
1

An Introduction to Design Patterns

Douglas C. Schmidt
Vanderbilt University
schmidt@dre.vanderbilt.edu

Based on material produced by John Vlissides

mailto:schmidt@dre.vanderbilt.edu

2

Overview

Part I: Motivation & Concept
the issue
what design patterns are
what they’re good for
how we develop & categorize them

3

Overview (cont’d)

Part II: Application
use patterns to design a document editor
demonstrate usage & benefits

Part III: Wrap-Up
observations, caveats, & conclusion

4

Part I: Motivation & Concept
OOD methods emphasize design notations

Fine for specification, documentation

But OOD is more than just drawing diagrams
Good draftsmen good designers

Good OO designers rely on lots of experience
At least as important as syntax

Most powerful reuse is design reuse
Match problem to design experience

5

Part I: Motivation & Concept (cont’d)

Recurring Design Structures

OO systems exhibit recurring structures that
promote

abstraction
flexibility
modularity
elegance

Therein lies valuable design knowledge

Problem:
capturing, communicating, & applying this
knowledge

6

Part I: Motivation & Concept (cont’d)

A Design Pattern…

• abstracts a recurring design structure
• comprises class and/or object

dependencies
structures
interactions
conventions

• names & specifies the design structure explicitly
• distills design experience

7

Part I: Motivation & Concept (cont’d)

Four Basic Parts

1. Name
2. Problem (including “forces”)
3. Solution
4. Consequences & trade-offs of application

Language- & implementation-independent
A “micro-architecture”
Adjunct to existing methodologies (RUP, Fusion, SCRUM,

etc.)

8

Part I: Motivation & Concept (cont’d)

Example: OBSERVER

9

Part I: Motivation & Concept (cont’d)

Goals
Codify good design

distill & generalize experience
aid to novices & experts alike

Give design structures explicit names
common vocabulary
reduced complexity
greater expressiveness

Capture & preserve design information
articulate design decisions succinctly
improve documentation

Facilitate restructuring/refactoring
patterns are interrelated
additional flexibility

10

Part I: Motivation & Concept (cont’d)

Design Space for GoF Patterns

Scope: domain over which a pattern applies
Purpose: reflects what a pattern does

11

Part I: Motivation & Concept (cont’d)

Design Pattern Template (1st half)
NAME scope purpose

Intent
short description of the pattern & its purpose

Also Known As
short description of the pattern & its purpose

Motivation
motivating scenario demonstrating pattern’s use

Applicability
circumstances in which pattern applies

Structure
graphical representation of the pattern using modified OMT notation

Participants
participating classes and/or objects & their responsibilities

12

Part I: Motivation & Concept (cont’d)

Design Pattern Template (2nd half)
...

Collaborations
how participants cooperate to carry out their responsibilities

Consequences
the results of application, benefits, liabilities

Implementation
pitfalls, hints, techniques, plus language-dependent issues

Sample Code
sample implementations in C++, Java, C#, Smalltalk, C, etc.

Known Uses
examples drawn from existing systems

Related Patterns
discussion of other patterns that relate to this one

13

Part I: Motivation & Concept (cont’d)

Modified UML/OMT Notation

14

Motivation & Concept (cont’d)

OBSERVER object behavioral

Intent
define a one-to-many dependency between objects so that when one

object changes state, all dependents are notified & updated

Applicability
an abstraction has two aspects, one dependent on the other
a change to one object requires changing untold others
an object should notify unknown other objects

Structure

15

Motivation & Concept (cont’d)

OBSERVER (cont’d) object behavioral

Consequences
+ modularity: subject & observers may vary independently
+ extensibility: can define & add any number of observers
+ customizability: different observers offer different views of subject
– unexpected updates: observers don’t know about each other
– update overhead: might need hints or filtering

Implementation
subject-observer mapping
dangling references
update protocols: the push & pull models
registering modifications of interest explicitly

Known Uses
Smalltalk Model-View-Controller (MVC)
InterViews (Subjects & Views, Observer/Observable)
Andrew (Data Objects & Views)
Mailing lists

