
Experiences with an Object-Oriented Architecture for Developing
Dynamically Extensible Distributed System Management Software

Douglas C. Schmidt Tatsuya Suda
schmidt@cs.wustl.edu suda@ics.uci.edu

Department of Computer Science Information and Computer Science Department
Washington University, St. Louis, MO 63130 University of California, Irvine, CA 927171

An earlier version of this paper appeared in the proceedings
of the IEEE GLOBECOM conference, November 27th to
December 1st, 1994.

Abstract

Developing extensible, robust, and efficient distributedappli-
cations is a complex task. To help alleviate this complexity,
we have developed the ADAPTIVE Service eXecutive (ASX)
framework. ASX is an object-oriented framework composed
of automated tools and reusable C++ components. These
tools and components simplify the development, configura-
tion, and reconfiguration of distributed applications in a het-
erogeneous environment. Using ASX applications may be
configured dynamically to contain multiple network services
that execute concurrently in one or more processes or threads.
Components in theASX framework have been ported to UNIX
and Windows NT and are currently being used in a number
of large-scale production distributed systems. This paper de-
scribes our experience gained using the ASX framework to
build highly modular, reusable, and extensible software for a
family of distributed system management applications.

1 Introduction

The demand for extensible, robust, and efficient distributed
systems is increasing dramatically in research and commer-
cial environments. Although distributing application ser-
vices among a set of autonomous hosts offers many potential
benefits, developing distributed systems is more complex
than developing non-distributed systems. Much of this com-
plexity arises from limitations with conventional tools and
design techniques used to develop distributed application
software. In particular, network programming tools (such
as sockets, named pipes, and RPC) available in contempo-
rary operating systems (such as UNIX, Windows NT, and
OS/2) lack type-safe, portable, re-entrant, and extensible pro-
gramming interfaces. For example, both sockets and named
pipes identify endpoints of communication via weakly-typed

1This research is supported in part by grants from the University of
California MICRO program, HughesAircraft, Nippon Steel Information and
Communication Systems Inc. (ENICOM), Hitachi Ltd., Hitachi America,
Tokyo Electric Power Company, and Hewlett Packard (HP).

I/O descriptors. The use of these descriptors increases the
potential for subtle run-time errors.

Another major source of software complexity stems from
the widespread use of algorithmic design techniques to de-
velop distributed application software [1]. Many distributed
systems are developed using algorithmic design techniques
that result in monolithic, non-extensible software architec-
tures [2]. This problem is exacerbated by the fact that the
source code examples in popular network programming text-
books [3, 4, 5] are based on algorithmic-oriented design and
implementation techniques.

Object-oriented frameworks help to alleviate the complex-
ity associated with developing distributed application soft-
ware. A framework is an integrated collection of software
components that collaborate to produce a reusable architec-
ture for a family of related applications [6]. Object-oriented
frameworks are becoming increasingly popular as a means to
simplify and automate the development and configuration of
complex applications in domains such as graphical user in-
terfaces [7, 8], databases [9], operating system kernels [10],
and communication subsystems [11, 12].

The components in a framework typically include classes
(such as message managers and timer-based event managers,
and connection maps [13]), class hierarchies (such as an
inheritance lattice of mechanisms for local and remote in-
terprocess communication [14]), class categories (such as a
family of concurrency mechanisms [12]), and objects (such
as an event demultiplexer [15]). By emphasizing the integra-
tion and collaboration of application-specific and application-
independent components, frameworks enable larger-scale
reuse of software, compared to reusing individual classes
and stand-alone functions.

To illustrate how object-oriented frameworks are being
applied successfully in practice, this paper examines the fea-
tures, structure, and usage of the ADAPTIVE Service eXec-
utive (ASX). We developed the ASX framework to provide
an integrated collection of reusable, object-oriented network
software components. These components simplify the de-
velopment of distributed applications by enhancing the mod-
ularity, extensibility, reusability, and portability of software
that utilizes operating system (OS) concurrency, explicit dy-
namic linking, interprocess communication (IPC), and I/O
demultiplexing mechanisms.

