confounding
factors (such as protocol functionality, concurrency control
schemes, and application traffic characteristics) in order to
precisely measure the performance impact of different pro-
cess architectures for parallelizing communication protocol
stacks.

This paper is organized as follows: Section 2 outlines the
fundamental types of process architectures and compares re-
lated work accordingly; Section 3 describes the design and
implementation of the protocol stacks and process architec-
tures used in the experiments reported in Section 4; and
Section 5 presents concluding remarks.

2 Alternative Process Architectures

Figure 1 (1) illustrates the basic elements that form the
foundation of a process architecture:

� Control messages and data messages – which are sent
and received from one or more applications and network
devices

� Protocol processing tasks – which are the units of proto-
col functionality that process the control messages and
data messages

� Processing elements (PEs) – which execute protocol
tasks

There are two fundamental types of process architectures
(task-based and message-based) that structure these basic
elements differently. Task-based process architectures bind
one or more PEs to protocol processing tasks. In this ar-
chitecture, tasks are the active elements, whereas messages
processed by the tasks are the passive elements (shown in
Figure 1 (2)). Conversely, message-based process architec-
tures bind the PEs to the control messages and data messages

received from applications and network interfaces. In this
architecture, messages are the active elements and tasks are
the passive elements (shown in Figure 1 (3)).

The remainder of this section briefly examines several al-
ternative process architectures in each category.

2.1 Task-based Process Architectures

Task-based process architectures associate processes2 with
clusters of one or more protocol tasks. Two representa-
tive examples of task-based process architectures are the
Layer Parallelism and Functional Parallelism process archi-
tectures. The primary difference between these two process
architectures involves the granularityof the protocol process-
ing tasks. Layers are more “coarse-grained” than functions
since they cluster multiple protocol tasks together to form a
composite service (such as the end-to-end transport service
provided by the OSI transport layer).

Layer Parallelism associates a separate process with each
layer (e.g., the presentation, transport, and network layers)
in a protocol stack. Certain protocol header and data fields
in the outgoing and incoming messages may be processed in
parallel as they flow through a pipeline of protocol stack lay-
ers. Buffering and flow control are generally necessary since
processing activities in each layer may execute at different
rates.

Functional Parallelism associates a separate process with
each protocol function (such as header composition, ac-
knowledgement, retransmission, segmentation, reassembly,
and routing). These protocol functions execute in parallel and
communicate by passing control messages and data messages
to each other.

In general, implementing pipelined task-based process ar-
chitectures is relatively straightforward. Task-based process
architectures map directly onto conventional layered commu-
nication models using well-structured “producer/consumer”
designs. Moreover, minimal synchronization mechanisms
are necessary within a layer or function since parallel pro-
cessing is typically serialized at a service access point (such
as the transport layer or application layer interface). How-
ever, as shown in Section 4, task-based process architectures
are susceptible to high context switching overhead on shared
memory platforms. This problem is exacerbated when the
number of protocol tasks exceeds the number of PEs, due to
the context switching performed when transferring messages
between protocol tasks.

2.2 Message-based Process Architectures

Message-based process architectures associate processes
with messages rather than protocol layers or functions. Two
common examples of message-based process architectures

2In this paper, the term “process” is used to refer to a series of instructions
executing within an address space; this address space may be shared with
other processes. Different terminology (such as lightweight processes [6] or
threads [7]) has also been used to denote the same basic concepts. Our use
of the term process is consistent with the definition adopted in [8].
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Figure 1: Basic Process Architecture Components and Interrelationships

are Connectional Parallelism and Message Parallelism. The
primary difference between these approaches involves the
granularity at which messages are demultiplexed onto pro-
cesses. Connectional Parallelism demultiplexes all mes-
sages bound for the same connection onto the same process,
whereas Message Parallelism demultiplexes messages onto
any available process.

Connectional Parallelism uses a separate process to handle
the messages associated with each open connection. Within a
connection, a series of protocol processing tasks are invoked
sequentially on each message as it flows through a proto-
col stack. Outgoing messages generally borrow the thread
of control from the application process and use it to escort
messages down a protocol stack. For incoming messages, a
network interface or packet filter typically performs demulti-
plexing operations to determine the correct process for each
message.

Message Parallelism associates a separate process with
every incoming or outgoing message. A process receives a
message from an application or network interface and escorts
the message through the protocol processing tasks in the
protocol stack. As with Connectional Parallelism, outgoing
messages generally borrow the thread of control from the
application that initiated the message transfer.

