
0018-9162/06/$20.00 © 2006 IEEE February 2006 25P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

G U E S T E D I T O R ’ S I N T R O D U C T I O N

One prominent effort begun in the 1980s was com-
puter-aided software engineering (CASE), which focused
on developing software methods and tools that enabled
developers to express their designs in terms of general-
purpose graphical programming representations, such
as state machines, structure diagrams, and dataflow dia-
grams. One goal of CASE was to enable more thorough
analysis of graphical programs that incur less complex-
ity than conventional general-purpose programming
languages—for example, by avoiding memory corrup-
tion and leaks associated with languages like C. Another
goal was to synthesize implementation artifacts from
graphical representations to reduce the effort of manu-
ally coding, debugging, and porting programs.

Although CASE attracted considerable attention in
the research and trade literature, it wasn’t widely
adopted in practice. One problem it faced was that the
general-purpose graphical language representations for
writing programs in CASE tools mapped poorly onto
the underlying platforms, which were largely single-node
operating systems—such as DOS, OS/2, or Windows—
that lacked support for important quality-of-service
(QoS) properties, such as transparent distribution, fault
tolerance, and security. The amount and complexity of
generated code needed to compensate for the paucity of
the underlying platforms was beyond the grasp of trans-
lation technologies available at the time, which made it
hard to develop, debug, and evolve CASE tools and
applications created with these tools.

Model-driven engineering technologies offer a promising approach to address the inability

of third-generation languages to alleviate the complexity of platforms and express domain

concepts effectively.

Douglas C. Schmidt
Vanderbilt University

O ver the past five decades, software researchers
and developers have been creating abstractions
that help them program in terms of their design
intent rather than the underlying computing
environment—for example, CPU, memory,

and network devices—and shield them from the com-
plexities of these environments.

From the early days of computing, these abstractions
included both language and platform technologies. For
example, early programming languages, such as assem-
bly and Fortran, shielded developers from complexities
of programming with machine code. Likewise, early
operating system platforms, such as OS/360 and Unix,
shielded developers from complexities of programming
directly to hardware.

Although these early languages and platforms raised
the level of abstraction, they still had a distinct “com-
puting-oriented” focus. In particular, they provided
abstractions of the solution space—that is, the domain
of computing technologies themselves—rather than
abstractions of the problem space that express designs
in terms of concepts in application domains, such as
telecom, aerospace, healthcare, insurance, and biology.

LESSONS FROM COMPUTER-AIDED
SOFTWARE ENGINEERING

Various past efforts have created technologies that
further elevated the level of abstraction used to develop
software.

Model-
Driven
Engineering

26 Computer

Another problem with CASE was its inability to scale to
handle complex, production-scale systems in a broad
range of application domains. In general, CASE tools did
not support concurrent engineering, so they were limited
to programs written by a single person or by a team that
serialized their access to files used by these tools. Moreover,
due to a lack of powerful common middleware platforms,
CASE tools targeted proprietary execution environments,
which made it hard to integrate the code they generated
with other software language and
platform technologies. CASE tools
also didn’t support many application
domains effectively because their
“one-size-fits-all” graphical represen-
tations were too generic and noncus-
tomizable.

As a result, CASE had relatively lit-
tle impact on commercial software
development during the 1980s and 1990s, focusing pri-
marily on a few domains, such as telecom call processing,
that mapped nicely onto state machine representations.
To the extent that CASE tools were applied in practice,
they were limited largely to a subset of tools that enabled
designers to draw diagrams of software architectures and
document design decisions, which programmers then used
to help guide the creation and evolution of their hand-
crafted implementations. Since there was no direct rela-
tionship between the diagrams and the implementations,
however, developers tended not to put much stock in the
accuracy of the diagrams since they were rarely in sync
with the code during later stages of projects.