Stream

Service

Configurator

Reactor

APPLICATION-

SPECIFIC

Concurrency
global

IPC_SAP

APPLICATION-

INDEPENDENT

APPLICATION

Figure 1: Class Categories in the ASX Framework

In addition to describing the object-oriented architecture
of the ASX framework, this paper describes our experiences
using the ASX framework to develop commercial software
for a family of distributed system management applications
at a major telecommunications company. These applica-
tions manage private-branch exchange (PBXs) switches and
public central-office telecommunication switches across het-
erogeneous hardware and software platforms.

This paper is organized in the following manner: Section 2
outlines the architectural components in theASX framework;
Section 3 examines the object-oriented structure of a produc-
tion distributed Call Center Management system built using
ASX; and Section 4 presents concluding remarks.

2 The Object-Oriented Architecture of
the ASX Framework

This section outlines the class categories in theASX frame-
work. A class category is a collection of software compo-
nents that collaborate to provide a set of related services [1].
The architecture of theASX framework was developed incre-
mentally by generalizing from extensive experience gained
by building a wide range of distributed systems (including on-
line transaction processing systems [15], telecommunication
switch monitoring systems [16], and parallel communica-
tion subsystems [12]). After developing several prototypes
and iterating through a number of alternative designs, the
class categories illustrated in Figure 1 were identified and
implemented.2

Using ASX, a distributed application may be formed by
combining and customizing components in the following
class categories via object-oriented language features such as
data abstraction, inheritance, dynamic binding, object com-
position, and template instantiation:

2Throughout the paper, object-oriented component relationships are il-
lustrated via Booch notation [1]. Solid clouds indicate objects; nesting
indicates composition relationships between objects; and undirected edges
indicate a link exists between two objects. Solid rectangles indicate class
categories, which combine a number of related classes into a common name
space.

� Stream Class Category: These components are respon-
sible for coordinating the configuration and run-time exe-
cution of one or more Streams [12]. A Stream is an ob-
ject used to configure and execute application-specific ser-
vices in the ASX framework. A Stream contains a series of
inter-connected Module objects that may be linked together
statically by developers at compile-time or dynamically by
administrators or applications at installation-time and at run-
time. Modules are used to decompose the architecture of a
distributed application into functionally distinct layers. Each
layer implements a cluster of related services (such as an
end-to-end transport service, a presentation layer formatting
service, or an event routing service for monitoring the behav-
ior of telecom switches [17]). Every Module contains a pair
of Queue objects that are used to partition a layer into its
constituent read-side and write-side processing functionality.

A distributed application may be implemented as an inter-
connected series of Module objects that communicate with
adjacent Modules by exchanging typed message objects.
Modules may be joined together statically and/or dynam-
ically in essentially arbitrary configurations to satisfy appli-
cation requirements and enhance component reuse.

� Service Configurator Class Category: These compo-
nents are responsible for inserting and removing the run-time
address bindings of services implemented by Modules in
shared object libraries. The Service Configurator
components provide an extensible object-oriented interface
and a configuration scripting language that automates the use
of OS mechanisms for explicit dynamic linking [16]. This
enables one or more Streams to be dynamically reconfigured
without requiring the modification, recompilation, relinking,
or restarting of executing applications.

� Reactor Class Category: These components are respon-
sible for demultiplexing various types of events. Sources of
events include I/O-based events received on communication
ports, time-based events generated by a timer-driven call-
out queue, or signal-based events [15]. When these events
occur at run-time, the Reactor dispatches the appropriate
methods of pre-registered handler(s) to process the events.