In general, a large degree of potential parallelism exists
with the message-based process architectures. The degree of
parallelism depends on characteristics that change dynami-
cally (such as messages or connections), rather than on the
relatively static characteristics (such as the number of lay-
ers or protocol functions) that are associated with task-based
process architectures. Depending on other communication
subsystem characteristics (such as memory and bus band-
width), this dynamism may enable message-based process
architectures to effectively use a larger number of PEs.

2.3 Related Work

A number of studies have investigated the performance char-
acteristics of task-based process architectures developed to
run on either message passing or shared memory platforms.
[5] measures the impact of several implementations of the
transport and session layers in the OSI reference model us-
ing an ADA-like rendezvous-style of Layer Parallelism in a
nonuniform access shared memory environment. [9] mea-
sures the performance of a Functional Parallelism process
architecture for presentation layer and transport layer func-
tionalityon a shared memory multi-processor. [10] measures
the performance of a de-layered, function-oriented transport
system [11] using Functional Parallelism on a message pass-
ing transputer multi-processor platform. An earlier study
[2] measured the performance of the OSI transport layer and
network layer in a similar transputer environment. [12] also
uses a multi-processor transputer platform to measure the
performance of several data-link layer protocols.

Other studies have investigated message-based process ar-
chitectures. All these studies utilize shared memory plat-
forms. [13] measured the performance of the TCP, UDP, and
IP protocols using a Message Parallelism process architec-
ture on a uniprocessor platform running the x-kernel. [1]
measures the impact of synchronization on Message Paral-
lelism implementations of TCP and UDP transport protocols
built within a multi-processor version of the x-kernel. [8]
measures the performance of the Nonet transport protocol on
a multi-processor version of Plan 9 STREAMS developed
using Message Parallelism. [3] measures the performance
of the OSI protocol stack, focusing primarily on the presen-
tation and transport layers using Message Parallelism. [14]
measures the performance of the TCP/IP protocol stack us-
ing Connectional Parallelism in a multi-processor version of
System V STREAMS.

The work presented in this paper extends existing work
by measuring a number of task-based and message-based
process architectures in a controlled environment. Our ex-
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Figure 2: Components in the ADAPTIVE Service eXecutive
Framework

periments consider the impact of both synchronization and
context switching overhead. In addition to measuring data
link, network, and transport layer performance, our experi-
ments also investigate presentation layer performance. The
presentation layer is widely considered to be one of the pri-
mary bottlenecks in high-performance communication sub-
systems.

3 Structure of the Experiments

This section describes the object-oriented framework, com-
munication protocols, and process architectures we devel-
oped and used in the performance experiments reported in
Section 4.

3.1 The ADAPTIVE Service eXecutive
Framework

The communication protocols and process architectures in
this study were developed using components provided by the
ADAPTIVE Server eXecutive (ASX) framework [15]. The
ASX framework contains an integrated set of object-oriented
components that facilitate experimentation with task-based
and message-based process architectures on shared memory
multi-processor platforms.

Components in the ASX are responsible for coordinating
one or more Streams. A Stream is an object used to con-
figure and execute protocol-specific functionality in the ASX
framework run-time environment. As illustrated in Figure 2,

a Stream contains a series of inter-connected Modules that
may be linked together by developers at installation-time or
by applications at run-time. Modules are objects that devel-
opers use to decompose the architecture of a protocol stack
into a series of inter-connected, functionally distinct layers.
Each layer implements a cluster of related protocol-specific
functions (such as an end-to-end transport service, a presen-
tation layer formatting service, or a real-time PBX signal
routing service). Every Module contains a pair of Queue
objects that partition a layer into its constituent read-side and
write-side protocol-specific processing functionality.

Any layer that performs multiplexing and demultiplexing
of message objects between related Streams may be devel-
oped using a Multiplexor object. A Multiplexor is
a C++ template-based container class that provides mecha-
nisms to route messages between Modules in a collection
of related Streams. A complete Stream is represented as an
inter-connected series of Module objects that communicate
by exchanging messages with adjacent objects. Modules
and Multiplexors may be joined together in essentially
arbitrary configurations in order to satisfy application re-
quirements and enhance component reuse.