16

Part I: Motivation & Concept (cont’d)

Benefits of Patterns

• Design reuse
• Uniform design vocabulary
• Enhance understanding, restructuring, &

team communication
• Basis for automation
• Transcends language-centric biases/myopia
• Abstracts away from many unimportant

details

17

Part I: Motivation & Concept (cont’d)

Liabilities of Patterns

• Require significant tedious & error-prone
human effort to handcraft pattern
implementations design reuse

• Can be deceptively simple uniform design
vocabulary

• Leaves some important details unresolved

18

Part II: Application: Document
Editor (Lexi)

1. Document structure

2. Formatting

3. Embellishment

4. Multiple look & feels

5. Multiple window systems

6. User operations

7. Spelling checking &
hyphenation

7 Design Problems

19

Document Structure

Goals:
present document’s visual aspects
drawing, hit detection, alignment
support physical structure
(e.g., lines, columns)

Constraints/forces:
treat text & graphics uniformly
no distinction between one & many

20

Document Structure (cont’d)

Solution: Recursive Composition

21

Document Structure (cont’d)

Object Structure

22

Document Structure (cont’d)

Glyph

Base class for composable graphical objects

void insert(Glyph)
void remove(Glyph)
Glyph child(int)
Glyph parent()

structure

boolean intersects(Coord, Coord)hit detection

void draw(Window)appearance

OperationsTask

Basic interface:

Subclasses: Character, Image, Space, Row, Column

23

Document Structure (cont’d)

Glyph Hierarchy

Note the inherent recursion in this hierarchy
i.e., a Row is a Glyph & a Row also has Glyphs!

24

Document Structure (cont’d)

COMPOSITE object structural

Intent
treat individual objects & multiple, recursively-composed

objects uniformly

Applicability
objects must be composed recursively,
and no distinction between individual & composed elements,
and objects in structure can be treated uniformly

Structure

25

Document Structure (cont’d)

COMPOSITE (cont’d) object structural

Consequences
+ uniformity: treat components the same regardless of complexity
+ extensibility: new Component subclasses work wherever old ones do
– overhead: might need prohibitive numbers of objects

Implementation
do Components know their parents?
uniform interface for both leaves & composites?
don’t allocate storage for children in Component base class
responsibility for deleting children

Known Uses
ET++ Vobjects
InterViews Glyphs, Styles
Unidraw Components, MacroCommands

26

Formatting

Goals:
automatic linebreaking, justification

Constraints/forces:
support multiple linebreaking algorithms
don’t tightly couple these algorithms with
the document structure

27

Formatting (cont’d)

Solution: Encapsulate Linebreaking Strategy

Compositor
base class abstracts linebreaking algorithm
subclasses for specialized algorithms,
e.g., SimpleCompositor, TeXCompositor

Composition
composite glyph
supplied a compositor & leaf glyphs
creates row-column structure as directed by
compositor

28

Formatting (cont’d)

New Object Structure

Generated in accordance with
compositor strategies & do not
affect contents of leaf glyphs

29

Formatting (cont’d)

STRATEGY object behavioral

Intent
define a family of algorithms, encapsulate each one, & make them

interchangeable to let clients & algorithms vary independently

Applicability
when an object should be configurable with one of many algorithms,
and all algorithms can be encapsulated,
and one interface covers all encapsulations

Structure

30

Formatting (cont’d)

STRATEGY (cont’d) object behavioral
Consequences

+ greater flexibility, reuse
+ can change algorithms dynamically
– strategy creation & communication overhead
– inflexible Strategy interface
– semantic incompatibility of multiple strategies used together

Implementation
exchanging information between a Strategy & its context
static strategy selection via templates

Known Uses
InterViews text formatting
RTL register allocation & scheduling strategies
ET++SwapsManager calculation engines

See Also
Bridge pattern (object structural)

31

Embellishment

Goals:
add a frame around text composition
add scrolling capability

Constraints:
embellishments should be reusable without
subclassing, i.e., so they can be added
dynamically at runtime
should go unnoticed by clients

32

Embellishment (cont’d)