CURRENT PLATFORM AND
LANGUAGE LIMITATIONS

Advances in languages and platforms during the past
two decades have raised the level of software abstrac-
tions available to developers, thereby alleviating one
impediment to earlier CASE efforts. For example, devel-
opers today typically use more expressive object-ori-
ented languages, such as C++, Java, or C#, rather than
Fortran or C. Likewise, today’s reusable class libraries
and application framework platforms minimize the need
to reinvent common and domain-specific middleware
services, such as transactions, discovery, fault tolerance,
event notification, security, and distributed resource
management. Due to the maturation of third-generation
languages and reusable platforms, therefore, software
developers are now better equipped to shield themselves
from complexities associated with creating applications
using earlier technologies.

Despite these advances, several vexing problems re-
main. At the heart of these problems is the growth of
platform complexity, which has evolved faster than the
ability of general-purpose languages to mask it. For
example, popular middleware platforms, such as J2EE,
.NET, and CORBA, contain thousands of classes and

methods with many intricate dependencies and subtle
side effects that require considerable effort to program
and tune properly. Moreover, since these platforms often
evolve rapidly—and new platforms appear regularly—
developers expend considerable effort manually porting
application code to different platforms or newer versions
of the same platform.

A related problem is that most application and plat-
form code is still written and maintained manually using

third-generation languages, which
incurs excessive time and effort—
particularly for key integration-
related activities, such as system
deployment, configuration, and qual-
ity assurance. For example, it is hard
to write Java or C# code that
correctly and optimally deploys
large-scale distributed systems with

hundreds or thousands of interconnected software com-
ponents. Even using newer notations, such as XML-
based deployment descriptors popular with component
and service-oriented architecture middleware platforms,
is fraught with complexity. Much of this complexity
stems from the semantic gap between the design intent—
for example, “deploy components 1-50 onto nodes A-G
and components 51-100 onto nodes H-N in accordance
with system resource requirements and availability”—
and the expression of this intent in thousands of lines of
handcrafted XML whose visually dense syntax conveys
neither domain semantics nor design intent.

Due to these types of problems, the software indus-
try is reaching a complexity ceiling where next-genera-
tion platform technologies, such as Web services and
product-line architectures, have become so complex that
developers spend years mastering—and wrestling
with—platform APIs and usage patterns, and are often
familiar with only a subset of the platforms they use reg-
ularly. Moreover, third-generation languages require
developers to pay such close attention to numerous tac-
tical imperative programming details that they often
can’t focus on strategic architectural issues such as sys-
tem-wide correctness and performance.

These fragmented views make it hard for developers
to know which portions of their applications are sus-
ceptible to side effects arising from changes to user
requirements and language/platform environments. The
lack of an integrated view—coupled with the danger of
unforeseen side effects—often forces developers to
implement suboptimal solutions that unnecessarily
duplicate code, violate key architectural principles, and
complicate system evolution and quality assurance.

MODEL-DRIVEN ENGINEERING
A promising approach to address platform complex-

ity—and the inability of third-generation languages to
alleviate this complexity and express domain concepts

The lack of an integrated
view often forces developers

to implement suboptimal
solutions.

effectively—is to develop Model-Driven Engineering
(MDE) technologies that combine the following:

• Domain-specific modeling languages whose type sys-
tems formalize the application structure, behavior,
and requirements within particular domains, such
as software-defined radios, avionics mission com-
puting, online financial services, warehouse man-
agement, or even the domain of
middleware platforms. DSMLs
are described using metamodels,
which define the relationships
among concepts in a domain
and precisely specify the key
semantics and constraints asso-
ciated with these domain con-
cepts. Developers use DSMLs to
build applications using ele-
ments of the type system captured by metamodels
and express design intent declaratively rather than
imperatively.

• Transformation engines and generators that analyze
certain aspects of models and then synthesize vari-
ous types of artifacts, such as source code, simula-
tion inputs, XML deployment descriptions, or
alternative model representations. The ability to syn-
thesize artifacts from models helps ensure the con-
sistency between application implementations and
analysis information associated with functional and
QoS requirements captured by models. This auto-
mated transformation process is often referred to as
“correct-by-construction,” as opposed to conven-
tional handcrafted “construct-by-correction” soft-
ware development processes that are tedious and
error prone.