The Reactor encapsulates the select, poll, and
WaitForMultipleObjects I/O demultiplexing system
calls via a portable, extensible, and type-safe object-oriented
interface. Select and poll are UNIX system calls that
detect the occurrence of different types of input and out-
put events on one or more I/O descriptors simultaneously.
WaitForMultipleObjects is a Windows NT system
call that provides similar demultiplexing functionality.

�Concurrency Class Category: These components are re-
sponsiblefor spawning, executing, synchronizing, and grace-
fully terminating services at run-time via one or more threads
of control [12]. In the ASX framework, services may be ex-
ecuted at run-time using several different types of OS multi-
tasking mechanisms such as kernel-based and/or user-based
threads. By decoupling service behavior from the type of
mechanisms used to invoke a service, the ASX framework

increases the range of concurrency configuration alternatives
available to developers [12].

� IPC SAP Class Category: These components are re-
sponsible for receiving and transmitting data with their peers
residing on other processes in local or remote hosts. The
IPC SAP components encapsulate standard OS local and
remote IPC mechanisms (such as UNIX sockets and Win-
dows NT named pipes) within a type-safe object-oriented
interface [14]. To improve service portability, the IPC SAP
classes may be used in conjunction with object-oriented lan-
guage features (such as inheritance and parameterized types)
to minimize an application’s reliance on a particular type of
IPC mechanism.

The lines that connect the class categories in Figure 1 in-
dicate dependency relationships. For example, components
implementing the application-specific services in a particular
distributed application depend on the Stream components,
which in turn depend on the Service Configurator
components. Since components in the Concurrency class
category are used throughout the application-specific and
application-independent portions of theASX framework, they
are marked with the global adornment.

The ASX framework incorporates concepts from several
other modular communication frameworks such as the Sys-
tem V STREAMS [18], the x-kernel [13], and the Conduit
framework [11]. These frameworks contain features that
support the flexible configuration of network software via
the inter-connection of building-block protocol and service
components. In general, these frameworks encourage the de-
velopment of standard communication-related components
by decoupling application-specific processing functionality
from the application-independent communication framework
infrastructure.

3 Implementing a Distributed System
with the ASX Framework

The ASX framework is being used to develop a family of
distributed system management applications that monitor and
control PBX and central-office telecommunication switches
in a Call Center Management (CCM) system. A CCM system
provides a set of services that allow the staff of a call center
(such as an airline reservation center or an insurance claims
processing center) to assess the performance of the call center
and the quality of service provided to customers. This section
describes the behavior of the CCM system and illustrates
ASX framework components that were used to implement
the distributed CCM software.

3.1 Overview of the Call Center Management
System

The ASX-based CCM system processes information that
is generated continuously by system operators and telecom-

CALL CENTER

OPERATOR

GROUPS

OP

OP OP OP

ROUTER

OP

OP

OP

OP

EVENT

SERVER

SUPER-

VISOR

ROUTER

SUPER-

VISOR

DATABASE

DATABASE

CALL CENTER

OPERATOR

GROUPS

T
R
U
N
K
S

TELECOM

SWITCH

T
R
U
N
K
S

TELECOM

SWITCH

Figure 2: Distributed Components in the Call Center Man-
agement System

munication switches. Supervisors use this information to
interactively monitor and optimize system performance, as
well as to forecast future allocation of resources (such as
operators and switch capacity) to meet customer demands.

Figure 2 illustrates the distributed architecture of the CCM
system. In this system, telecommunication switches route
incoming customer calls (arriving on trunks) to an available
operator (attached via a LAN). Operator interactions with
customers are expedited by graphical user interfaces on hosts
that access a database of customer account records. The CCM
system continuously generates performance data (known as
“activity events”) that reports the activities of operators and
switches. These activity events are sent automatically to
a central event server, which runs on a separate network
connected to the operator group networks. The event server
is a mediator that analyzes, filters, transforms, and forwards
the activity events it receives to other hosts throughout the
network. CCM applications on these hosts summarize the
activity events they receive, and display them to supervisors
in a concise, graphical format.