Solution: “Transparent” Enclosure

Monoglyph
base class for glyphs having one child
operations on MonoGlyph pass through to child

MonoGlyph subclasses:
Frame: adds a border of specified width
Scroller: scrolls/clips child, adds scrollbars

33

Embellishment (cont’d)

MonoGlyph Hierarchy

void MonoGlyph::draw (Window &w) {
component->draw (w);

}

void Frame::draw (Window &w) {
// Order may be important!
MonoGlyph::draw (w);
drawFrame (w);

}

34

Embellishment (cont’d)

New Object Structure

35

Embellishment (cont’d)

DECORATOR object structural

Intent
augment objects with new responsibilities

Applicability
when extension by subclassing is impractical
for responsibilities that can be withdrawn

Structure

36

Embellishment (cont’d)

DECORATOR (cont’d) object structural

Consequences
+ responsibilities can be added/removed at run-time
+ avoids subclass explosion
+ recursive nesting allows multiple responsibilities
– interface occlusion
– identity crisis

Implementation
interface conformance
use a lightweight, abstract base class for Decorator
heavyweight base classes make Strategy more attractive

Known Uses
embellishment objects from most OO-GUI toolkits
ParcPlace PassivityWrapper
InterViews DebuggingGlyph

37

Multiple Look & Feels

Goals:
support multiple look & feel standards
generic, Motif, Swing, PM, Macintosh,
Windows, ...
extensible for future standards

Constraints:
don’t recode existing widgets or clients
switch look & feel without recompiling

38

Multiple Look & Feels (cont’d)

Solution: Abstract Object Creation

Instead of
Scrollbar *sb = new MotifScrollbar();

use
Scrollbar *sb = factory->createScrollbar();

where factory is an instance of MotifFactory
• BTW, this begs the question of who created the
factory!

39

Multiple Look & Feels (cont’d)

Factory Interface

• defines “manufacturing interface”
• subclasses produce specific products
• subclass instance chosen at run-time

// This class is essentially a Java interface
class Factory {
public:

Scrollbar *createScrollbar() = 0;
Menu *createMenu() = 0;
...

};

40

Multiple Look & Feels (cont’d)

Factory Structure

Scrollbar *MotifFactory::createScrollBar () {
return new MotifScrollbar();

}
Scrollbar *PMFactory::createScrollBar () {

return new PMScrollbar();
}

41

Multiple Look & Feels (cont’d)

ABSTRACT FACTORY object creational

Intent
create families of related objects without specifying class names

Applicability
when clients cannot anticipate groups of classes to instantiate

Structure

42

Multiple Look & Feels (cont’d)

ABSTRACT FACTORY (cont’d) object creational

Consequences
+ flexibility: removes type dependencies from clients
+ abstraction: hides product’s composition
– hard to extend factory interface to create new products

Implementation
parameterization as a way of controlling interface size
configuration with Prototypes, i.e., determines who creates the
factories

Known Uses
InterViews Kits
ET++ WindowSystem
AWT Toolkit

43

Multiple Window Systems

Goals:
make composition appear in a window
support multiple window systems

Constraints:
minimize window system dependencies in
application & framework code

44

Multiple Window Systems (cont’d)
Solution: Encapsulate Implementation Dependencies

Window
user-level window abstraction
displays a glyph (structure)
window system-independent
task-related subclasses
(e.g., IconWindow, PopupWindow)

45

class Window {
public:

...
void iconify(); // window-management
void raise();
...
void drawLine(...); // device-independent
void drawText(...); // graphics interface
...

};

Multiple Window Systems (cont’d)

Window Interface

46

Multiple Window Systems (cont’d)

Window uses a WindowRep

• abstract implementation interface

• encapsulates window system dependencies

• window systems-specific subclasses
(e.g., XWindowRep, SunWindowRep)

An Abstract Factory can produce
the right WindowRep!

