
Acceptor and Connector

A Family of Object Creational Patterns
for Initializing Communication Services

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science
Washington University

St. Louis, MO 63130, USA
(314) 935-7538

This paper appeared in a chapter in the book “Pattern
Languages of Program Design 3” ISBN, edited by Robert
Martin, Frank Buschmann, and Dirke Riehle published by
Addison-Wesley, 1997.

1 Introduction

This paper describes the Connector and Acceptor patterns.
The intent of these patterns is to decouple the active and pas-
sive initialization roles, respectively, from the tasks a com-
munication service performs once initialization is complete.
Common examples of communication services that utilize
these patterns include WWW browsers, WWW servers, ob-
ject request brokers, and “superservers” (which provide ser-
vices like remote loginand file transfer to client applications).

This paper illustrates how the Connector and Acceptor
patterns can help decouple service initialization-related pro-
cessing from service processing, which yields more reusable,
extensible, and efficient communication software. When
used in conjunction with related patterns like the Reactor [1],
Active Object [2], and Service Configurator [3], the Accep-
tor and Connector patterns enable the creation of extensible
and efficient communication software frameworks [4] and
applications [5].

This paper is organized as follows: Section 2 describes the
Acceptor and Connector patterns in detail; Section 3 presents
concluding remarks, and the Appendix outlines background
information on networking and communication protocols
necessary to understand the patterns in this paper.

2 The Acceptor and Connector Pat-
terns

2.1 Intent

The intent of these patterns is to decouple service initializa-
tion from the tasks performed once a service is initialized.
The Connector pattern is responsible for active initialization,
whereas the Acceptor pattern is responsible for passive ini-
tialization.

WIDE AREA

NETWORK

SATELLITES
TRACKING

STATION

PEERS

STATUS INFO

COMMANDS
BULK DATA

TRANSFER

LOCAL AREA NETWORK

GROUND

STATION

PEERS

GATEWAY

Figure 1: The Physical Architecture of a Connection-oriented
Application-level Gateway

2.2 Also Known As

The Acceptor pattern is also known as the Listener [6].

2.3 Motivation

2.3.1 Context

To illustrate the Acceptor and Connector patterns, consider
the multi-service, application-levelGateway shown in Fig-
ure 1. The Gateway routes several types of data (such
as status information, bulk data, and commands) that are
exchanged between services running on the Peers. The
Peers are used to monitor and control a satellite constel-
lation. Peers can be distributed throughout local area net-
works (LANs) and wide-area networks (WANs).

1

The Gateway is a Mediator [7] that coordinates interac-
tions between its connected Peers. From the Gateway’s
perspective, these Peer services differ solely by their mes-
sage framing formats and payload types. TheGateway uses
a connection-oriented interprocess communication (IPC)
mechanism (such as TCP) to transmit data between its con-
nected Peers. Using a connection-oriented protocol sim-
plifies application error handling and enhances performance
over long-latency WANs.

Each communication service in the Peers sends and re-
ceives status information, bulk data, and commands to and
from the Gateway using separate TCP connections. Each
connection is bound to a unique address (e.g., an IP address
and port number). For example, bulk data sent from a ground
station Peer through the Gateway is connected to a differ-
ent port than status information sent by a tracking station peer
through the Gateway to a ground station Peer. Separat-
ing connections in this manner allows more flexible routing
strategies and more robust error handling when network con-
nections fail.

2.3.2 Common Traps and Pitfalls

One way to design the Peers and Gateway is to designate
the initialization roles a priori and hard-code them into the
server implementation. For instance, the Gateway could
be hard-coded to actively initiate the connections for all its
services. To accomplish this, it could iterate through a list
of Peers and synchronously connect with each of them.
Likewise, Peers could be hard-coded to passively accept
connections and initialize the associated services.

In addition, the active and passive connection code for the
Gateway and Peers, respectively, could be implemented
with conventional network programming interfaces (such as
sockets or TLI). In this case, a Peer could call socket,
bind, listen, andaccept to initialize a passive-mode
listener socket and the Gateway could call socket and
connect to actively initiate a data-mode connection socket.
Once the connections were established and the associated
service handler objects were initialized, the Gateway could
route data for each type of service it provided.

However, this approach has the following drawbacks:

�Limited extensibility and reuse of the Gateway and Peer
software: The type of routing service (e.g., status informa-
tion, bulk data, or commands) performed by theGateway is
essentially independent of the mechanisms used to establish
connections and initialize services. However, the hard-coded
approach described above tightly couples service initializa-
tion and service behavior. This makes it hard to reuse existing
services or to extend the Gateway by adding new routing
services and enhancing existing services.

� Lack of scalability: If there are a large number of
Peers, the synchronous connection establishment strategy
of the Gateway will not take advantage of the parallelism
inherent in the network and Peer endsystems.

� Error-prone network programming interfaces: Con-
ventional network programming interfaces (such as sockets
or TLI) do not provide adequate type-checking since they
utilize low-level I/O handles [8]. The tight coupling of the
hard-coded approach described above makes it easy to acci-
dentally misuse these interfaces and I/O handles in ways that
cannot be detected until run-time.

2.3.3 Solution

A more flexible and efficient way to design the Peers and
Gateway is to use the Acceptor and Connector patterns.
These two patterns decouple the active and passive initial-
ization roles, respectively, from the communication services
performed once services are initialized. These patterns re-
solve the following forces for communication services that
use connection-oriented transport protocols:

1. The need to avoid rewriting initialization code for each
new service: The Connector and Acceptor patterns per-
mit key characteristics of services (such as application-level
communication protocols and message formats) to evolve in-
dependently of the strategies used to initialize the services.
Application-level service characteristics often change more
frequently than initialization strategies. Therefore, this sep-
aration of concerns helps reduce software coupling and in-
creases code reuse.

2. The need to enable flexible strategies for executing
communication services concurrently: Once a connec-
tion is established and the service is initialized using the
Acceptor and Connector patterns, peer applications use the
connection to exchange data while performing the service.
However, regardless of how the service was initialized, these
services may be executed in a single-thread, in multiple
threads, or multiple processes.

3. The need to make connection establishment software
portable across platforms: Many operating systems pro-
vide network programming interfaces (such as sockets and
TLI) and communication protocols (such as TCP/IP and
IPX/SPX) whose semantics are only superficially different.
Therefore, the syntactic incompatibilities of these interfaces
make it hard to write portable programs, even though the
initialization strategies transcend these differences. It is
particularly hard to write portable asynchronous connection
establishment software since asynchrony is not supported
uniformly by standard network programming interfaces like
sockets, CORBA, or DCOM.

4. The need to actively establish connections with large
number of peers efficiently: The Connector pattern can
employ asynchrony to initiate and complete multiple con-
nections without blocking the caller. By using asynchrony,
the Connector pattern enables applications to actively estab-
lish connections with a large number of peers efficiently over
long-latency WANs.

2

5. The need to ensure that passive-mode I/O handles are
not accidentally used to read or write data: Strongly de-
coupling the initialization role of the Acceptor pattern from
the communication role of the initialized service ensures that
passive-mode listener endpoints are not accidentally used in-
correctly. Without this strong decoupling, services may mis-
takenly read or write data on passive-mode listener endpoints
(which should only be used to accept connections).

As outlined above, the Connector and Acceptor patterns
address very similar forces. For instance, forces 1, 2, and 3
above are resolved by both the Acceptor and Connector pat-
tern – only the passive and active roles are reversed. Forces
4 and 5 are only resolved by one pattern each, however, due
to the asymmetrical connection roles played by each pattern.
For example, the Connector pattern addresses an additional
force (connection scalability) by using asynchrony to actively
initialize a large number of peers efficiently. This force is not
addressed by the Acceptor since it is always the passive tar-
get of active initialization requests. Conversely, a Connector
does not wait passively for services to initialize it. Unlike
the Acceptor pattern, therefore, the Connector pattern need
not decouple the listener endpoint from the data endpoint.

The following section describes the Acceptor and Connec-
tor patterns using a modified version of the GoF pattern form
[7].

2.4 Applicability

� Use the Acceptor and Connector patterns when tasks
performed by a service can be decoupled from the steps
required to initialize the service; and

� Use the Connector pattern when an application must
establish a large number of connections with peers re-
siding across long-latency networks (such as satellite
WANs); or

� Use the Acceptor pattern when connections may arrive
concurrently from different peers, but blocking or con-
tinuous polling for incoming connections on any indi-
vidual peer is inefficient.