The object-oriented design and implementation of the
CCM system is strongly influenced by requirements for plat-
form independence and configurationflexibility. Platform in-
dependence is necessary since the CCM system is targeted for
various configurations of telecommunication switches (such
as PBX and central-office switches), host platforms (such as
Windows NT, Windows 3.1, OS/2, and UNIX), and wide-area

and local-area networks (such as X.25, TCP/IP, and Novell
IPX/SPX). Configuration flexibility is necessary since not all
call center installation sites require every feature provided by
the CCM system.

It would be possible (although highly undesirable) to man-
ually construct and deliver one or more CCM systems that
are customized for the platforms and the subsets of features
required by a particular site. However, such a static config-
uration process would require the selection of services and
the division of labor between different hosts in a distributed
CCM system to be completely fixed during initial system
deployment. Our experience with earlier-generation CCM
systems indicated that even if this information was available
at the time of deployment, it was likely to change in the
future, often upon short notice.

The ASX framework facilitates both platform indepen-
dence and configuration flexibility to improve software com-
ponent reuse across platforms and to reduce development
effort. For example, C++ abstract base classes, inheritance,
dynamic binding, and parameterized types are used exten-
sively throughout the CCM system to localize and minimize
platform dependencies. Likewise, the ASX framework is
used to defer the point of time at which a particular set of
services are configured to form a CCM application. By com-
bining advanced OS features (such as multi-threading and
explicit dynamic linking) and C++ language features (such
as templates, inheritance, and dynamic binding), the ASX
framework enables services offered by CCM applications to
be extended without modifying, recompiling, relinking, or
even restarting the system at run-time [16].

3.2 Mapping CCM Functionality onto ASX
Components

Figure 3 illustrates the ASX framework components used
to implement the event server portion of the CCM system
(the other components in the CCM system are not presented
in this example). The event server performs the following
tasks:

� It receives activity events generated continuously by
operator hosts and telecom switches;

� It analyzes and filters the activity events it receives
to determine which actions to perform, as well as
which supervisors should receive which incoming ac-
tivity events;

� It forwards the filtered activity events across a network
to the subset of supervisor hosts that have previously
subscribed to receive these events.

The CCM event server is composed of four hierarchically-
related Modules that may be configured statically and/or
dynamically by the run-time environment available in the
ASX framework. The use of ASX Modules helps to
improve the platform independence of the CCM system
by encapsulating non-portable system mechanisms (such
as communication protocols and activity event frame for-
mats) behind abstract interfaces. This section outlines the

: Reactor

: Service
Repository

: Service
Config

CCM
Stream

: Event
Filter

ASX RUN-TIME
: Switch

IO
: Switch

IO

: Session
IO

: Session
IO

: Session
IO

TELECOM
SWITCHES

SUPER-
VISOR

EVENT
SERVER

SUPER-
VISOR

SUPER-
VISOR

: Session
Router

: Switch
Adapter

: Event
Analyzer up

st
re

am

do
w

ns
tr

ea
m

Figure 3: ASX Components in a Distributed Call Center
Manager

behavior of the Switch Adapter, Event Analyzer,
Event Filter, and Session Router Module objects
that comprise the CCM event server.

3.2.1 The Switch Adapter Module

The Switch Adapter Module object coordinates com-
munication between the CCM event server and the tele-
com switches monitored by the event server. This Module
shields the higher layers of the event server architecture from
switch-specific communication characteristics (such as activ-
ity event frame formats). The Switch Adapter Module
maintains a collection of Switch IO objects that are re-
sponsible for parsing incoming activity events from switches.
These activity events are transformed and encapsulated into
a canonical switch-independent message object, which is
built atop a flexible message management class described
in [12]. After being allocated and initialized, the incom-
ing canonical message objects are passed upstream to the
Event Analyzer Module.