47

Multiple Window Systems (cont’d)

Window/WindowRep Structure

void Character::draw (Window &w) {
w.drawText(...);

}

void Window::drawText (...) {
rep->deviceText(...);

}

void XWindowRep::deviceText (...) {
XText(...);

}

48

Multiple Window Systems (cont’d)

New Object Structure

Note the decoupling
between the logical

structure of the contents
in a window from the

physical rendering of the
contents in the window

49

Multiple Window Systems (cont’d)

BRIDGE object structural

Intent
separate a (logical) abstraction interface from its (physical)

implementation(s)

Applicability
when interface & implementation should vary independently

require a uniform interface to interchangeable class hierarchies

Structure

50

Multiple Window Systems (cont’d)

BRIDGE (cont’d) object structural

Consequences
+ abstraction interface & implementation are independent
+ implementations can vary dynamically
– one-size-fits-all Abstraction & Implementor interfaces

Implementation
sharing Implementors & reference counting
creating the right implementor

Known Uses
ET++ Window/WindowPort
libg++ Set/{LinkedList, HashTable}
AWT Component/ComponentPeer

51

User Operations

Goals:
support execution of user operations
support unlimited-level undo

Constraints:
scattered operation implementations
must store undo state
not all operations are undoable

52

User Operations (cont’d)

Solution: Encapsulate Each Request

A Command encapsulates
an operation (execute())
an inverse operation (unexecute())
a operation for testing reversibility
(boolean reversible())
state for (un)doing the operation

Command may
implement the operations itself, or
delegate them to other object(s)

53

User Operations (cont’d)

Command Hierarchy

void MenuItem::clicked ()
{

command->execute();
}

void PasteCommand::execute ()
{

// do the paste
}
void CopyCommand::execute ()
{

// do the copy
}

54futurepast

cmd

execute()

cmd

unexecute()

past future

Undo:

User Operations (cont’d)

List of Commands = Execution History

Redo:

cmd

unexecute()

cmd

unexecute()

55

User Operations (cont’d)

COMMAND object behavioral

Intent
encapsulate the request for a service

Applicability
to parameterize objects with an action to perform
to specify, queue, & execute requests at different times
for multilevel undo/redo

Structure

56

User Operations (cont’d)

COMMAND (cont’d) object behavioral

Consequences
+ abstracts executor of a service
+ supports arbitrary-level undo-redo
+ composition yields macro-commands
– might result in lots of trivial command subclasses

Implementation
copying a command before putting it on a history list
handling hysteresis
supporting transactions

Known Uses
InterViews Actions
MacApp, Unidraw Commands
JDK’s UndoableEdit, AccessibleAction

57

Spelling Checking & Hyphenation

Goals:
analyze text for spelling errors
introduce potential hyphenation sites

Constraints:
support multiple algorithms
don’t tightly couple algorithms with
document structure

58

Spelling Checking & Hyphenation (cont’d)

Solution: Encapsulate Traversal

Iterator
encapsulates a
traversal algorithm
without exposing
representation
details to callers
uses Glyph’s child
enumeration
operation
This is an example
of a “preorder
iterator”

59

Spelling Checking & Hyphenation (cont’d)

ITERATOR object behavioral

Intent
access elements of a container without exposing its representation

Applicability
require multiple traversal algorithms over a container
require a uniform traversal interface over different containers
when container classes & traversal algorithm must vary
independently

Structure

60

Spelling Checking & Hyphenation (cont’d)

ITERATOR (cont’d) object behavioral

int main (int argc, char *argv[]) {
vector<string> args;

for (int i = 0; i < argc; i++)
args.push_back (string (argv[i]));

for (vector<string>::iterator i (args.begin ());
i != args.end ();
i++)

cout << *i;

cout << endl;
return 0;

}

The same iterator pattern can be
applied to any STL container!