2.5 Structure and Participants

The structure of the participants in the Acceptor and Con-
nector patterns is illustrated by the Booch class diagram [9]
in Figure 2 and Figure 3, respectively.1 The two partic-
ipants (Reactor and Service Handler) common to
each pattern are described first, followed by participants that
are unique to the Acceptor and Connector patterns:

� Reactor: For the Acceptor pattern, theReactor demul-
tiplexes connection requests received on one or more commu-
nication endpoints to the appropriate Acceptor (described

1In these diagrams dashed clouds indicate classes; dashed boxes in the
clouds indicate template parameters; a solid undirected edge with a hollow
circle at one end indicates a uses relation between two classes.

ServiceService
 Handler Handler

peer_stream_
open()

AcceptorAcceptor

peer_acceptor_
accept()

Service HandlerService Handler

ReactorReactor

ACTIVATES

ACTIVATES

SERVICESERVICE--
DEPENDENTDEPENDENT

SERVICE-
INDEPENDENT

Figure 2: Structure of Participants in the Acceptor Pattern

ConnectorConnector

connect(sh, addr)
complete()ACTIVATES

HANDLE ASYNC

CONNECTION COMPLETION

ServiceService
HandlerHandler

peer_stream_
open()

Service HandlerService Handler

ReactorReactor

11nn

SERVICE-
DEPENDENT

SERVICE-
INDEPENDENT

Figure 3: Structure of Participants in the Connector Pattern

below). The Reactor allows multiple Acceptors to lis-
ten for connections from different peers efficiently within
a single thread of control. For the Connector pattern, the
Reactor handles the completion of connections that were
initialized asynchronously. The Reactor allows multiple
Service Handlers to have their connections initiated
and completed asynchronously by aConnector configured
within a single thread of control.

� Service Handler: This class defines a generic interface
for a service. The Service Handler contains a com-
munication endpoint (peer stream) that encapsulates an
I/O handle (also known as an “I/O descriptor”). This end-
point is initialized by the Acceptor and Connector and
is subsequently used by the Service Handler to ex-
change data with its connected peer. The Acceptor and
Connector activate a Service Handler by calling
its open hook when a connection is established. Once a
Service Handler is completely initialized (by either an
Acceptor or a Connector), it typically does not interact
with its initializer.

The following participant is unique to the Acceptor pattern:

� Acceptor: This class implements the strategy for pas-
sively initializing a Service Handler, which communi-

3

ServerServer

REGISTER HANDLERREGISTER HANDLER

START EVENT LOOPSTART EVENT LOOP

CONNECTION EVENTCONNECTION EVENT

REGISTER HANDLERREGISTER HANDLER

FOR CLIENT FOR CLIENT I/OI/O

FOREACH EVENT DOFOREACH EVENT DO

EXTRACT HANDLEEXTRACT HANDLE

INITIALIZE PASSIVEINITIALIZE PASSIVE

ENDPOINTENDPOINT

acc :acc :
AcceptorAcceptor

handle_event()

handle_close()

reactor :reactor :
ReactorReactor

select()

sh:sh:
ServiceService
HandlerHandler

handle_event()

register_handler(sh)

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

DATA EVENTDATA EVENT

CLIENT SHUTDOWNCLIENT SHUTDOWN

service()PROCESS MSGPROCESS MSG

open()

CREATECREATE,, ACCEPT ACCEPT,,
AND ACTIVATE OBJECTAND ACTIVATE OBJECT

SERVER SHUTDOWNSERVER SHUTDOWN
handle_close()

handle_events()

get_handle()

register_handler(acc)

sh = make_service_handler()
accept_service_handler (sh)
activate_service_handler (sh)

E
N

D
P

O
IN

T

IN
IT

IA
L

IZ
A

T
IO

N

P
H

A
S

E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N

P
H

A
S

E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G

P
H

A
S

E

Figure 4: CollaborationsAmong Participants in the Acceptor
Pattern

cates with the peer that actively initiated the connection.
The Reactor calls back to the Acceptor’s accept
method when a connection arrives on the passive-mode
peer acceptor endpoint. The accept method uses
this passive-mode endpoint to accept connections into the
Service Handler’s peer stream and then activate
a Service Handler by calling its open hook.

The following participant is unique to the Connector pat-
tern:

� Connector: This class connects and activates a
Service Handler. The connect method of a
Connector implements the strategy for actively initializing
a Service Handler, which communicates with the peer
that passively accepts the connection. The Connector acti-
vates a connected Service Handler by calling its open
method when initialization is complete. The complete
method finishes activating Service Handlers whose
connections were initiated and completed asynchronously. In
this case, the Reactor calls back the complete method
automatically when an asynchronous connection is estab-
lished.

2.6 Collaborations

The following section describes the collaborations be-
tween participants in the Acceptor and Connector patterns.

2.6.1 Acceptor Collaborations

Figure 4 illustrates the collaboration between participants in
the Acceptor pattern. These collaborations are divided into
three phases:

1. Endpoint initializationphase: which creates a passive-
mode endpoint that is bound to a network address (such as

ClientClient

FOREACH CONNECTIONFOREACH CONNECTION

 INITIATE CONNECTION INITIATE CONNECTION

 INSERT IN REACTOR INSERT IN REACTOR

START EVENT LOOPSTART EVENT LOOP

FOREACH EVENT DOFOREACH EVENT DO

handle_events()

select()

CONNECTION COMPLETECONNECTION COMPLETE

INSERT IN REACTORINSERT IN REACTOR

con :con :
ConnectorConnector

handle_event()

reactor :reactor :
ReactorReactor

sh:sh:
Service_HandlerService_Handler

handle_events()

register_handler(sh)

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

DATA ARRIVESDATA ARRIVES

svc()PROCESS DATAPROCESS DATA

connect(sh, addr)

ACTIVATE OBJECTACTIVATE OBJECT

register_handler(con)

C
O

N
N

E
C

T
IO

N
IN

IT
IA

T
IO

N
 P

H
A

S
E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N
P

H
A

S
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

complete()

open()

Figure 5: Collaborations Among the Connector Pattern Par-
ticipants for Asynchronous Initialization

an IP address and port number). The passive-mode endpoint
listens for connection requests from peers.

2. Service initialization phase: which activates the
Service Handler associated with the passive-mode
endpoint. When a connection arrives, the Reactor calls
back to theAcceptor’sacceptmethod. This method per-
forms the strategy for initializing a Service Handler.
The Acceptor’s strategy assembles the resources neces-
sary to (1) create a new Concrete Service Handler
object, (2) accept the connection into this object, and (3) ac-
tivate the Service Handler by calling its open hook.
The open hook of the Service Handler then performs
service-specific initialization (such as allocating locks, open-
ing log files, etc.).

3. Service processing phase: Once the connection has
been established passively and the service has been initial-
ized, service processing begins. In this phase, application-
specific tasks process the data exchanged between the
Service Handler and its connected Peer.

2.6.2 Connector Collaborations

The collaborations among participants in the Connector
pattern are divided into three phases:

1. Connection initiation phase: which actively connects
one or more Service Handlers with their peers. Con-
nections can be initiated synchronously or asynchronously.
The Connector’s connect method implements the strat-
egy for actively establishing connections.

2. Service initialization phase: which activates the
Service Handler by calling its open hook when the
connection completes successfully. The open hook of the
Service Handler then performs service-specific initial-
ization.

4

ClientClient

FOREACH CONNECTIONFOREACH CONNECTION

 INITIATE CONNECTION INITIATE CONNECTION

INSERT IN REACTORINSERT IN REACTOR

con :con :
ConnectorConnector

handle_event()

reactor :reactor :
ReactorReactor

sh:sh:
Service HandlerService Handler

register_handler(sh)

get_handle()EXTRACT HANDLEEXTRACT HANDLE

DATA ARRIVESDATA ARRIVES

svc()PROCESS DATAPROCESS DATA

connect(sh, addr)

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

C
O

N
N

E
C

T
IO

N
 I

N
IT

IA
T

IO
N

/
S

E
V

IC
E

 I
N

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E

START EVENT LOOPSTART EVENT LOOP

FOREACH EVENT DOFOREACH EVENT DO

handle_events()

select()

open()
ACTIVATE OBJECTACTIVATE OBJECT

Figure 6: Collaborations Among the Connector Pattern Par-
ticipants for Synchronous Initialization

3. Service processing phase: once the Service
Handler is activated, it performs the application-specific
service processing using the data exchanged with its con-
nected Peer.