The ASX framework employs a number of object-oriented
design techniques (such as design patterns [16] and hier-
archical decomposition) and C++ language features (such
as inheritance, dynamic binding, and parameterized types).
These design techniques and language features enable de-
velopers to incorporate protocol-specific functionality into a
Stream without modifying the protocol-independent frame-
work components. For example, incorporating a new level
of protocol functionality into a Stream at installation-time or
at run-time involves the following steps:

1. Inheriting from the Queue interface and selectively
overriding several methods (described below) in the
Queue subclass to implement protocol-specific func-
tionality

2. Allocating a new Module that contains two instances
(one for the read-side and one for the write-side) of the
protocol-specific Queue subclass

3. Inserting the Module into a Stream object at the ap-
propriate level (e.g., the transport layer, network layer,
data-link layer, etc.)

The ASX framework incorporates concepts from several
other modular communication frameworks including System
V STREAMS [17], the x-kernel [13], and the Conduit [18]
(a survey of these and other communication frameworks ap-
pears in [19]). These frameworks all contain features that
support the flexible configuration of communication sub-
systems by inter-connecting building-block protocol compo-
nents. These frameworks encourage the development of stan-
dard reusable protocol components by decoupling protocol-
specific processing functionality from the surrounding frame-
work infrastructure. In addition to supplying building-block
protocol and service components, the ASX framework also
extends the existing communication frameworks by provid-
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ing additional components that decouple protocol function-
ality from the following configuration decisions:

� The type of locking mechanisms used to synchronize
access to shared objects

� The use of message-based and task-based process archi-
tectures

� The use of kernel-level vs. user-level execution agents

3.2 Communication Protocols

Two types of protocol stacks are used in the experiments. One
protocol stack is based on the connectionless UDP transport
protocol. The other protocol stack is based on the connection-
oriented TCP transport protocol. The protocol stacks contain
the data-link, network, transport, and presentation layers.
The presentation layer is included in the experiments since
it represents a major bottleneck in high-performance com-
munication subsystems, due primarily to the large amount of
data movement overhead it often incurs.

Both the connectionless and connection-oriented protocol
stacks were developed by specializing reusable components
in the ASX framework via inheritance and parameterized
types. Inheritance and parameterized types are used to hold
the protocol functionalityconstant while systematically vary-
ing the process architecture. Each layer in a protocol stack is
implemented as a Module whose read-side and write-side
both inherit interfaces and implementations from the Queue
class described in [15]. The necessary synchronization and
demultiplexing mechanisms are parameterized using C++
template arguments that are instantiated based on the type
of process architecture being tested.

Data-link layer processing in each protocol stack is per-
formed by the DLP Module. This Module transforms net-
work packets received from a network interface into the
canonical message format used internally by the Stream
components.3 The network and transport layer components
of the protocol stacks are based on the IP, UDP, and TCP
implementation in the BSD 4.3 Reno release. The 4.3 Reno
TCP implementation contains the TCP header prediction en-
hancements, as well as the slow start algorithm and conges-
tion avoidance features. The UDP and TCP transport pro-
tocols are configured into the ASX framework via the UDP
and TCP Modules. Network layer processing is performed
by the IP Module. This Module performs routing and
segmentation/reassembly of Internet Protocol (IP) packets.

Presentation layer functionality is implemented in the
XDR Module using marshalling routines produced by the
ONC eXternal Data Representation (XDR) stub generator
(rpcgen). The ONC XDR stub generator automatically

3Preliminary tests using the widely-available ttcp benchmarking tool
indicated that the PE, bus, and memory performance of the SunOS multi-
processor platform used in the experiments was capable of processing mes-
sages through the protocol stack at a much faster rate than the 10 Mbps
Ethernet network interface was capable of handling. Therefore, for our pro-
cess architecture experiments, the network interface was simulated with a
single-copy pseudo-device driver operating in loop-back mode.
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Figure 3: Layer Parallelism

translates a set of type specifications into marshalling rou-
tines. These routines encode/decode implicitly-typed mes-
sages before/after they are exchanged among hosts that may
possess heterogeneous processor byte-orders. The ONC pre-
sentation layer conversion mechanisms consist of a type
specification language (XDR) and a set of library routines
that implement the appropriate encoding and decoding rules
for built-in integral types (e.g., char, short, int, and long)
and real types (e.g., float and double). In addition, these
library routines may be combined to produce marshalling
routines for arbitrary user-defined composite types (such as
record/structures, unions, arrays, and pointers). Messages
exchanged via XDR are implicitly-typed, which improves
marshalling performance at the expense of run-time flexibil-
ity. The XDR functions selected for both the connectionless
and connection-oriented protocol stacks convert incoming
and outgoing messages into and from variable-sized arrays
of structures containing both integral and real values. This
conversion processing involves byte-order conversions, as
well as dynamic memory allocation and deallocation.