Existing and emerging MDE technologies apply
lessons learned from earlier efforts at developing higher-
level platform and language abstractions. For example,
instead of general-purpose notations that rarely express
application domain concepts and design intent, DSMLs
can be tailored via metamodeling to precisely match the
domain’s semantics and syntax. Having graphic ele-
ments that relate directly to a familiar domain not only
helps flatten learning curves but also helps a broader
range of subject matter experts, such as system engineers
and experienced software architects, ensure that soft-
ware systems meet user needs.

Moreover, MDE tools impose domain-specific con-
straints and perform model checking that can detect and
prevent many errors early in the life cycle. In addition,
since today’s platforms have much richer functionality
and QoS than those in the 1980s and 1990s, MDE tool
generators need not be as complicated since they can
synthesize artifacts that map onto higher-level, often
standardized, middleware platform APIs and frame-

works, rather than lower-level OS APIs. As a result, it’s
often much easier to develop, debug, and evolve MDE
tools and applications created with these tools.

IN THIS ISSUE
This special issue of Computer contains four arti-

cles that describe the results from recent R&D efforts
that represent the new generation of MDE tools and

environments.
Two of these articles focus on the

pressing need for creating languages
that help reduce the complexity of
developing and using modern
platforms. “Developing Applications
Using Model-Driven Design En-
vironments” by Krishnakumar
Balasubramanian and colleagues
describes several DSMLs that simplify

and automate many activities associated with develop-
ing, optimizing, deploying, and verifying component-
based distributed real-time and embedded systems.
“CALM and Cadena: Metamodeling for Component-
Based Product-Line Development” by Adam Childs and
colleagues presents an MDE framework that uses
extended type systems to capture component-based
software product-line architectures and arrange those
architectures into hierarchies to transform platform-
independent models into platform-specific models.

When developers apply MDE tools to model large-
scale systems containing thousands of elements, they
must be able to examine various design alternatives
quickly and evaluate the many diverse configuration
possibilities available to them. “Automating Change
Evolution in Model-Driven Engineering” by Jeff Gray
and colleagues describes a model transformation engine
for exploring and manipulating large models. The
authors present a solution that considers issues of scal-
ability in MDE (such as scaling a base model of a sen-
sor network to thousands of sensors) and applies an
aspect-oriented approach to modeling crosscutting con-
cerns (such as a flight data recorder policy that spans
multiple avionics components).

As MDE tools cross the chasm from early adopters to
mainstream software developers, a key challenge is to
define useful standards that enable tools and models to
work together portably and effectively. In “Model-
Driven Development Using UML 2.0: Promises and
Pitfalls,” Robert B. France and colleagues evaluate the
pros and cons of UML 2.0 features in terms of their
MDE support.

Another source of information on MDE standardiza-
tion is available at the Object Management Group’s Web
site (http://mic.omg.org), which describes the efforts of
the Model-Integrated Computing Platform Special
Interest Group that is standardizing the results of R&D
efforts funded by government agencies, such as the

February 2006 27

MDE tools impose domain-
specific constraints and

perform model checking that
can detect and prevent many
errors early in the life cycle.

28 Computer

solid infrastructure support for developing and evolv-
ing MDE tools and applications. The articles in this
special issue describe the application of various MDE
tools, such as Eclipse from IBM and the Generic
Modeling Environment from the Institute for Software
Integrated Systems, to a range of commercial and
R&D projects. To explore commercial adoption in
more depth, a pair of sidebars, “Model-Centric
Software Development” by Daniel Waddington and
Patrick Lardieri and “Domain-Specific Modeling
Languages for Enterprise DRE System QoS” by John
M. Slaby and Steven D. Baker, summarize experiences
applying MDE tools to complex command-and-con-

Defense Advanced Research Projects Agency and the
National Science Foundation.