Figure 5 illustrates these three phases of collaboration us-
ing asynchronous service initialization. Note how the con-
nection initiation phase is temporally separated from the ser-
vice initialization phase. This enables multiple connection
initiations and completions to proceed in parallel within each
thread of control.

The collaboration for synchronous service initialization is
shown in Figure 6. In this case, the Connector combines
the connection initiationand service initializationphases into
a single blocking operation. Note, however, that only one
connection is established per-thread for each invocation of
connect.

In general, synchronous service initialization is useful for
the following situations:

� If the latency for establishing a connection is very low
(e.g., establishinga connection witha server on the same
host via the loopback device); or

� If multiple threads of control are available and it is fea-
sible to use a different thread to connect each Service
Handler synchronously; or

� If the services must be initialized in a fixed order and
clients cannot perform useful work until a connection is
established.

In contrast, asynchronous service initialization is useful for
the following situations:

� If the connection latency is high and there are many
peers to connect with (e.g., establishing a large number
of connections over a high-latency WAN); or

� If only a single thread of control is available (e.g., if the
OS platform does not provide application-level threads);
or

� If the order in which services are initialized is not impor-
tant and if the client application must perform additional
work (such as refreshing a GUI) while the connection is
in the process of being established.

2.7 Consequences

2.7.1 Benefits

The Acceptor and Connector patterns provide the following
benefits:

� Enhances the reusability, portability, and extensi-
bility of connection-oriented software by decoupling
mechanisms for passively initializing services from the
tasks performed by the services. For instance, the
application-independent mechanisms in the Acceptor and
Connector are reusable components that know how to
(1) establish connections passively and (2) initialize the as-
sociated Service Handler. In contrast, the Service
Handler knows how to perform application-specific ser-
vice processing.

This separation of concerns is achieved by decoupling
the initialization strategy from the service handling strategy.
Thus, each strategy can evolve independently. The strategy
for active initialization can be written once, placed into a class
library or framework, and reused via inheritance, object com-
position, or template instantiation. Thus, the same passive
initializationcode need not be rewritten for each application.
Services, in contrast, may vary according to different appli-
cation requirements. By parameterizing the Acceptor and
Connector with a Service Handler, the impact of
this variation is localized to a single point in the software.

� Improves application robustness: Application robust-
ness is improved by strongly decoupling the Service
Handler from the Acceptor. This decoupling ensures
that the passive-mode peer acceptor cannot acciden-
tally be used to read or write data. This eliminates a common
class of errors that can arise when programming with weakly
typed network programming interfaces such as sockets or
TLI [8].

� Efficiently utilize the inherent parallelism in the net-
work and hosts: By using the asynchronous mechanisms
shown in Figure 5, the Connector pattern can actively estab-
lish connections with a large number of peers efficiently over
long-latency WANs. This is an important property since a
large distributed system may have several hundred Peers
connected to a singleGateway. One way to connect all these
Peers to the Gateway is to use the synchronous mecha-
nisms shown in Figure 6. However, the round trip delay
for a 3-way TCP connection handshake over a long-latency
WAN (such as a geosynchronous satellite or trans-atlantic
fiber cable) may take several seconds per handshake. In this
case, synchronous connection mechanisms cause unneces-
sary delays since the inherent parallelism of the network and
computers is underutilized.

5

2.7.2 Drawbacks

The Acceptor and Connector patterns have the following
drawbacks:

� Additional indirection: Both the Acceptor and Connec-
tor patterns may require additional indirectioncompared with
using the underlying network programming interfaces di-
rectly. However, languages that support parameterized types
(such as C++, Ada, or Eiffel), can often implement these pat-
terns with no significant overhead since compilers can inline
the method calls used to implement these patterns.

� Additional complexity: This pattern may add unneces-
sary complexity for simple client applications that connect
with a single server and perform a single service using a
single network programming interface.

2.8 Implementation

This section describes how to implement the Acceptor and
Connector patterns in C++. The implementation described
below is based on reusable components provided in the ACE
OO network programming toolkit [4].

Figure 7 divides participants in the Acceptor and Con-
nector patterns into the Reactive, Connection, and Appli-
cation layers.2 The Reactive and Connection layers per-
form generic, application-independentstrategies for handling
events and initializing services, respectively. The Applica-
tion layer instantiates these generic strategies by providing
concrete template classes that establish connections and per-
form service processing. This separation of concerns in-
creases the reusability, portability, and extensibility in this
implementation of the Acceptor and Connector patterns.

The implementations of the Acceptor and Connector pat-
terns are structured very similarly. The Reactive layer is
identical in both, and the roles of the Service Handler
and Concrete Service Handler are also similar.
Moreover, the Acceptor and Concrete Acceptor
play roles equivalent to the Connector and Concrete
Connector classes. The primary difference between the
two patterns is that in the Acceptor pattern these two classes
play a passive role in establishing a connection. In contrast,
in the Connector pattern they play an active role.

2.8.1 Reactive Layer

The Reactive layer is responsible for handling events that oc-
cur on endpoints of communication represented by I/O han-
dles (also known as “descriptors”). The two participants in
this layer, the Reactor and Event Handler, are reused
from the Reactor pattern [1]. This pattern encapsulates OS
event demultiplexing system calls (such as select, poll

2This diagram illustrates additional Booch notation: directed edges in-
dicate inheritance relationships between classes; a dashed directed edge
indicates template instantiation; and a solid circle illustrates a composition
relationship between two classes.

[10], and WaitForMultipleObjects [11]) with an ex-
tensible and portable callback-driven object-oriented inter-
face. The Reactor pattern enables efficient demultiplexing of
multiple types of events from multiple sources withina single
thread of control. The implementation of the Reactor pattern
is described in [1]. The two main roles in the Reactive layer
are summarized below:

� Reactor: This class defines an interface for register-
ing, removing, and dispatching Event Handler objects
(such as the Acceptor, Connector, and Service
Handler). An implementation of the Reactor interface
provides a set of application-independent mechanisms that
perform event demultiplexing and dispatching of application-
specific Event Handlers in response to events.

� Event Handler: This class specifies an interface that the
Reactor uses to dispatch callback methods defined by ob-
jects that are pre-registered to handle events. These events
signify conditions such as a new connection request, a com-
pletion of a connection request started asynchronously, or the
arrival of data from a connected peer.

2.8.2 Connection Layer

The Connection layer is responsible for (1) creating a
Service Handler, (2) passively or actively connecting
it with a peer, and (3) activating it once it is connected. Since
all behavior in this layer is completely generic, these classes
delegate to the concrete IPC mechanism and Concrete
Service Handler instantiated by the Application layer
(described below). Likewise, the Connection layer delegates
to the Reactor to handle initialization-related events (such
as establishing connections asynchronously without requir-
ingmulti-threading). The three primary roles (i.e., Service
Handler, Acceptor, and Connector) in the Connec-
tion layer are described below.

� Service Handler: This abstract class provides a generic
interface for processing services. Applications must cus-
tomize this class to perform a particular type of service.
The middle part of Figure 7 illustrates the interface of
the Service Handler. The interface of the Service
Handler is shown below:

// PEER_STREAM is the type of the
// Concrete IPC mechanism.
template <class PEER_STREAM>
class Service_Handler : public Event_Handler
{
public:
// Pure virtual method (defined by a subclass).
virtual int open (void) = 0;

// Conversion operator needed by
// Acceptor and Connector.
operator PEER_STREAM &() { return peer_stream_; }

protected:
// Concrete IPC mechanism instance.
PEER_STREAM peer_stream_;

};

6

ReactorReactor11

AcceptorAcceptor

SERVICE_HANDLERSERVICE_HANDLER

PEER_ACCEPTORPEER_ACCEPTOR

ConcreteConcrete
AcceptorAcceptor

Concrete_Service_HandlerConcrete_Service_Handler

SOCK_AcceptorSOCK_Acceptor11
ConcreteConcrete
ServiceService
HandlerHandler

SOCK StreamSOCK Streamnn
R

E
A

C
T

IV
E

R
E

A
C

T
IV

E
L

A
Y

E
R

L
A

Y
E

R
C

O
N

N
E

C
T

IO
N

C
O

N
N

E
C

T
IO

N
L

A
Y

E
R

L
A

Y
E

R
A

P
P

L
IC

A
T

IO
N

A
P

P
L

IC
A

T
IO

N
L

A
Y

E
R

L
A

Y
E

R

sh = make_service_handler();sh = make_service_handler();

accept_service_handler (sh);accept_service_handler (sh);

activate_service_handler (sh);activate_service_handler (sh);

nn

EventEvent
HandlerHandler

AA

make_service_handler()
accept_service_handler()
activate_service_handler()
open()
accept()