3.3 Process Architectures

The remainder of this section outlines the structure of connec-
tionless and connection-oriented protocol stacks developed
using task-based and message-based process architectures.

3.3.1 Structure of the Task-based Process Architecture
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� Layer Parallelism: Figure 3 illustrates the ASX frame-
work components that implement a Layer Parallelism pro-
cess architecture for the TCP-based connection-oriented
and UDP-based connectionless protocol stacks. Protocol-
specific processing at each protocol layer is performed via the
Queue::svcmethod. This method is invoked by a daemon
process associated with theModule that implements the pro-
tocol layer (e.g., LP XDR, LP TCP, LP IP, and LP DLP).
These daemon processes cooperate in a producer/consumer
manner, operating on the header and data fields of messages
corresponding to their particular protocol layer in parallel.
Each svc method performs its protocol functions before
passing the message to an adjacent Module that runs asyn-
chronously in a separate daemon process. Since daemon
processes all share a common address space, messages are
not copied when passed between adjacent Modules. How-
ever, moving messages between processes may invalidate
per-PE data caches.

The connectionless and connection-oriented Layer Paral-
lelism process architecture protocol stacks are designed in a
similar manner. The primary difference is that the objects
in the connectionless transport layer Module implement the
simpler UDP functionality. UDP does not generate acknowl-
edgements, keep track of round-trip time estimates, or man-
age congestion windows, etc.

3.3.2 Structure of the Message-based Process Architec-
tures

� Connectional Parallelism: The protocol stack depicted
in Figure 4 (1) illustrates an ASX-based implementation of
the Connectional Parallelism process architecture. Each con-
nection is associated with a separate process that performs the
data-link, network, transport, and presentation layer function-
ality for that connection. Protocol tasks are divided into four

inter-connected Modules, corresponding to the data-link,
network, transport, and presentation layers in the ISO OSI
communication model. Data-link processing is performed in
the CP DLP Module. This Module uses its read-side svc
method to (1) transform network messages into the canoni-
cal internal message format that is processed by higher-level
components in a Stream and (2) demultiplex incoming mes-
sages onto the appropriate transport layer connection.4 Once
a message has been demultiplexed onto a connection, all that
connection’s context information is directly accessible within
the address space of the associated process. This is beneficial
since (1) pointers to messages may be passed between proto-
col layers via simple procedure calls (rather than using more
complicated and costly interprocess communication mecha-
nisms used for Layer Parallelism process architecture), (2)
cache affinity properties may be preserved since messages are
processed largely within a single PE cache, and (3) minimal
internal locking is required within a connection. Therefore, a
process may operate on its connection’s messages without in-
curring additional demultiplexing, synchronization, and con-
text switching overhead. The CP IP, CP TCP, and CP XDR
Modules all perform their processing synchronously in their
respective put methods.

� Message Parallelism: Figure 4 (2) illustrates a message-
based process architecture for the connection-oriented proto-
col stack. When an incoming message arrives, it is handled
by theMP DLP::svcmethod, which manages a pool of pre-
spawned threads. Each message is associated with a separate
thread that escorts the message synchronously through a se-
ries of inter-connectedQueues in a Stream. Each layer of the
protocol stack performs its protocol functions and then makes

4The connection-oriented implementation of Connectional Parallelism
performs “eager demultiplexing” via a packet filter at the data-link layer.
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an upcall to the next adjacent layer in the protocol stack by
invoking the Queue::put method in that layer. The put
method executes the protocol tasks associated with its layer.
For instance, the MP TCP::put method utilizes mutual ex-
clusion (mutex) objects that serialize access to per-connection
control blocks as separate messages from the same connec-
tion ascend the protocol stack in parallel.

The connectionless message-based protocol stack is struc-
tured in a similar manner, though it performs the simpler set
of UDP functionality. Unlike the MP TCP::put method,
the MP UDP::put method handles each message concur-
rently and independently, without explicitly preserving inter-
message ordering. This reduces the number of synchro-
nization operations required to locate and update shared re-
sources, which improves performance.

4 Communication Subsystem Perfor-
mance Experiment Results

This section describes experiments that measure the per-
formance impact of different combinations of the protocol
stacks and process architectures described above. The multi-
processor platform and the measurement tools used in the
experiments are also discussed.