Iterators are used heavily in the C++ Standard
Template Library (STL)

61

Spelling Checking & Hyphenation (cont’d)

ITERATOR (cont’d) object behavioral

Consequences
+ flexibility: aggregate & traversal are independent
+ multiple iterators & multiple traversal algorithms
– additional communication overhead between iterator &

aggregate

Implementation
internal versus external iterators
violating the object structure’s encapsulation
robust iterators

Known Uses
C++ STL iterators
JDK Enumeration, Iterator
Unidraw Iterator

62

Spelling Checking & Hyphenation (cont’d)

Visitor
• defines action(s) at each step of traversal
• avoids wiring action(s) into Glyphs
• iterator calls glyph’s accept(Visitor) at each node
• accept() calls back on visitor (a form of “static

polymorphism” based on method overloading by type)

void Character::accept (Visitor &v) { v.visit (*this); }

class Visitor {
public:

virtual void visit (Character &);
virtual void visit (Rectangle &);
virtual void visit (Row &);
// etc. for all relevant Glyph subclasses

};

63

Spelling Checking & Hyphenation (cont’d)

SpellingCheckerVisitor
• gets character code from each character glyph

Can define getCharCode() operation just on
Character() class

• checks words accumulated from character glyphs
• combine with PreorderIterator

class SpellCheckerVisitor : public Visitor {
public:

void visit (Character &);
void visit (Rectangle &);
void visit (Row &);
// etc. for all relevant Glyph subclasses

};

64

Spelling Checking & Hyphenation (cont’d)

Accumulating Words

Spelling check
performed when a
nonalphabetic
character it reached

65

Spelling Checking & Hyphenation (cont’d)

Interaction Diagram
• The iterator controls the order in which accept() is called on each

glyph in the composition
• accept() then “visits” the glyph to perform the desired action
• The Visitor can be subclassed to implement various desired actions

66

Spelling Checking & Hyphenation (cont’d)

HyphenationVisitor

• gets character code from each character glyph

• examines words accumulated from character glyphs

• at potential hyphenation point, inserts a...

class HyphenationVisitor : public Visitor {
public:

void visit (Character &);
void visit (Rectangle &);
void visit (Row &);
// etc. for all relevant Glyph subclasses

};

67

Spelling Checking & Hyphenation (cont’d)

Discretionary Glyph
• looks like a hyphen when at end of a line
• has no appearance otherwise
• Compositor considers its presence when determining

linebreaks

68

Spelling Checking & Hyphenation (cont’d)

VISITOR object behavioral
Intent

centralize operations on an object structure so that they can
vary independently but still behave polymorphically

Applicability
when classes define many unrelated operations
class relationships of objects in the structure rarely change,
but the operations on them change often
algorithms keep state that’s updated during traversal

Structure

69

Spelling Checking & Hyphenation (cont’d)

VISITOR (cont’d) object behavioral

Consequences
+ flexibility: visitor & object structure are independent
+ localized functionality
– circular dependency between Visitor & Element interfaces
– Visitor brittle to new ConcreteElement classes

Implementation
double dispatch
general interface to elements of object structure

Known Uses
ProgramNodeEnumerator in Smalltalk-80 compiler
IRIS Inventor scene rendering
TAO IDL compiler to handle different backends

70

Part III: Wrap-Up
Observations

Patterns are applicable in all stages of the OO lifecycle
design & reviews
realization & documentation
reuse & refactoring

Patterns permit design at a more abstract level
treat many class/object interactions as a unit
often beneficial after initial design
targets for class refactorings

Variation-oriented design
consider what design aspects are variable
identify applicable pattern(s)
vary patterns to evaluate tradeoffs
repeat

71

Part III: Wrap-Up (cont’d)

But…

Pattern design even harder than OO design!

Don’t apply them blindly
Added indirection can yield increased complexity,

cost

Resist branding everything a pattern
Articulate specific benefits
Demonstrate wide applicability
Find at least three existing examples from code

other than your own!

72

Part III: Wrap-Up (cont’d)

Concluding Remarks

• design reuse
• uniform design vocabulary
• understanding, restructuring, & team

communication
• provides the basis for automation
• a “new” way to think about design

73

Pattern References
Books
The Timeless Way of Building, Alexander, ISBN 0-19-502402-

8
A Pattern Language, Alexander, 0-19-501-919-9
Design Patterns, Gamma, et al., 0-201-63361-2

CD version 0-201-63498-8
Pattern-Oriented Software Architecture, Buschmann, et al.,