ConnectorConnector
connect_service_handler()
activate_service_handler()
complete()
connect(sh, addr)

SERVICE_HANDLERSERVICE_HANDLER

PEER_CONNECTORPEER_CONNECTOR

ConcreteConcrete
ConnectorConnector

Concrete_Service_HandlerConcrete_Service_Handler

SOCK_ConnectorSOCK_Connector11

AA

connect_service_handlerconnect_service_handler

 (sh, addr); (sh, addr);1:1:

activate_service_handleractivate_service_handler

 (sh); (sh);2:2:

ACTIVATES
ACTIVATES

CONNECTORCONNECTOR
ROLEROLE

ACCEPTORACCEPTOR
ROLEROLE

SERVICE HANDLERSERVICE HANDLER
ROLEROLE

ServiceService
HandlerHandler

PEER_STREAMPEER_STREAM

open() AA

Figure 7: Layering and Partitioning of Participants in the Acceptor and Connector Patterns

The open hook of a Service Handler is called by
the Acceptor or Connector once a connection is estab-
lished. The behavior of this pure virtual method must be
defined by a subclass, which typically performs any service-
specific initializations.
Service Handler subclasses can also define the ser-

vice’s concurrency strategy. For example, a Service
Handler may inherit from the Event Handler and em-
ploy the Reactor [1] pattern to process data from peers
in a single-thread of control. Conversely, a Service
Handler might use the Active Object pattern [2] to pro-
cess incoming data in a different thread of control than the
one the Acceptor object used to connect it. Section 2.9
illustrates how several different concurrency strategies can
be configured flexibly without affecting the structure or be-
havior of the Acceptor or Connector patterns.

� Connector: This abstract class implements the generic
strategy for actively initializing communication services.
The left part of Figure 7 illustrates the interface of the
Connector. The key methods and objects in the
Connector are shown below:

// The SERVICE_HANDLER is the type of service.
// The PEER_CONNECTOR is the type of concrete
// IPC active connection mechanism.
template <class SERVICE_HANDLER,

class PEER_CONNECTOR>
class Connector : public Event_Handler
{
public:

enum Connect_Mode {

SYNC, // Initiate connection synchronously.
ASYNC // Initiate connection asynchronously.

};

// Initialization method.
Connector (void);

// Actively connecting and activate a service.
int connect (SERVICE_HANDLER *sh,

const PEER_CONNECTOR::PEER_ADDR &addr,
Connect_Mode mode);

protected:
// Defines the active connection strategy.
virtual int connect_service_handler

(SERVICE_HANDLER *sh,
const PEER_CONNECTOR::PEER_ADDR &addr,
Connect_Mode mode);

// Register the SERVICE_HANDLER so that it can
// be activated when the connection completes.
int register_handler (SERVICE_HANDLER *sh,

Connect_Mode mode);

// Defines the handler’s concurrency strategy.
virtual int activate_service_handler

(SERVICE_HANDLER *sh);

// Activate a SERVICE_HANDLER whose
// non-blocking connection completed.
virtual int complete (HANDLE handle);

private:
// IPC mechanism that establishes
// connections actively.
PEER_CONNECTOR connector_;

// Collection that maps HANDLEs
// to SERVICE_HANDLER *s.

7

Map_Manager<HANDLE, SERVICE_HANDLER *>
handler_map_;

// Inherited from the Event_Handler -- will be
// called back by Eactor when events complete
// asynchronously.
virtual int handle_event (HANDLE, EVENT_TYPE);

};

// Useful "short-hand" macros used below.
#define SH SERVICE_HANDLER
#define PC PEER_CONNECTION

The Connector is parameterized by a particular type of
PEER CONNECTOR and SERVICE HANDLER. The PEER
CONNECTOR provides the transport mechanism used by
the Connector to actively establish the connection syn-
chronously or asynchronously. The SERVICE HANDLER
provides the service that processes data exchanged with its
connected peer. Parameterized types are used to decouple
the connection establishment strategy from the type of ser-
vice handler, network programming interface, and transport
layer connection acceptance protocol.

The use of parameterized types is an implementation de-
cision that helps improve portability by allowing the whole-
sale replacement of the mechanisms used by the Connec-
tor. This makes the connection establishment code portable
across platforms that contain different network programming
interfaces (such as sockets but not TLI, or vice versa). For
example, the PEER CONNECTOR template argument can
be instantiated with either a SOCK Connector or a TLI
Connector, depending on whether the platform supports
sockets or TLI.

An even more dynamic type of decoupling could be
achieved via inheritance and polymorphism by using the Fac-
tory Method and Strategy patterns described in [7]. Param-
eterized types improve run-time efficiency at the expense of
additional space and time overhead during program compil-
ing and linking.

The implementation of the Connector’s connect
method is outlined in Figure 7.3 The connect method
is public entry point for a Connector, as shown below.

template <class SH, class PC> int
Connector<SH, PC>::connect

(SERVICE_HANDLER *service_handler,
const PEER_CONNECTOR::PEER_ADDR &addr,
Connect_Mode mode)

{
connect_service_handler (service_handler,

addr, mode);
}

This method provides the external entry point into
the Connector factory. It uses the Bridge pattern4

to delegate to the Connector’s connection strategy,
connect service handler, which initiates a connec-
tion:

3To save space, most of the error handling in this paper has been omitted.
4The use of the Bridge pattern allows subclasses of Connector to

transparently modify the connectionstrategy, without changingthe interface.

ClientClient

FOREACH CONNECTIONFOREACH CONNECTION

 INITIATE CONNECTION INITIATE CONNECTION

 SYNC CONNECT SYNC CONNECT

INSERT IN REACTORINSERT IN REACTOR

con :con :
ConnectorConnector

handle_event()

: Reactor: Reactor
sh:sh:

ServiceService
HandlerHandler

register_handler(sh)

get_handle()EXTRACT HANDLEEXTRACT HANDLE

DATA ARRIVESDATA ARRIVES

service()PROCESS DATAPROCESS DATA

connect(sh, addr, SYNC)

connect()

ACTIVATE OBJECTACTIVATE OBJECT

: SOCK: SOCK
ConnectorConnector

activate_service_handler(sh)

connect_service_handler(sh, addr)

C
O

N
N

E
C

T
IO

N
 I

N
IT

IA
T

IO
N

 &
S

E
V

IC
E

 I
N

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E

START EVENT LOOPSTART EVENT LOOP

FOREACH EVENT DOFOREACH EVENT DO

handle_events()

select()

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

open()

Figure 8: Collaborations Among the Connector Participants
for Synchronous Initialization

template <class SH, class PC> int
Connector<SH, PC>::connect_service_handler

(SERVICE_HANDLER *service_handler,
const PEER_CONNECTOR::PEER_ADDR &remote_addr,
Connect_Mode mode)

{
// Delegate to concrete PEER_CONNECTOR
// to establish the connection.

if (connector_.connect (*service_handler,
remote_addr,
mode) == -1) {

if (mode == ASYNC && errno == EWOULDBLOCK)
// If the connection hasn’t completed and
// we are using non-blocking semantics then
// register ourselves with the Reactor
// Singleton so that it will callback when
// the connection is complete.
Reactor::instance ()->register_handler

(this, WRITE_MASK);

// Store the SERVICE_HANDLER in the map of
// pending connections.
handler_map_.bind

(connector_.get_handle (), service_handler);
}
else if (mode == SYNC)

// Activate if we connect synchronously.
activate_service_handler (service_handler);

}

If the value of the Connect Mode parameter is SYNC the
SERVICE HANDLER will be activated after the connection
completes synchronously, as illustrated in Figure 8.

To connect with multiple Peers efficiently, the
Connector must be able to actively establish connections
asynchronously, i.e., without blocking the caller. Asyn-
chronous behavior is specified by passing the ASYNC con-
nection mode to Connector::connect, as illustrated in
Figure 9.