An example of this transition from R&D to standards
is the Open Tool Integration Framework, a metamodel-
based approach to MDE tool integration that defines
architectural components (such as tool adapters and
semantic translators) and interaction protocols for form-
ing integrated design tool chains. Other standards, such
as Query/Views/Transformations and the MetaObject
Facility being defined as part of the UML-based Model-
Driven Architecture OMG standard can also be useful
as the basis for domain-specific MDE tools.

Standards alone, however, are insufficient without

Model-Centric Software Development
Daniel Waddington and Patrick Lardieri, Lockheed Martin Advanced Technology Laboratories

The idea of using models to alleviate software complexity
has been around for many years. However, researchers have
largely applied models to selected elements of the develop-
ment process, particularly structural and compositional
aspects in the design phase and model checking and verifica-
tion in the testing phase.

Integrated Modeling Approach
At Lockheed Martin, we are developing a form of model-

driven engineering, which we call Model-Centric Software
Development (MCSD).This is an integrated approach in
which models are central to all phases of the development
process. Our vision is subtly different from other software
modeling efforts, such as the OMG’s Model-Driven
Architecture (MDA)1 and Microsoft’s Software Factories,2

which concentrate largely on generating implementation
artifacts from models. Instead, MCSD is based on the
following concepts:

• Avoiding a one-language-does-all approach. Our approach
uses domain-specific modeling languages (DSMLs) to
represent “aspects of interest” such as atomicity of data
access,end-to-end message delay,and resource contention.

• Automated generation of partial implementation artifacts.
The mapping between elements in a model and corre-
sponding elements of implementation is well defined.
Rather than being restricted to program skeletons, par-
tial implementations also can include fine-grained con-
crete functionality and specifications for software
simulators and emulators.The models alone are not
enough to build the complete implementation.

• Integration of legacy assets through reverse engineering.
Large-scale systems inherently require the incorporation
of legacy implementation assets. Reverse engineering is
used to build models (again for a given aspect of con-
cern) from existing source code. Many previous attempts
to reverse-engineer models from source code have failed
due to a lack in constraining aspects of interest.

• Model verification and checking.Developers can use static
analysis as well as rapid-prototype generation in combina-
tion with runtime performance analysis to evaluate designs.

Our experience indicates that combining these concepts
offers a promising direction for large-scale systems development.

Addressing Wicked Problems with MCSD
In our experience working on large-scale software systems,

a prominent cause of inflated software development costs
and extended time-to-market stems from serialized phasing,
which makes it hard to evaluate design decisions until the
implementation phases are complete. Developers can readily
evaluate some design properties, such as interface compatibil-
ity, before the implementation is complete. However, it’s
difficult to evaluate other properties, such as freedom from
deadlock and scalability, without executing the software. Not
being able to identify design flaws that cause such problems

Designer/subject process
Linear

Time

Problem

Solution

Gather data

Analyze data

Formulate solution

Implement solution

Figure A. Deviation from linear problem solving caused by wicked

problems. Iterations between problem understanding and solution

approaches require multiple iterations between software design,

implementation, and testing.

trol and shipboard computing projects in large system
integrator companies.

The lessons learned from these types of projects help
mature the MDE tool infrastructure and harden it for
adoption in mainstream commercial projects. Several
emerging MDE tools that bear watching in the future are
the Eclipse Graphical Modeling Framework, the DSL
Toolkit in Microsoft’s Visual Studio Team System, and
openArchitectureWare available from SourceForge.

As the articles in this special issue show, recent
advances stemming from years of R&D efforts around
the world have enabled the successful application of
MDE to meet many needs of complex software systems.

To avoid problems with earlier CASE tools that inte-
grated poorly with other technologies, these MDE
efforts recognize that models alone are insufficient to
develop complex systems.