3.2.2 The Event Analyzer Module

The Event Analyzer Module is used to transform
switch-specific activity events into a switch-independent for-
mat. This transformation process helps to improve sys-
tem portability. For instance, only the Switch Adapter
and Event Analyzer portion of the event server was af-

fected significantly when the original PBX-based version
of the CCM system was ported to a different central-office
switch architecture. During the event analysis process, the
Event Analyzer also synthesizes switch-independent de-
rived events that are triggered by the occurrence of one or
more switch-specific events. After the Event Analyzer
has transformed and/or synthesized incoming activity events,
it forwards the new events to the Event Filter Module.

3.2.3 The Event Filter Module

The Event Filter Module minimizes unnecessary net-
work traffic by forwarding only those activity events
that at least one supervisor has subscribed to receive.
The Event Filter contains a collection of Event
Forwarding Discriminator (EFD) objects. An EFD
object contains a predicate that indicates the type of activity
event(s) a supervisor wants to receive. An EFD predicate
may be used to selectively filter out activity events based
on criteria such as event type, event value, event generation
time, and event frequency. An EFD predicate may contain
relational operators that allow the composition of arbitrarily
complex filter expressions.

During system configuration, supervisors may subscribe
to receive particular events by registering EFD objects with
the event server. During system execution, the event
server inspects the EFDs to determine the set of supervi-
sors that should receive each incoming activity event. If
an activity event matches a supervisor’s EFD predicate,
the supervisor’s addressing information is added to the
Session Set in the message object that encapsulates the
activity event. After all the EFDs are inspected by the
Event Filter Module, the message object containing
the activity event and the Session Set is passed upstream
to the Session Router Module.

3.2.4 The Session Router Module

The Session Router Module is a reusable ASX com-
ponent. It shields the lower layers of the CCM event server
from non-portable details of the communication protocols
used to communicate with supervisors. Supervisors con-
nect to the event server by establishing a session with the
Session Router Module. A separate Session IO
object is created to manage each supervisor session. This
Session IO object use an IPC SAP object to handle all
the data transfer and control operations between the event
server and a supervisor. After connecting to the event
server, a supervisor indicates the type of activity event(s)
he or she would like to monitor. Subsequently, when the
Session Router receives a message object from the
Event Filter Module, it automatically multicasts the
message to all the supervisors indicated by the addressing in-
formation residing in the message object’s Session Set.

The Service Config object illustrated in the middle
of Figure 3 is a reusable component from the ASX frame-

work’s Service Configurator class category [16].
The event server uses this object to control the initial config-
uration, subsequent reconfiguration(s), and termination of
Modules from the Stream class category. Modules
may be configured statically at installation-time or recon-
figured dynamically at run-time. The Service Config
object integrates other ASX framework components such
as the Service Repository and the Reactor. The
Service Repository is an object manager that sim-
plifies the run-time configuration and administration of the
Modules used to implement layered communication ser-
vices in a Stream. The Reactor is an event demultiplexer
that dispatches incoming messages from supervisors and ac-
tivity events from switches to the appropriate Session IO
and Switch IO event handlers, respectively. Messages ar-
riving from supervisors are received by a Session IO ob-
ject, sent downstream through the CCM Stream object, and
handled by the appropriateModule (e.g., EFD subscriptions
are handled by theEvent FilterModule). Likewise, in-
coming events from switches are received by a Switch IO
object and sent upstream starting at the Switch Adapter
Module.