Once instantiated, the PEER CONNECTOR class pro-
vides the concrete IPC mechanism for initiating connec-
tions asynchronously. The implementation of the Con-
nector pattern shown here uses asynchronous I/O mecha-
nisms provided by the operating system and communication
protocol stack (e.g., by setting sockets into non-blocking

8

ClientClient

FOREACH CONNECTIONFOREACH CONNECTION

 INITIATE CONNECTION INITIATE CONNECTION

 ASYNC CONNECT ASYNC CONNECT

 INSERT IN REACTOR INSERT IN REACTOR

START EVENT LOOPSTART EVENT LOOP

FOREACH EVENT DOFOREACH EVENT DO

handle_events()

select()

CONNECTION COMPLETECONNECTION COMPLETE

INSERT IN REACTORINSERT IN REACTOR

con :con :
ConnectorConnector

handle_event()

: Reactor: Reactor
sh:sh:

ServiceService
HandlerHandler

handle_event()

register_handler(sh)

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

DATA ARRIVESDATA ARRIVES

service()PROCESS DATAPROCESS DATA

connect(sh, addr, ASYNC)

connect()

ACTIVATE OBJECTACTIVATE OBJECT

register_handler(con)

: SOCK: SOCK
ConnectorConnector

C
O

N
N

E
C

T
IO

N
IN

IT
IA

T
IO

N
 P

H
A

S
E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N
P

H
A

S
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

H
A

S
E

activate_service_handler(sh)

connect_service_handler(sh, addr)

open()

Figure 9: Collaborations Among the Connector Participants
for Asynchronous Initialization

mode and using an event demultiplexer like select or
WaitForMultipleObjects to determine when the I/O
completes).

The Connector maintains a map of Service
Handlers whose asynchronous connections are pending
completion. Since the Connector inherits from Event
Handler, the Reactor can automatically call back to the
Connector’s handle event method when a connec-
tion completes.

The handle event method is an Adapter that trans-
forms the Reactor’s event handling interface to a call to
the Connector pattern’s completemethod, which activates
by SERVICE HANDLER by invoking its open hook. The
open hook is called when a connection is established suc-
cessfully, regardless of whether connections are established
synchronously or asynchronously. This uniformity of behav-
ior makes it possible to write services whose behavior can
be decoupled from the manner by which they are actively
connected and initialized.

The Connector’s handle event method is shown
below:

template <class SH, class PC> int
Connector<SH, PC>::handle_event (HANDLE handle,

EVENT_TYPE type)
{
// Adapt the Reactor’s event handling API to
// the Connector’s API.
complete (handle);

}

The complete method then activates a SERVICE
HANDLER whose non-blocking connection just completed
successfully:

template <class SH, class PC> int
Connector<SH, PC>::complete (HANDLE handle)
{

SERVICE_HANDLER *service_handler = 0;

// Locate the SERVICE_HANDLER corresponding
// to the HANDLE.
handler_map_.find (handle, service_handler);

// Transfer I/O handle to SERVICE_HANDLER *.
service_handler->set_handle (handle);

// Remove handle from Reactor.
Reactor::instance ()->remove_handler

(handle, WRITE_MASK);

// Remove handle from the map.
handler_map_.unbind (handle);

// Connection is complete, so activate handler.
activate_service_handler (service_handler);

}

The complete method finds and removes the connected
SERVICE HANDLER from its internal map, transfers the
I/OHANDLE to theSERVICE HANDLER, and initializes the
service by calling activate service handler. This
method delegates to the concurrency strategy designated by
the SERVICE HANDLER::open hook, as follows:

template <class SH, class PC> int
Connector<SH, PC>::activate_service_handler
(SERVICE_HANDLER *service_handler)

{
service_handler->open ();

}

� Acceptor: This abstract class implements the generic
strategy for passively initializing communication services.
The right-hand part of Figure 7 illustrates the interface of the
Acceptor. The key methods and objects in theAcceptor
are shown below:

// The SERVICE_HANDLER is the type of service.
// The PEER_ACCEPTOR is the type of concrete
// IPC passive connection mechanism.
template <class SERVICE_HANDLER,

class PEER_ACCEPTOR>
class Acceptor : public Event_Handler
{
public:
// Initialize local_addr listener endpoint
// and register with Reactor Singleton.
virtual int open

(const PEER_ACCEPTOR::PEER_ADDR &local_addr);

// Factory that creates, connects, and
// activates SERVICE_HANDLER’s.
virtual int accept (void);

protected:
// Defines the handler’s creation strategy.
virtual SERVICE_HANDLER *

make_service_handler (void);

// Defines the handler’s connection strategy.
virtual int accept_service_handler

(SERVICE_HANDLER *);

// Defines the handler’s concurrency strategy.
virtual int activate_service_handler

(SERVICE_HANDLER *);

// Demultiplexing hooks inherited from
// Event_Handler -- used by Reactor for callbacks.
virtual HANDLE get_handle (void) const;
virtual int handle_close (void);

9

// Invoked when connection requests arrive.
virtual int handle_event (HANDLE, EVENT_TYPE);

private:
// IPC mechanism that establishes
// connections passively.
PEER_ACCEPTOR peer_acceptor_;

};

// Useful "short-hand" macros used below.
#define SH SERVICE_HANDLER
#define PA PEER_ACCEPTOR

The Acceptor is parameterized by a particular type of
PEER ACCEPTOR and SERVICE HANDLER. The PEER
ACCEPTOR provides the transport mechanism used by the
Acceptor to passively establish the connection. The
SERVICE HANDLER provides the service that processes
data exchanged with its connected peer. Parameterized types
are used to decouple the connection establishment strategy
from the type of service handler, network programming in-
terface, and transport layer connection initiation protocol.

As with the Connector, the use of parameterized types
helps improve portability by allowing the wholesale replace-
ment of the mechanisms used by the Acceptor. This makes
the connection establishment code portable across platforms
that contain different network programming interfaces (such
as sockets but not TLI, or vice versa). For example, thePEER
ACCEPTOR template argument can be instantiated with ei-
ther a SOCK Acceptor or a TLI Acceptor, depending
on whether the platform supports sockets or TLI. The imple-
mentation of the Acceptor’s methods is presented below.

Applications use the open hook to initialize an
Acceptor. This method is implemented as follows:

template <class SH, class PA> int
Acceptor<SH, PA>::open
(const PEER_ACCEPTOR::PEER_ADDR &local_addr)

{
// Forward initialization to the PEER_ACCEPTOR.
peer_acceptor_.open (local_addr);

// Register with Reactor.
Reactor::instance ()->register_handler

(this, READ_MASK);
}

The open hook is passed the local addr network address
used to listen for connections. It forwards this address to the
passive connection acceptance mechanism defined by the
PEER ACCEPTOR. This mechanism initializes the listener
endpoint, which advertises its “service access point” (e.g., IP
address and port number) to clients interested in connecting
with the Acceptor. The behavior of the listener endpoint
is determined by the type of PEER ACCEPTOR instantiated
by a user. For instance, it can be a C++ wrapper for sockets
[10], TLI [6], STREAM pipes [12], Win32 Named Pipes, etc.

After the listener endpoint has been initialized, the
open method registers itself with the Reactor Singleton.
The Reactor performs a “double dispatch” back to the
Acceptor’s get handle method to obtain the underly-
ing HANDLE, as follows:

template <class SH, class PA> HANDLE
Acceptor<SH, PA>::get_handle (void)
{
return peer_acceptor_.get_handle ();

}

The Reactor stores this HANDLE internally and uses
it to detect and demultiplex incoming connection from
clients. Since the Acceptor class inherits from Event
Handler, the Reactor can automatically call back to the
Acceptor’s handle event method when a connection
arrives from a peer. This method is an Adapter that trans-
forms the Reactor’s event handling interface to a call to
the Acceptor’s accept method, as follows:

template <class SH, class PA> int
Acceptor<SH, PA>::handle_event (HANDLE,

EVENT_TYPE)
{
// Adapt the Reactor’s event handling API to
// the Acceptor’s API.
accept ();

}

As shown below, the accept method is a Template
Method [7] that implements the Acceptor pattern’s pas-
sive initialization strategy for creating a new SERVICE
HANDLER, accepting a connection into it, and activating the
service:

template <class SH, class PA> int
Acceptor<SH, PA>::accept (void)
{
// Create a new SERVICE_HANDLER.
SH *service_handler = make_service_handler ();

// Accept connection from client.
accept_service_handler (service_handler);

// Activate SERVICE_HANDLER by calling
// its open() hook.
activate_service_handler (service_handler);

}

This method is very concise since it factors all low-level
details into the concrete SERVICE HANDLER and PEER
ACCEPTOR instantiated via parameterized types. Moreover,
all of its behavior is performed by virtual functions, which
allow subclasses to extend any or all of the Acceptor’s
strategies. This flexibility makes it possible to write services
whose behavior can be decoupled from the manner by which
they are passively connected and initialized.