4.1 Multi-processor Platform

All experiments were conducted on an otherwise idle Sun
690MP SPARCserver, which contains 4 SPARC 40 MHz
processing elements (PEs), each capable of performing at 28
MIPs. The memory bandwidth of the SPARCserver plat-
form was measured at approximately 150 Mbits/sec, which
represents an upper limit on protocol processing throughput.
Protocol processing throughput is also significantly affected
by context switching and synchronization overhead exhibited
by the different task-based and message-based process archi-
tectures. The costs of context switching and synchronization
overhead in the SPARCserver platform are described below.

The operating system used for the experiments is release
5.3 of SunOS, which provides a multi-threaded kernel that
allows multiple system calls and device interrupts to execute
in parallel [6]. All the process architectures in these exper-
iments execute protocol tasks in separate unbound threads
multiplexed over 1, 2, 3, or 4 SunOS lightweight processes
(LWPs) within a process. SunOS 5.3 maps each LWP di-
rectly onto a separate kernel thread. Since kernel threads
are the units of PE scheduling and execution in SunOS, this
mapping enables multiple LWPs (each executing protocol
processing tasks in an unbound thread) to run in parallel on
the SPARCserver’s PEs.

Rescheduling and synchronizing a SunOS LWP involves
a kernel-level context switch. The time required to per-
form a context switch between two LWPs was measured
to be approximately 30 usecs. During this time, the OS
performs system-related overhead (such as flushing register
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windows, instruction and data caches, instruction pipelines,
and translation lookaside buffers) on the PE and therefore
does not process protocol tasks. Measurements also revealed
that it requires approximately 2 usecs to acquire or release a
Mutex object implemented using a SunOS spin-lock. Like-
wise, measurements indicated that approximately 90 usecs
are required to synchronize two LWPs using Condition
objects implemented using SunOS sleep-locks. The larger
amount of overhead for the Condition object operations
compared with the Mutex object operations occurs from the
more complex locking algorithms involved, as well as the
additional context switching incurred by SunOS sleep-locks.

4.2 Measurement Results

This section presents results obtained by measuring the
data reception portion of the connection-oriented and connec-
tionless protocol stacks implemented using the Layer Paral-
lelism task-based process architecture and the Connectional
Parallelism and Message Parallelism message-based process
architectures. Three types of measurements were obtained
for each combination of process architecture and protocol
stack: total throughput, context switching overhead, and syn-
chronization overhead.

Total throughput was measured by holding the protocol
functionality, application traffic patterns, and network in-
terfaces constant and systematically varying the process ar-
chitecture to determine the resulting performance impact.
Each benchmarking session consisted of transmitting 10,000
4 Kbyte messages through an extended version of the widely
available ttcp protocol benchmarking tool. The original
ttcp tool measures the processing resources and overall
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user and system time required to transfer data between a
transmitter process and a receiver process communicating
via TCP or UDP. The flow of data is uni-directional, with the
transmitter flooding the receiver with a user-specified num-
ber of data buffers. Various sender and receiver parameters
(such as the number of data buffers transmitted and the size
of data buffers and protocol windows) may be selected at
run-time.

The version of ttcp used in our experiments was en-
hanced to allow a user-specified number of communicating
applications to be measured simultaneously. This feature
measured the impact of multiple connections on the per-
formance of process architectures (the connection-oriented
process architecture tests were run using 4 connections). The
ttcp tool was also modified to use the ASX-based protocol
stacks configured according to the process architectures de-
scribed in Section 4.2. To measure the impact of parallelism
on throughput, each test was run using 1, 2, 3, and 4 PEs.
Furthermore, each test was performed multiple times to de-
tect the amount of spurious interference incurred from other
internal OS tasks (the variance between test runs proved to
be insignificant).

Context switching and synchronization measurements
were obtained to help explain differences in the through-
put results. These metrics were obtained from the SunOS 5.3
/proc file system, which records the number of voluntary
and involuntary context switches incurred by threads in a
process, as well as the amount of time spent waiting to obtain
and release locks on Mutex and Condition objects.

Figure 5 illustrates throughput (measured in Mbits/sec)
as a function of the number of PEs for the task-based and
message-based process architectures used to implement the
connection-oriented (CO) and connectionless (CL) protocol
stacks.5 The results in this figure indicate that increasing
the number of PEs improves throughput for all the process
architectures. However, the message-based process archi-
tectures significantly outperformed their task-based coun-
terparts as the number of PEs increased from 1 to 4. For
example, the performance of the connection-oriented task-
based process architecture was only slightly better using 4
PEs (approximately 16 Mbits/sec, or 1.92 milliseconds per-
message processing time) than the message-based process
architecture was using 2 PEs (14 Mbits/sec, or 2.3 millisec-
onds per-message processing time). Moreover, if a larger
number of PEs had been available, it appears likely that the
performance improvement gained from parallel processing
in the task-based process architectures would have leveled
off sooner than the message-based tests due to the higher rate
of growth for context switching and synchronization shown
in Figure 6 and Figure 7.