3.3 CCM Event Server Configuration

The Modules that comprise the CCM Stream object may
be configured into the event server at installation-time by
developers, as well as at run-time by system administra-
tors or by applications. The ASX framework provides this
high degree of flexibility by combining OS explicit dy-
namic linking mechanisms with a configuration scripting
language (described in [16]). For example, the Service
Configurator class category uses following configura-
tion script to determine which services to dynamically link
into the address space of the CCM event server at installation-
time:

stream CCM_Stream dynamic
STREAM * /svcs/CCM_Stream.so:alloc() {
dynamic Switch_Adapter
Module * /svcs/SA.so:alloc() "-p 2001"

dynamic Event_Analyzer
Module * /svcs/EA.so:alloc()

dynamic Event_Filter
Module * /svcs/EF.so:alloc()

dynamic Session_Router
Module * /svcs/SR.so:alloc() "-p 2010"

}

The configuration script shown above indicates the order
in which the four Modules in the CCM event server
are dynamically linked and pushed onto the CCM Stream
object. During the installation of the event server, the
Service Config class parses this configuration script and
carries out the directives described by each entry, as follows:

1. The dynamic directive instructs the ASX framework
to dynamically link the shared object file (specified by a
pathname ending in .so) into the address space of the
CCM event server;

2. The framework then consults the shared object’s symbol
table to locate, extract, and invoke the alloc function,
which allocates an instance of the specified Module
object;

3. The framework then invokes the initialization method
of the two Queues in the Module, passing in any
initialization parameters (which appear as string literals
at the end of each line);

4. At this point, the framework enters an event loop that
waits for control messages to arrive from supervisors
or for activity events to arrive from switches and/or
operator hosts.

When events arrive at run-time, the Reactor automati-
cally dispatches the appropriate callback methods of the
Switch IO and Session IO objects to initiate Stream
processing.

3.4 CCM Event Server Reconfiguration

This section motivates and illustrates the dynamic reconfig-
uration mechanisms provided by the ASX framework. A
major objective of the CCM project was to allow devel-
opers to decide very late in the development cycle (i.e., at
installation-time or run-time) which services would run in su-
pervisor hosts and which would run in the event server. Our
experience with earlier versions of the CCM system indicated
that it was difficult to determine the appropriate mapping of
services onto hosts a priori since processing characteristics,
workloads, and OS/hardware platforms vary over time.

The run-time control environment provided by the ASX
framework supports the flexible reconfiguration requirements
of the CCM system. This flexibility proved to be quite useful
for the CCM project since different OS/hardware platforms
and different network characteristics required different ser-
vice configurations. For example, in some environments the
event server performed most of the work since it ran on a
multi-processor platform, whereas the supervisor hosts were
inexpensive PCs attached to the event server via networks that
possess low-bandwidth or are highly congested. Conversely,
in other environments the supervisor hosts performed most
of the work since these hosts were powerful workstations
connected to a high-speed network.

The CCM Stream shown in Figure 3 performs all event
analysis and event filtering processing directly in the event
server. As described above, however, this configuration may
not be appropriate for certain CCM environments. For exam-
ple, performance may be degraded if supervisors configure a
large number of Event Forwarding Discriminator (EFD) ob-
jects into an event server. In this case, the centralized event
server becomes a bottleneck and performance suffers, even
if surplus processing capacity were available in the network
and in the supervisor hosts. Figure 4 illustrates how the
configuration shown in Figure 3 may be modified to operate
efficiently in a distributed environment where event server
processing constitutes the primary performance bottleneck.

TELECOM
SWITCHES

: Event
Filter

: Session
IO

: Session
IO

: Session
IO CCM

Stream: Session
Router

: Switch
Adapter

ASX RUN-TIME

: Reactor

: Service
Repository

: Service
Config

SUPER-
VISOR SUPER-

VISOR

: Switch
IO

: Switch
IO

: Event
Analyzer

up
st

re
am

do
w

ns
tr

ea
m

: Event
Filter: Event

Filter

SUPER-
VISOR

EVENT
SERVER

Figure 4: Reconfiguration of the Call Center Manager

The following script dynamically reconfigures Modules
in the CCM system:

suspend CCM_Stream
stream CCM_Stream {
remove Event_Filter

}
remote "-h all -p 911" {
stream CCM_Stream {
dynamic Event_Filter
Module * /svcs/EF.so:alloc()

}
}
resume CCM_Stream

This script transfers the event filtering functionality from the
event server to the supervisor hosts using the followingsteps:

1. It suspends the event server’s CCM Stream object;

2. It removes the Event Filter Module from the
CCM Stream and dynamically unlinks the associated
shared object library;

3. It then dynamically links theEvent FilterModule
into Streams on all the supervisor hosts;

4. Finally, it resumes the event server’s CCM Stream ob-
ject.

As a result of this reconfiguration, the overhead of event filter-
ing is distributed among all the supervisor hosts, as opposed
to being centralized at the event server.