TheAcceptor’sdefault strategy for creatingSERVICE
HANDLERs is defined by the make service handler
method:

template <class SH, class PA> SH *
Acceptor<SH, PA>::make_service_handler (void)
{
return new SH;

}

The default behavior uses a “demand strategy,” which cre-
ates a new SERVICE HANDLER for every new connection.
However, subclasses of Acceptor can override this strat-
egy to create SERVICE HANDLERs using other strategies

10

(such as creating an individual Singleton [7] or dynamically
linking the SERVICE HANDLER from a shared library).

The SERVICE HANDLER connection acceptance strat-
egy used by the Acceptor is defined below by the
accept service handler method:

template <class SH, class PA> int
Acceptor<SH, PA>::accept_service_handler

(SH *handler)
{
peer_acceptor_->accept_ (*handler);

}

The default behavior delegates to the accept method pro-
vided by thePEER ACCEPTOR. Subclasses can override the
accept service handlermethod to perform more so-
phisticated behavior (such as authenticating the identity of
the client to determine whether to accept or reject the con-
nection).

The Acceptor’s SERVICE HANDLER concurrency
strategy is defined by the activate service handler
method:

template <class SH, class PA> int
Acceptor<SH, PA>::activate_service_handler

(SH *handler)
{
handler->open ();

}

The default behavior of this method is to activate the
SERVICE HANDLER by calling its open hook. This al-
lows the SERVICE HANDLER to select its own concur-
rency strategy. For instance, if the SERVICE HANDLER
inherits from Event Handler it can register with the
Reactor. This allows the Reactor to dispatch the
SERVICE HANDLER’s handle event method when
events occur on its PEER STREAM endpoint of commu-
nication. Subclasses can override this strategy to do more
sophisticated concurrency activations (such as making the
SERVICE HANDLER an “active object” [2] that processes
data using multi-threading or multi-processing).

When anAcceptor terminates,either due to errors or due
to the entire application shutting down, the Reactor calls
the Acceptor’s handle close method, which enables
it to release any dynamically acquired resources. In this
case, the handle close method simply closes the PEER
ACCEPTOR’s listener endpoint, as follows:

template <class SH, class PA> int
Acceptor<SH, PA>::handle_close (void)
{
return peer_acceptor_.close ();

}

2.8.3 Application Layer

The Application Layer is responsible for supplying a concrete
interprocess communication (IPC) mechanism and a concrete
Service Handler. The IPC mechanisms are encapsu-
lated in C++ classes to simplifyprogramming, enhance reuse,
and to enable wholesale replacement of IPC mechanisms. For
example, the SOCK Acceptor, SOCK Connector, and

SOCK Stream classes used in Section 2.9 are part of the
SOCK SAPC++ wrapper library for sockets [8]. SOCK SAP
encapsulates the stream-oriented semantics of connection-
oriented protocols like TCP and SPX with efficient, portable,
and type-safe C++ wrappers.

The three main roles in the Application layer are described
below.

� Concrete Service Handler: This class implements
the concrete application-specific service activated by a
Concrete Acceptor or a Concrete Connector.
A Concrete Service Handler is instantiated with
a specific type of C++ IPC wrapper that exchanges data
with its connected peer. The sample code examples in
Section 2.9 use a SOCK Stream as the underlying data
transport delivery mechanism. It is easy to vary the
data transfer mechanism, however, by parameterizing the
Concrete Service Handler with a different PEER
STREAM (such as an SVR4 TLI Stream or a Win32
Named Pipe Stream).

� Concrete Connector: This class instantiates the generic
Connector factory with concrete parameterized type argu-
ments for SERVICE HANDLER and PEER CONNECTOR.

� Concrete Acceptor: This class instantiates the generic
Acceptor factory with concrete parameterized type argu-
ments for SERVICE HANDLER and PEER ACCEPTOR.

In the sample code in Section 2.9, SOCK Connector
and SOCK Acceptor are the underlying transport pro-
gramming interfaces used to establish connections ac-
tively and passively, respectively. However, parameteriz-
ing the Connector and Acceptor with different mech-
anisms (such as a TLI Connector or Named Pipe
Acceptor) is straightforward since the IPC mechanisms
are encapsulated in C++ wrapper classes.

The following section illustrates sample code that in-
stantiates aConcrete Service Handler,Concrete
Connector, and Concrete Acceptor to implement
the Peers and Gateway described in Section 2.3. This
particular example of the Application layer customizes the
generic initializationstrategies provided by theConnector
and Acceptor components in the Connection layer. Note
how the use of templates and dynamic binding permits spe-
cific details (such as the underlying network programming
interface or the creation strategy) to change flexibly. For
instance, no Connector components must change when
the concurrency strategy is modified in Section 2.9.1 and
Section 2.9.2.

2.9 Sample Code

The sample code below illustrates how the Peers and
Gateway described in Section 2.3 use the Acceptor and
Connector patterns to simplify the task of passively initializ-
ing services. ThePeers play the passive role in establishing
connections with the Gateway, whose connections are ini-
tiated actively by using the Connector pattern. Figure 10

11

A
C

C
E

P
T

O
R

A
C

C
E

P
T

O
R

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

AcceptorAcceptor

SERVICE_HANDLERSERVICE_HANDLER

PEER_ACCEPTORPEER_ACCEPTORServiceService
HandlerHandler

PEER_STREAMPEER_STREAM

CommandCommand
AcceptorAcceptor

Command_HandlerCommand_Handler

SOCK_AcceptorSOCK_AcceptorSOCK_Stream

Command
Handler

1n

Bulk Data
Acceptor

Bulk_Data_Handler

SOCK_Acceptor

SOCK_Stream

Bulk Data
Handler

1n

Status
Acceptor

Status_Handler

SOCK_Acceptor

Status
Handler

SOCK_Stream

11nn

ACTIVATES

ACTIVATES

ACTIVATES

Figure 10: Structure of Acceptor Pattern Participants for
Peers

illustrates how participants in the Acceptor pattern are struc-
tured in a Peer and Figure 11 illustrates how participants in
the Connector pattern are structured in the Gateway.

2.9.1 Peer Components

� Service Handlers for Communicating with a Gate-
way: The classes shown below, Status Handler,
Bulk Data Handler, and Command Handler, pro-
cess routing messages sent and received from a Gateway.
Since these Concrete Service Handler classes in-
herit from Service Handler they are capable of being
passively initialized by an Acceptor.

To illustrate the flexibility of the Acceptor pattern, each
open routine in the Service Handlers can implement
a different concurrency strategy. In particular, when the
Status Handler is activated it runs in a separate thread;
the Bulk Data Handler runs as a separate process; and
the Command Handler runs in the same thread as the
Reactor that demultiplexes connection requests for the
Acceptor factories. Note how changes to these concur-
rency strategies do not affect the implementation of the
Acceptor, which is generic and thus highly flexible and
reusable.

We start by defining a Service Handler that uses
SOCK Stream for socket-based data transfer:

typedef Service_Handler <SOCK_Stream> PEER_HANDLER;

The PEER HANDLER typedef forms the basis for all the
subsequent service handlers. For instance, the Status
Handler class processes status data sent to and received
from a Gateway:

class Status_Handler : public PEER_HANDLER
{
public:
// Performs handler activation.
virtual int open (void) {

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

ReactorReactor

ConnectorConnector

SERVICE_HANDLERSERVICE_HANDLER

PEER_CONNECTORPEER_CONNECTOR

11
nn

EventEvent
HandlerHandler

Service
Handler

PEER_STREAM

Command
Connector

Command_Router

SOCK_ConnectorSOCK_Stream

Command
Router

1

n Bulk Data
Connector

Bulk_Data_Router

SOCK_Connector

Bulk Data
Router

11

nn

StatusStatus
ConnectorConnector

Status_RouterStatus_Router

SOCK_ConnectorSOCK_Connector

StatusStatus
RouterRouter

11nn

ACTIVATES

ACTIVATES

ACTIVATES

SOCK_Stream

SOCK_Stream

Figure 11: Structure of Connector Pattern Participants for the
Gateway

// Make handler run in separate thread (note
// that Thread::spawn requires a pointer to
// a static method as the thread entry point).

Thread::spawn (&Status_Handler::service_run,
this);

}

// Static entry point into thread, which blocks
// on the handle_event () call in its own thread.
static void *service_run (Status_Handler *this_) {

// This method can block since it
// runs in its own thread.
while (this_->handle_event () != -1)

continue;
}

// Receive and process status data from Gateway.
virtual int handle_event (void) {

char buf[MAX_STATUS_DATA];
stream_.recv (buf, sizeof buf);
// ...