These articles therefore describe how MDE leverages,
augments, and integrates other technologies, such as pat-
terns, model checkers, third-generation and aspect-ori-
ented languages, application frameworks, component
middleware platforms, and product-line architectures. In
this broader context, models and MDE tools serve as a
unifying vehicle to document, analyze, and transform
information systematically at many phases throughout
a system’s life cycle, capturing various aspects of appli-

February 2006 29

until late in the software development life cycle is a significant
contributor to inflated expense and delay.

The problem of late-stage design evaluation in serialized
phasing is exacerbated in the context of large-scale systems
that attempt to tackle “wicked” problems,3 in which the prob-
lem itself is not well-understood until a solution is developed.
As a result, as Figure A shows, iterations between problem
understanding and solution approaches require multiple itera-
tions between software design, implementation, and testing.

To develop effective software for large-scale systems and
systems-of-systems, Lockheed Martin is applying MCSD tech-
nologies and processes that alleviate problems with serialized
phasing.

We are particularly interested in exploring modeling of
execution architecture, and enabling system engineers to
explore execution design and its effect on system dynamics;
this is achieved through static analysis and rapid generation of
artifacts for simulation and emulation.This approach facilitates
rapid iteration between problem definition and implementa-
tion solution concerns.

An important lesson that we have learned is
that models should not be used to replicate
the abstractions that programming languages
provide. As Figure B shows, models should
abstract selected elements of the imple-
mented complex system.

We do not believe it is feasible—at least in
the near term—to generate a complete imple-
mentation from models of the system alone.
Furthermore, we do believe that multiple
modeling notations and interpretations
(views) are necessary to represent each of the
different aspects of concern and to fulfill dif-
ferent roles within MCSD such as verification
of correctness, human understanding through
visual interpretation, and code generation.

Lockheed Martin is pursuing the MCSD
vision by integrating selected technologies in
metamodeling,model checking and verification,
code generation, and reverse engineering.We

are tailoring our solution to meet specific business require-
ments of our Information Systems and Solutions division and
its need to integrate large-scale systems for information pro-
cessing.

References
1. OMG,“Model Driven Architecture (MDA),” document

ormsc/2001-07-01,Architecture Board ORMSC, July 2001.
2. J. Greenfield et al., Software Factories: Assembling Applications with

Patterns, Models, Frameworks and Tools, John Wiley & Sons, 2004.
3. H. Rittel and M.Webber,“Dilemmas in a General Theory of

Planning,” Policy Sciences, vol. 4, no. 2, 1973, pp.155-169.

Daniel Waddington is a lead member of the engineering
staff at Lockheed Martin Advanced Technology Laboratories,
Cherry Hill, N.J. Contact him at dwadding@atl.lmco.com.

Patrick Lardieri is manager of distributed processing pro-
grams at Lockheed Martin Advanced Technology Laborato-
ries, Cherry Hill, N.J. Contact him at plardieri@atl.lmco.com.

Model

View View

Model

View View

Translation

Abstract views

Abstraction

Complex systems

Figure B. Relationship between views, models, and implementation. Rather than

replicating the abstractions that programming languages provide, models abstract

upon “selected” elements of the implemented complex system.

30 Computer

cation structure, behavior, and QoS using general-pur-
pose or domain-specific notations.

A lthough a great deal of publicity on model-driven
topics has appeared in the trade press, it’s surpris-
ingly hard to find solid technical material on MDE

technologies, applications of these technologies to com-
plex production-scale systems, and frank assessments of
MDE benefits and areas that still need attention. For
example, further R&D is needed to support roundtrip
concurrency engineering and synchronization between
models and source code or other model representations,

improve debugging at the modeling level, ensure back-
ward compatibility of MDE tools, standardize meta-
modeling environments and model interchange formats,
capture design intent for arbitrary applications domains,
automate the specification and synthesis of model trans-
formations and QoS properties to simplify the evolution
of models and metamodels, and certify safety properties
of models in DSMLs and in their generated artifacts.