We are currently evaluating the performance of the CCM
distributed architecture depicted in Figures 3 and 4 to deter-
mine how to parallelize the CCM event server more effec-
tively. Using the ASX framework, it is straightforward to
reconfigure the binding of threads onto Modules or mes-
sages in order to reduce programming effort and improve
performance [12]. We are also investigating service migra-
tion policies to formulate guidelines that ensure the dynamic
reconfiguration of the event server does not disrupt or cor-
rupt active services. A more ambitious long-term project
involves using the ASX reconfiguration mechanisms to ex-
periment with service migration policies that relocate certain
services dynamically to reduce overall system workload at
run-time.

4 Concluding Remarks

The ASX framework provides an object-oriented infrastruc-
ture that supports static and/or dynamic configuration of net-
work services that execute within one or more OS processes
and threads. The object-oriented design principles underly-
ing the ASX framework separate policies from mechanisms
via object-oriented language features (such as abstract base
classes, inheritance, dynamic binding, and parameterized
types). This separation of concerns enhances the reuse of
common distributed application software components. These
components include C++ wrappers for local and remote IPC
mechanisms [14]; frameworks for event demultiplexing and
service dispatching [15]; tools for automating service con-
figuration and reconfiguration [17]; and C++ subclasses that
encapsulate and enhance various dynamic linking and con-
currency mechanisms [16].

Component reuse is also facilitated in the ASX frame-
work by decoupling the higher-level application-specific
policies (such as activity event filtering) from the lower-level
application-independent mechanisms (such as the choice of
mechanisms for network communication, event demultiplex-
ing and service dispatching, and process/thread execution
agents). In addition, the ASX framework helps to decouple
application-specific service functionality from the binding
onto OS processes and threads in order to improve flexi-
bility and performance. Explicit dynamic linking and dy-
namic binding are also utilized to help improve extensibility
and permit fine-grained time/space tradeoffs. Together, the
object-oriented design principles and OS/language features
facilitate the development of network services that may be
updated and extended without modifying, recompiling, re-
linking, or restarting existing applications at run-time [16].

The ASX framework described in this paper has been used
in a production environment to simplify the configuration,
installation, and administration of a family of distributed
system management applications for a major telecommuni-
cations company. By using the ASX framework, develop-
ers have been able to enhance distributed application func-
tionality and reliability, as well as fine-tune system perfor-
mance, without extensive redevelopment and re-installation

effort. For example, debugging a faulty service typically
involves dynamically reinstalling a functionally equivalent
service containing additional instrumentation that helps to
isolate the source of the erroneous behavior.

Thus far, the primary obstacles encountered by using
object-oriented techniques and C++ have been managerial
and tool-related, rather than technical problems. For exam-
ple, it is difficult to find experienced systems analysts, de-
signers, and programmers who are intimately familiar with
applying C++ and object-oriented design methods in dis-
tributed communication system environments. Furthermore,
the level of maturity of many C++ compilers and language
processing tools has been inadequate on UNIX, Windows
NT, and OS/2 platforms. For example, many C++ debug-
gers do not support multi-threading correctly and many C++
compilers implement only a subset of the language.

Over time, it is likely that the tool-related concerns will be-
come less problematic, particularly once the ISO/ANSI C++
standard is adopted. However, for the interim period, it is
essential to staff complex software projects carefully to min-
imize development risks. For the CCM project, we found
it useful to hire a small number of experienced OOD/C++
experts. These experts have worked closely with less experi-
enced developers to shepard them through the object-oriented
learning curve.