}

// ...
};

The Bulk Data Handler and Command Handler
classes can likewise be defined as subclasses of PEER
HANDLER. For instance, The following class processes bulk
data sent to and received from the Gateway.

class Bulk_Data_Handler : public PEER_HANDLER
{
public:
// Performs handler activation.
virtual int open (void) {

// Handler runs in separate process.
if (fork () == 0) // In child process.

// This method can block since it
// runs in its own process.
while (handle_event () != -1)

12

continue;
// ...

}

// Receive and process bulk data from Gateway.
virtual int handle_event (void) {
char buf[MAX_BULK_DATA];
stream_.recv (buf, sizeof buf);
// ...

}

// ...
};

The following class processes bulk data sent to and received
from a Gateway:

class Command_Handler : public PEER_HANDLER
{
public:
// Performs handler activation.
virtual int open (void) {
// Handler runs in same thread as main
// Reactor singleton.
Reactor::instance ()->register_handler

(this, READ_MASK);
}

// Receive and process command data from Gateway.
virtual int handle_event (void) {
char buf[MAX_COMMAND_DATA];
// This method cannot block since it borrows
// the thread of control from the Reactor.
stream_.recv (buf, sizeof buf);
// ...

}

//...
};

� Acceptors for creating Peer Service Handlers: The
s acceptor, bd acceptor, and c acceptor objects
shown below are Concrete Acceptor factories that
create and activate Status Handlers, Bulk Data
Handlers, and Command Handlers, respectively.

// Accept connection requests from Gateway and
// activate Status_Handler.
Acceptor<Status_Handler, SOCK_Acceptor> s_acc;

// Accept connection requests from Gateway and
// activate Bulk_Data_Handler.
Acceptor<Bulk_Data_Handler, SOCK_Acceptor> bd_acc;

// Accept connection requests from Gateway and
// activate Command_Handler.
Acceptor<Command_Handler, SOCK_Acceptor> c_acc;

� The Peer Main function: The main program initial-
izes the concrete Acceptor factories by calling their open
hooks with the well-known ports for each service. As shown
in Section 2.8.2, the Acceptor::open method registers
itself with an instance of the Reactor. The program then
enters an event loop that uses the Reactor to detect con-
nection requests from the Gateway. When connections ar-
rive, theReactor calls back to the appropriateAcceptor,
which creates the appropriate PEER HANDLER to perform
the service, accepts the connection into the handler, and acti-
vates the handler.

: Acceptor: Acceptor

: Command: Command

ACTIVE

HANDLERS

: Service: Service
HandlerHandler

: Status: Status

: Service: Service
HandlerHandler

: Bulk Data: Bulk Data

: Service: Service
HandlerHandler

: Command: Command

: Service: Service
HandlerHandler

: Status: Status

: Acceptor: Acceptor

: Bulk Data: Bulk Data

PASSIVE

LISTENERS
: Acceptor: Acceptor

: Status: Status

:: Reactor Reactor

Figure 12: Object Diagram for the Acceptor Pattern in the
Peer

// Main program for the Peer.

int main (void)
{
// Initialize acceptors with their well-known ports.
s_acc.open (INET_Addr (STATUS_PORT));
bd_acc.open (INET_Addr (BULK_DATA_PORT));
c_acc.open (INET_Addr (COMMAND_PORT));

// Loop forever handling connection request
// events and processing data from the Gateway.

for (;;)
Reactor::instance ()->handle_events ();

}

Figure 12 illustrates the relationship between Acceptor pat-
tern objects in the Peer after four connections have been
established. While the various Handlers exchange data
with the Gateway, the Acceptors continue to listen for
new connections.

2.9.2 Gateway Components

� Service Handlers for Gateway routing: The classes
shown below, Status Router, Bulk Data Router,
and Command Router, route data they receive from
a source Peer to one or more destination Peers.
Since these Concrete Service Handler classes in-
herit from Service Handler they can be actively con-
nected and initialized by a Connector.

To illustrate the flexibility of the Connector pattern,
each open routine in a Service Handler implements
a different concurrency strategy. In particular, when the
Status Router is activated it runs in a separate thread;
the Bulk Data Router runs as a separate process; and
the Command Router runs in the same thread as the
Reactor that demultiplexes connection completion events
for the Connector factory. As with the Acceptor, note
how changes to these concurrency strategies do not affect the
implementation of the Connector, which is generic and
thus highly flexible and reusable.

We’ll start by defining a Service Handler that is spe-
cialized for socket-based data transfer:

13

typedef Service_Handler <SOCK_Stream> PEER_ROUTER;

This class forms the basis for all the subsequent routing ser-
vices. For instance, the Status Router class routes sta-
tus data from/to Peers:

class Status_Router : public PEER_ROUTER
{
public:
// Activate router in separate thread.
virtual int open (void) {
// Thread::spawn requires a pointer to a
// static method as the thread entry point).
Thread::spawn (&Status_Router::service_run,

this);
}

// Static entry point into thread, which blocks
// on the handle_event() call in its own thread.
static void *service_run (Status_Router *this_) {
// This method can block since it
// runs in its own thread.
while (this_->handle_event () != -1)
continue;

}

// Receive and route status data from/to Peers.
virtual int handle_event (void) {

char buf[MAX_STATUS_DATA];
peer_stream_.recv (buf, sizeof buf);
// Routing takes place here...

}

// ...
};

The Bulk Data Router and Command Router
classes can likewise be defined as subclasses of PEER
ROUTER. For instance, the Bulk Data Router routes
bulk data from/to Peers:

class Bulk_Data_Router : public PEER_ROUTER
{
public:
// Activates router in separate process.
virtual int open (void) {
if (fork () == 0) // In child process.
// This method can block since it
// runs in its own process.
while (handle_event () != -1)
continue;

// ...
}

// Receive and route bulk data from/to Peers.
virtual int handle_event (void) {
char buf[MAX_BULK_DATA];
peer_stream_.recv (buf, sizeof buf);
// Routing takes place here...

}

};

TheCommand Router class routes Command data from/to
Peers:

class Command_Router : public PEER_ROUTER
{
public:
// Activates router in same thread as Connector.
virtual int open (void) {
Reactor::instance ()->register_handler

(this, READ_MASK);
}

// Receive and route command data from/to Peers.
virtual int handle_event (void) {

char buf[MAX_COMMAND_DATA];
// This method cannot block since it borrows
// the thread of control from the Reactor.
peer_stream_.recv (buf, sizeof buf);
// Routing takes place here...

}
};

� A Connector for creating Peer Service Handlers: The
followingtypedef defines a Connector factory special-
ized for PEER ROUTERS:

typedef Connector<PEER_ROUTERS, SOCK_Connector>
PEER_CONNECTOR;

� The Gateway Main function: The main program for
the Gateway is shown below. The get peer addrs
function creates the Status, Bulk Data, and Command
Routers that route messages through the Gateway. This
function (whose implementation is not shown) reads a list of
Peer addresses from a configuration file. Each Peer ad-
dress consists of an IP address and a port number. Once the
Routers are initialized, the Connector factories defined
above initiate all the connections asynchronously (indicated
by passing the ASYNC flag to the connect method).

// Main program for the Gateway.

// Obtain lists of Status_Routers,
// Bulk_Data_Routers, and Command_Routers
// from a config file.

void get_peer_addrs (Set<PEER_ROUTERS> &peers);

int main (void)
{
// Connection factory for PEER_ROUTERS.
PEER_CONNECTOR peer_connector;

// A set of PEER_ROUTERs that perform
// the Gateway’s routing services.
Set<PEER_ROUTER> peers;

// Get set of Peers to connect with.
get_peer_addrs (peers);

// Iterate through all the Routers and
// initiate connections asynchronously.
PEER_ROUTER *peer;

for (Set_Iter<PEER_ROUTER> set_iter (peers);
set_iter.next (peer) != 0;
set_iter++)

peer_connector.connect (peer,
peer->address (),
PEER_CONNECTOR::ASYNC);

// Loop forever handling connection completion
// events and routing data from Peers.

for (;;)
Reactor::instance ()->handle_events ();

/* NOTREACHED */
}

All connections are invoked asynchronously. They com-
plete concurrently via Connector::complete method,
which are called back within the Reactor’s event loop.
The Reactor also demultiplexes and dispatches routing

14

ACTIVE

HANDLERS

: Status: Status : Service: Service
HandlerHandler

: Bulk Data: Bulk Data

: Service: Service
HandlerHandler

: Command: Command

: Service: Service
HandlerHandler

: Status: Status: Connector: Connector

:: Reactor Reactor

: Service: Service
HandlerHandler

: Status: Status

: Status: Status

: Service: Service
HandlerHandler

: Bulk Data: Bulk Data

PENDING

CONNECTIONS

: Service: Service
HandlerHandler

: Command: Command

: Service: Service
HandlerHandler

: Service: Service
HandlerHandler

Figure 13: Object Diagram for the Connector Pattern in the
Gateway

events for Command Router objects, which run in the
Reactor’s thread of control. The Status Routers
andBulk Data Routers execute in separate threads and
processes, respectively.