0-471-95869-7
Pattern-Oriented Software Architecture, Vol. 2, Schmidt, et

al.,
0-471-60695-2

Pattern-Oriented Software Architecture, Vol. 3, Jain & Kircher,
et al.,
0-470-84525-2

Analysis Patterns, Fowler; 0-201-89542-0

74

Pattern References (cont’d)
More Books
Concurrent Programming in Java, 2nd ed., Lea, 0-201-

31009-0
Pattern Languages of Program Design

Vol. 1, Coplien, et al., eds., ISBN 0-201-60734-4
Vol. 2, Vlissides, et al., eds., 0-201-89527-7
Vol. 3, Martin, et al., eds., 0-201-31011-2
Vol. 4, Harrison, et al., eds., 0-201-43304-4

AntiPatterns, Brown, et al., 0-471-19713-0
Applying UML & Patterns, 2nd ed., Larman, 0-13-092569-1
Pattern Hatching, Vlissides, 0-201-43293-5
The Pattern Almanac 2000, Rising, 0-201-61567-3

75

Pattern References (cont’d)
Even More Books
Small Memory Software, Noble & Weir, 0-201-59607-5
Microsoft Visual Basic Design Patterns, Stamatakis, 1-572-

31957-7
Smalltalk Best Practice Patterns, Beck; 0-13-476904-X
The Design Patterns Smalltalk Companion, Alpert, et al.,

0-201-18462-1
Modern C++ Design, Alexandrescu, ISBN 0-201-70431-5
Building Parsers with Java, Metsker, 0-201-71962-2

76

Pattern References (cont’d)
New Books
Core J2EE Patterns, Alur, et al., 0-130-64884-1
Design Patterns Explained, Shalloway & Trott, 0-201-

71594-5
The Joy of Patterns, Goldfedder, 0-201-65759-7
The Manager Pool, Olson & Stimmel, 0-201-72583-5

77

Pattern References (cont’d)
Early Papers
“Object-Oriented Patterns,” P. Coad; Comm. of the ACM, 9/92
“Documenting Frameworks using Patterns,” R. Johnson; OOPSLA ’92
“Design Patterns: Abstraction & Reuse of Object-Oriented Design,”

Gamma, Helm, Johnson, Vlissides, ECOOP ’93

Articles
Java Report, Java Pro, JOOP, Dr. Dobb’s Journal,

Java Developers Journal, C++ Report

78

Pattern-Oriented Conferences

PLoP 2006: Pattern Languages of Programs
October 2006, Collocated with OOPSLA

EuroPLoP 2006, July 2006, Kloster Irsee,
Germany

…

See hillside.net/conferencesnavigation.htm for
up-to-the-minute info.

http://hillside.net/conferencesnavigation.htm

79

Mailing Lists
patterns@cs.uiuc.edu: present & refine patterns
patterns-discussion@cs.uiuc.edu: general discussion
gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns
siemens-patterns@cs.uiuc.edu: discussion on

Pattern-Oriented Software Architecture
ui-patterns@cs.uiuc.edu: discussion on user interface patterns
business-patterns@cs.uiuc.edu: discussion on patterns for

business processes
ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed

systems

See http://hillside.net/patterns/mailing.htm for an up-to-date list.