Components in the ASX framework are being used in
a number of large-scale distributed systems including the
AT&T Q.port ATM signaling software product, the network
management portion of the Motorola IRIDIUM global per-
sonal communications system, and a family of telecommu-
nication switch management systems developed at Erics-
son/GE mobile communications. In addition, theASX frame-
work has being used in the ADAPTIVE Communication En-
vironment (ACE). [19] ACE facilitates experimentation with
various aspects of communication subsystems (such as flex-
ible process architectures for multi-processor-based commu-
nication protocol stacks [12] and adaptive protocol reconfig-
uration techniques [19]) and distributed applications (such
as extensible frameworks for concurrent event demultiplex-
ing [15]). Public domain versions of the ASX framework
described in this paper is available via anonymous ftp from
ics.uci.edu in the file gnu/C++ wrappers.tar.Z.

References
[1] G. Booch, Object Oriented Analysis and Design with Ap-

plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[2] D. C. Schmidt, “ASX: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[3] D. E. Comer and D. L. Stevens, Internetworking with TCP/IP
Vol III: Client – Server Programming and Applications. En-
glewood Cliffs, NJ: Prentice Hall, 1992.

[4] W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[5] S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[6] R. Johnson and B. Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming, vol. 1, pp. 22–35,
June/July 1988.

[7] M. A. Linton and P. R. Calder, “The Design and Implemen-
tation of InterViews,” in Proceedings of the USENIX C++
Workshop, November 1987.

[8] A. Weinand, E. Gamma, and R. Marty, “ET++ - an object-
oriented application framework in C++,” in Proceedings of
the Object-Oriented Programming Systems, Languages and
Applications Conference, pp. 46–57, ACM, Sept. 1988.

[9] D. Batory and S. W. O’Malley, “The Design and Implementa-
tion of Hierarchical Software Systems Using Reusable Com-
ponents,” ACM Transactions on Software Engineering and
Methodology, vol. 1, pp. 355–398, Oct. 1992.

[10] R. Campbell, V. Russo, and G. Johnson,“The Design of a Mul-
tiprocessor Operating System,” in Proceedingsof the USENIX
C++ Workshop, pp. 109–126, USENIX Association, Novem-
ber 1987.

[11] J. M. Zweig, “The Conduit: a Communication Abstraction in
C++,” in Proceedings of the 2nd USENIX C++ Conference,
pp. 191–203, USENIX Association, April 1990.

[12] M. Jayaram, R. K. Cytron, D. C. Schmidt, and G. Vargh-
ese, “Efficient Demultiplexing of Network Packets by Auto-
matic Parsing,” in Submitted to the ACM SIGPLAN’95 Confer-
ence on Programming Language Design and Implementation,
ACM, 1994.

[13] N. C. Hutchinson and L. L. Peterson, “The x-kernel: An Ar-
chitecture for Implementing Network Protocols,” IEEE Trans-
actions on Software Engineering, vol. 17, pp. 64–76, January
1991.

[14] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[15] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Programs (J. O. Coplien
and D. C. Schmidt, eds.), Reading, MA: Addison-Wesley, June
1995.

[16] D. C. Schmidt and T. Suda, “The Service Configurator Frame-
work: An Extensible Architecture for Dynamically Config-
uring Concurrent, Multi-Service Network Daemons,” in Pro-
ceedings of the Second International Workshop on Config-
urable Distributed Systems, (Pittsburgh, PA), pp. 190–201,
IEEE, Mar. 1994.

[17] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[18] D. Ritchie, “A Stream Input–Output System,” AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[19] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,
and eValuation Environment,” Journalof Concurrency: Prac-
tice and Experience, vol. 5, pp. 269–286, June 1993.