Although MDE still faces some R&D challenges,
decades of progress and commercialization have enabled
us to reach the critical mass necessary to cross the chasm
to mainstream software practitioners. The articles in this
issue help replace hype with sound technical insights

Domain-Specific Modeling Languages for Enterprise DRE System QoS
John M.Slaby and Steven D.Baker,Raytheon, Portsmouth, R.I.

Researchers are increasingly developing enterprise systems
in many domains using applications composed of distributed
components running on feature-rich middleware frameworks,
in what is often termed a service-oriented architecture.

SOA Middleware
In SOA middleware, software components provide

reusable services to a range of application domains, which are
then composed into domain-specific assemblies for applica-
tion (re)use. Examples of SOA middleware platforms include
J2EE, .NET, and the CORBA Component Model (CCM).

The transition to SOA middleware is gaining momentum in
the realm of enterprise business systems because it helps
address problems of inflexibility and the reinvention of core
capabilities associated with prior generations of monolithic,
functionally designed, and “stovepiped” legacy applications.
Whereas software engineers developed legacy applications
with the precise capabilities required for a specific set of
requirements and operating conditions, SOA components
have a range of capabilities that enable their reuse in other
contexts. Moreover, enterprise systems are developed in
layers consisting of infrastructure middleware services (such
as naming and discovery, event and notification, security and
fault tolerance) and application components that use these
services in different compositions.

Developers are also applying certain types of SOA-based
middleware, such as real-time CCM, to the enterprise distrib-
uted real-time and embedded (DRE) systems domain, such as
total-ship computing environments and supervisory control
and data acquisition systems, to provide users with quality-of-
service support to process the right data in the right place at
the right time over a computer grid. Some QoS properties
that enterprise DRE systems require include low latency and
jitter, as expected in conventional real-time and embedded
systems, and high throughput, scalability, and reliability, as
expected in conventional enterprise distributed systems.
Achieving this combination of QoS capabilities is difficult.

SOA middleware can also complicate software life-cycle
processes by shifting responsibility from software develop-
ment engineers to other types of software engineers (such as
software configuration and deployment engineers) and sys-
tems engineers. Software development engineers traditionally
created entire applications in-house using top-down design
methods that they could evaluate throughout the life cycle. In
contrast, today, software configuration and deployment engi-
neers and systems engineers must increasingly assemble
enterprise DRE systems by customizing and composing
reusable SOA components, whose combined properties they
usually evaluate only during the integration phase.
Unfortunately, fixing problems uncovered during integration is
much more costly than if they had been discovered earlier in
the life cycle.Thus, a key R&D challenge is exposing these
types of issues (which often have dependencies on compo-
nents that are not available until late in development) earlier
in the life cycle—prior to the system integration phase.

SOA-based enterprise DRE systems require design and
runtime configuration steps, which customize reusable com-
ponents behavior to meet QoS requirements in the context
where they execute. Finding the right component configura-
tions to meet application QoS requirements can be a daunt-
ing task. For example, tuning a DRE shipboard computing
system’s concurrency configuration to support both real-time
and fault-tolerant QoS involves tradeoffs that challenge even
the most experienced engineers. Moreover, since application
functionality is distributed over many components in an SOA,
developers must interconnect and integrate components
correctly and efficiently, which is tedious and error prone
using conventional handcrafted configuration processes.

The components assembled into an application must also
be deployed on the appropriate nodes in an enterprise DRE
system.This deployment process is hard since the characteris-
tics of hosts onto which components are deployed and the
networks over which they communicate can vary both stati-
cally (for example, due to different hardware/software plat-

and lessons learned from experience with complex sys-
tems. We encourage you to get involved with the MDE
community and contribute your experience in future
conferences, journals, and other publication venues. A
summary of upcoming events and venues for learning
about and sharing information on the model-driven
engineering of software systems appears at www.
planetmde.org. ■

Acknowledgments
I thank Frank Buschmann, Jack Greenfield, Kevlin

Henney, Andrey Nechypurenko, Jeff Parsons, and

Markus Völter for spirited discussions at the 2005 OOP
Conference in Munich, Germany, that helped shape my
thinking on the role of MDE in modern languages and
platforms. I also thank Arvind S. Krishna for inspiring
this special issue. Finally, thanks to the members of the
MDE R&D community, who are spurring a crucial par-
adigm shift in generative software technologies.