http://hillside.net/patterns/mailing.htm

	An Introduction to Design Patterns��Douglas C. Schmidt�Vanderbilt University�schmidt@dre.vanderbilt.edu������Based on material
	Overview
	Overview (cont’d)
	Part I: Motivation & Concept
	Part I: Motivation & Concept (cont’d)�Recurring Design Structures
	Part I: Motivation & Concept (cont’d)�A Design Pattern…
	Part I: Motivation & Concept (cont’d)�Four Basic Parts
	Part I: Motivation & Concept (cont’d)�Example: OBSERVER
	Part I: Motivation & Concept (cont’d)�Goals
	Part I: Motivation & Concept (cont’d)�Design Space for GoF Patterns
	Part I: Motivation & Concept (cont’d)�Design Pattern Template (1st half)�NAME scope pur
	Part I: Motivation & Concept (cont’d)�Design Pattern Template (2nd half)
	Part I: Motivation & Concept (cont’d)�Modified UML/OMT Notation
	Motivation & Concept (cont’d)�OBSERVER object behavioral
	Motivation & Concept (cont’d) �OBSERVER (cont’d) object behavioral
	Part I: Motivation & Concept (cont’d)�Benefits of Patterns
	Part I: Motivation & Concept (cont’d)�Liabilities of Patterns
	Part II: Application: Document Editor (Lexi)
	Document Structure
	Document Structure (cont’d)�Solution: Recursive Composition	
	Document Structure (cont’d)�Object Structure	
	Document Structure (cont’d)�Glyph	
	Document Structure (cont’d)�Glyph Hierarchy	
	Document Structure (cont’d)�COMPOSITE object structural
	Document Structure (cont’d)�COMPOSITE (cont’d) object structural
	Formatting
	Formatting (cont’d)�Solution: Encapsulate Linebreaking Strategy	
	Formatting (cont’d)�New Object Structure	
	Formatting (cont’d)�STRATEGY	 object behavioral
	Formatting (cont’d)�STRATEGY (cont’d) object behavioral
	Embellishment
	Embellishment (cont’d)�Solution: “Transparent” Enclosure
	Embellishment (cont’d)�MonoGlyph Hierarchy
	Embellishment (cont’d)�New Object Structure	
	Embellishment (cont’d)�DECORATOR object structural
	Embellishment (cont’d) �DECORATOR (cont’d) object structural
	Multiple Look & Feels
	Multiple Look & Feels (cont’d)�Solution: Abstract Object Creation
	Multiple Look & Feels (cont’d)�Factory Interface
	Multiple Look & Feels (cont’d)�Factory Structure
	Multiple Look & Feels (cont’d)�ABSTRACT FACTORY object creational
	Multiple Look & Feels (cont’d)�ABSTRACT FACTORY (cont’d) object creational
	Multiple Window Systems
	Multiple Window Systems (cont’d)�Solution: Encapsulate Implementation Dependencies
	Multiple Window Systems (cont’d)�Window Interface
	Multiple Window Systems (cont’d)�Window uses a WindowRep
	Multiple Window Systems (cont’d)�Window/WindowRep Structure
	Multiple Window Systems (cont’d)�New Object Structure	
	Multiple Window Systems (cont’d)�BRIDGE object structural
	Multiple Window Systems (cont’d)�BRIDGE (cont’d) object structural
	User Operations
	User Operations (cont’d)�Solution: Encapsulate Each Request	
	User Operations (cont’d)�Command Hierarchy
	User Operations (cont’d)�List of Commands = Execution History
	User Operations (cont’d)�COMMAND object behavioral
	User Operations (cont’d)�COMMAND (cont’d) object behavioral
	Spelling Checking & Hyphenation
	Spelling Checking & Hyphenation (cont’d)�Solution: Encapsulate Traversal	
	Spelling Checking & Hyphenation (cont’d)�ITERATOR object behavioral
	Spelling Checking & Hyphenation (cont’d)�ITERATOR (cont’d) object behavioral
	Spelling Checking & Hyphenation (cont’d)�ITERATOR (cont’d) object behavioral
	Spelling Checking & Hyphenation (cont’d)�Visitor
	Spelling Checking & Hyphenation (cont’d)�SpellingCheckerVisitor
	Spelling Checking & Hyphenation (cont’d)�Accumulating Words
	Spelling Checking & Hyphenation (cont’d)�Interaction Diagram
	Spelling Checking & Hyphenation (cont’d)�HyphenationVisitor
	Spelling Checking & Hyphenation (cont’d)�Discretionary Glyph
	Spelling Checking & Hyphenation (cont’d)�VISITOR object behavioral
	Spelling Checking & Hyphenation (cont’d)�VISITOR (cont’d) object behavioral
	Part III: Wrap-Up
	Part III: Wrap-Up (cont’d)�But…
	Part III: Wrap-Up (cont’d)�Concluding Remarks
	Pattern References
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern References (cont’d)
	Pattern-Oriented Conferences
	Mailing Lists