The Connection Parallelism process architecture exhibited
the highest levels of throughput for the connection-oriented
protocol stacks when the number of PEs equaled the num-
ber of connections. The major limitation with Connectional

5The Connectional Parallelism process architecture does not support the
connectionless protocol stack.
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Parallelism, however, is that it only utilizes parallelism to
improve aggregate end-system performance since each in-
dividual connection still executes sequentially. In contrast,
Message Parallelism also utilizes multiple PEs effectively for
a single connection.

Figure 6 illustrates the number of involuntary and volun-
tary context switches incurred by the process architectures
measured in this study. An involuntarycontext switch occurs
when the OS kernel preempts a running thread. For exam-
ple, the OS preempts running threads periodically when their
LWP time-slice expires in order to schedule other threads
to execute. A voluntary context switch is triggered when
a thread puts itself to sleep until certain resources (such as
I/O devices or synchronization locks) become available. For
example, when a protocol task attempts to acquire a resource
that may not become available immediately (such as obtain-
ing a message from an empty list of messages in a Queue),
the protocol task puts itself to sleep by invoking the wait
method of a Condition object. This action causes the OS
kernel to preempt the current thread and perform a context
switch to another thread that is capable of executing protocol
tasks immediately.

As shown in Figure 6, The Layer Parallelism task-based
process architectures exhibited slightly higher levels of in-
voluntary context switching than the message-based process
architectures. This is due mostly to the fact that the Layer
Parallelism tests required more time to process the 10,000
messages and were therefore pre-empted a greater number
of times. Furthermore, the task-based process architectures
also incurred significantly more voluntary context switches,
which accounts for the substantial improvement in overall
throughput exhibited by the message-based process architec-
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Figure 6: Process Architecture Context Switching Overhead

tures. The primary reason for the increased context switch-
ing is that the locking mechanisms used by the message-
based process architectures utilize adaptive spin-locks (which
rarely trigger a context switch), rather than the sleep-locks
used by task-based process architectures (which do trigger a
context switch). Note that the Connectional Parallelism pro-
cess architecture incurred the least amount of context switch-
ing for the connection-oriented protocol stacks.

Figure 7 indicates the amount of execution time that the
/proc metrics reported as being devoted to waiting to ac-
quire and release locks in the connectionless and connection-
oriented benchmark programs. As with context switching
benchmarks, the message-oriented process architectures in-
curred considerably less synchronization overhead, particu-
larly when 4 PEs were used. As with context switching, the
spin-locks used by message-based process architecture re-
duce the amount of time spent synchronizing, in comparison
with the sleep-locks used by the task-based process architec-
tures.

5 Concluding Remarks

Despite an increase in the availability of operating system
and hardware platforms that support networking and parallel
processing, developing communication subsystems that ef-
fectively utilize parallel processing remains a complex and
challenging task. A key aspect of communication subsys-
tem performance involves the type of process architecture
selected to structure parallel processing of protocol tasks.
Measurement results reported in this paper indicate that task-
based process architectures incur much higher levels of con-
text switching and synchronization overhead on a shared
memory platform, which significantly reduces performance.
Conversely, the message-based process architectures (par-
ticularly Connectional Parallelism) incur much less context
switching and synchronization, and therefore exhibit higher
performance.

The ASX framework contributed to these performance
experiments by helping to decouple the protocol-specific
functionality from the underlying of process architecture.

This decoupling increased reuse and simplified develop-
ment, configuration, and experimentation with parallel pro-
tocol stacks. Components in the ASX framework are freely
available via anonymous ftp from ics.uci.edu in the
file gnu/C++ wrappers.tar.Z. This distribution con-
tains complete source code, documentation, and example
test drivers for the C++ components. Components in the
ASX framework have been ported to both UNIX and Win-
dows NT. The ASX framework is currently being used in a
number of commercial products including the AT&T Q.port
ATM signaling software product, the Ericsson EOS family of
PBX monitoring applications, and the network management
portion of the Motorola Iridium mobile communications sys-
tem.
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