Douglas C. Schmidt is associate chair of computer science
and engineering and a professor of computer science
at Vanderbilt University. Contact him at d.schmidt@
vanderbilt.edu.

February 2006 31

forms used in a product-line architecture) and dynamically
(for example, due to damage or faults, changes in computing
objectives, or differences in the real versus expected applica-
tion behavior during actual operation). Evaluating the opera-
tional characteristics of system deployments is therefore
tedious and error prone, particularly when developers per-
form the deployments manually.

Solution Approach: System Execution Modeling
Tools

Despite the flexibility that SOA middleware offers, surpris-
ingly few configuration and deployment designs can satisfy an
enterprise DRE system’s functional and QoS requirements.

To address these challenges, Raytheon is developing system
execution modeling (SEM) tools that combine QoS-enabled
SOA middleware and model-driven development (MDD)
technologies. Software architects, developers, and systems
engineers can use these SEM tools to explore design alterna-
tives from multiple computational and valuation perspectives
at multiple life-cycle phases using multiple quality criteria with
multiple stakeholders and suppliers.

In addition to validating design rules and checking for design
conformance, these SEM tools facilitate “what if” analysis of
alternative designs to quantify the impact and costs of certain
design choices on end-to-end system performance.These
choices include determining the maximum number of compo-
nents a host can handle before performance degrades, the
average and worst response time for various workloads,and the
ability of alternative system deployments and configurations to
meet end-to-end QoS requirements for various workloads.

In the context of enterprise DRE systems, our SEM tools
help developers, systems engineers, and end users discover,
measure, and rectify integration and performance problems
early in the system’s life cycle—that is, during the architecture
and design phases, as opposed to the integration phase, when
fixing mistakes is much harder and more costly.

With SEM tools, users can visually create arbitrarily com-
plex SOA-based applications and perform experiments that
systematically evaluate interactions that are hard to simulate.
In particular, these tools facilitate MDD-based workload

generation, data reduction, and visualization to rapidly con-
struct experiments and comparatively analyze results from
alternate execution architectures.The tools can also import
measured performance data from faux application compo-
nents running over actual configured and deployed infrastruc-
ture SOA middleware services to better estimate enterprise
DRE system behavior in a production environment.

Raytheon Experience with MDD Tools
As the basis for our system execution modeling tools, the

MDD paradigm and the Generic Modeling Environment and
CoSMIC MDD tools developed at the Institute for Software
Integrated Systems have provided an effective core set of
capabilities that we have found to be easy to extend and
intuitive to use. We are currently in the process of transition-
ing these technologies into mainstream acquisition programs
at Raytheon.

Despite this promising start, however, much work remains
to be done to create a unified MDD environment that sup-
ports the wide range of technologies, including currently
incompatible component frameworks and legacy applications,
found in enterprise DRE systems throughout all phases of the
software development life cycle.

These tools are still maturing, with major challenges
remaining before the entire enterprise computing environ-
ment can be modeled, validated, configured, and deployed via
a unified modeling interface.

John M. Slaby is a member of the DD(X) architecture team
and the principal investigator for research focused on model-
driven development and domain-specific modeling languages
at Raytheon Integrated Defense Systems, Portsmouth, R.I.
Contact him at john_m_slaby@raytheon.com.

Steven D. Baker is a software engineer on the DD(X)
Weapon Control Element team and a researcher on model-
driven development and domain-specific modeling languages
at Raytheon Integrated Defense Systems, Portsmouth, R.I.
Contact him at steven_d_baker@raytheon.com.