Figure 13 illustrates the relationshipbetween objects in the
Gateway after four connections have been established. Four
other connections that have not yet completed are “owned”
by the Connector. When all Peer connections are com-
pletely established, theGateway can route and forward mes-
sages sent to it by Peers.

2.10 Known Uses

The Acceptor and Connector patterns have been used in a
wide range of frameworks, toolkits, and systems:

� UNIX network superservers: such as inetd [10],
listen [6], and the Service Configurator daemon
from the ASX framework [4]. These superservers utilize a
master Acceptor process that listens for connections on a
set of communication ports. Each port is associated with a
communication-related service (such as the standard Inter-
net services ftp, telnet, daytime, and echo). The
Acceptor pattern decouples the functionality in the inetd
superserver into two separate parts: one for establishing con-
nections and another for receiving and processing requests
from peers. When a service request arrives on a monitored
port, the Acceptor process accepts the request and dispatches
an appropriate pre-registered handler to perform the service.

The listen superserver always executes services in a
separate process, the inetd superserver can be configured
to allow both single-threaded and separate processes, and
the Service Configurator supports single-threaded,
multi-threaded, and multi-process execution of services.

� CORBA ORBs: The ORB Core layer in many imple-
mentations of CORBA [13] (such as VisiBroker and Orbix)
use the Acceptor pattern to passively initialize server object
implementations when clients request ORB services.

� WWW Browsers: The HTML parsing components in
WWW browsers like Netscape and Internet Explorer use the
asynchronous form of the Connector pattern to establish con-
nections with servers associated with images embedded in
HTML pages. This behavior is particularly important so that
multiple HTTP connections can be initiated asynchronously
to avoid blocking the browsers main event loop.

� Ericsson EOS Call Center Management System: this
system uses the Acceptor and Connector patterns to allow
application-level Call Center Manager Event Servers [14] to
actively establish connections with passive Supervisors in a
distributed center management system.

�Project Spectrum: The high-speed medical image trans-
fer subsystem of project Spectrum [15] uses the Acceptor and
Connector patterns to passively establish connections and ini-
tialize application services for storing large medical images.
Once connections are established, applications then send and
receive multi-megabyte medical images to and from these
image stores.

� ACE Framework: Implementations of the Reactor,
Service Handler, Connector, and Acceptor
classes described in this paper are provided as reusable com-
ponents in the ACE object-oriented network programming
framework [4].

2.11 Related Patterns

The Acceptor and Connector patterns use the Template
Method and Factory Method patterns [7]. The Acceptor’s
accept and the Connector’s connect and complete
functions are Template Methods that implements a generic
service initialization Strategy for connecting with peers and
activating a Service Handler when the connections is
established. The use of the Template Method pattern allows
subclasses to modify the specific details of creating, con-
necting, and activating Service Handlers. The Fac-
tory Method pattern is used to decouple the creation of a
Service Handler from its subsequent use.

The Connector pattern has an intent similar to the Client-
Dispatcher-Server pattern described in [16]. They both
are concerned with separating active connection establish-
ment from the subsequent service. The primary difference
is that the Connector pattern addresses both synchronous
and asynchronous service initialization, whereas the Client-
Dispatcher-Server pattern focuses on synchronous connec-
tion establishment.

3 Concluding Remarks

This paper describes the Acceptor and Connector pat-
terns and gives a detailed example illustrating how to
use them. Implementations of the Acceptor, Con-
nector, and Reactor patterns described in this paper
are freely available via the World Wide Web at URL
www.cs.wustl.edu/˜schmidt/ACE.html. This

15

distribution contains complete source code, documentation,
and example test drivers for the C++ components developed
as part of the ACE object-oriented network programming
toolkit [4] developed at Washington University, St. Louis.
The ACE toolkit is currently being used on communication
software at many companies including Bellcore, Siemens,
DEC, Motorola, Ericsson, Kodak, and McDonnell Douglas.

Acknowledgements

Thanks to Hans Rohnert for helpful comments during the
shepherding process.

References
[1] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for

Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[2] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Pattern
Languages of Program Design (J. O. Coplien, J. Vlissides,
and N. Kerth, eds.), Reading, MA: Addison-Wesley, 1996.

[3] P. Jain and D. C. Schmidt, “Service Configurator: A Pattern for
Dynamic Configuration and Reconfiguration of Communica-
tion Services,” in The 3rd Pattern Languagesof Programming
Conference (Washington University technical report #WUCS-
97-07), September 1996.

[4] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[5] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” in Proceedings
of the 2nd Conference on Object-Oriented Technologies and
Systems, (Toronto, Canada), USENIX, June 1996.

[6] S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[8] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1st Conference on Object-
Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

[9] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[10] W. R. Stevens, UNIX Network Programming, First Edition.
Englewood Cliffs, NJ: Prentice Hall, 1990.

[11] H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[12] D. L. Presotto and D. M. Ritchie, “Interprocess Communi-
cation in the Ninth Edition UNIX System,” UNIX Research
System Papers,Tenth Edition, vol. 2, no. 8, pp. 523–530,1990.

SERVERSERVER
CLIENTCLIENT

socket()
bind() (optional)

connect()

send()/recv()

socket()
bind()
listen()
accept()

send()/recv()

2: ACTIVE

ROLE

3: SERVICE

PROCESSING
close()

close()

NETWORK

1: PASSIVE

ROLE

Figure 14: Active and Passive Initialization Roles

[13] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 2.0 ed., July 1995.

[14] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[15] G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scal-
able Bandwidth for the BJC Health System,” HIMSS, Health
Care Communications, pp. 71–81, 1994.

[16] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[17] J. Postel, “Transmission Control Protocol,” Network Informa-
tion Center RFC 793, pp. 1–85, Sept. 1981.

[18] S. J. Leffler, M. McKusick, M. Karels, and J. Quarterman, The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

[19] W. R. Stevens, TCP/IP Illustrated, Volume 1. Reading, Mas-
sachusetts: Addison Wesley, 1993.

Appendix

Connection-oriented protocols (such as TCP [17]) reliably
deliver data between services connected by two or more end-
pointsof communication. Initializing these service endpoints
involves the following two roles:

� The passive role – which initializes a service endpoint
that is listening at a particular address and waits pas-
sively for the other service endpoint(s) to connect with
it;

� The active role – which actively initiates a connection
to one or more service endpoints that are playing the
passive role.

Figure 14 illustrates how these initialization roles behave
and interact when a client actively connects to a passive server
using the socket network programming interface [18] and the

16

TCP transport protocol [19]. In this figure the server plays
the passive initialization role and the client plays the active
initialization role.5

The primary goal of the Acceptor and Connector patterns
is to decouple the passive and active initialization roles, re-
spectively, from the tasks performed once the endpoints of a
service are initialized. These patterns are motivated by the
observation that the tasks performed on messages exchanged
between endpoints of a distributed service are largely inde-
pendent of the following initialization-related issues:

� Which endpoint initiated the connection: Connection
establishment is inherently asymmetrical since the passive
endpoint waits and the active service endpoint initiates the
connection. Once the connection is established, however,
data may be transferred between endpoints in any manner
that obeys the service’s communication protocol (e.g., peer-
to-peer, request-response, oneway streaming, etc.). Figure 14
illustrates (1) the client-side and (2) server-side connection
establishment process and (3) the service processing between
two connected service endpoints that exchange messages.

� The network programming interfaces and underlying
protocols used to establish the connection: Different net-
work programming interfaces (such as sockets [10] or TLI
[6]) provide different library calls to establish connections
using various underlying communication protocols (such as
the Internet TCP/IP protocol or Novell’s IPX/SPX). Regard-
less of the mechanism used to establish a connection, how-
ever, data can be transferred between endpoints using uniform
message passing operations (e.g., UNIX send/recv calls
or Win32 ReadFile/WriteFile).

� The creation, connection, and concurrency strategies
used to initialize and execute the service: The process-
ing tasks performed by a service are often independent of
the strategies used (1) to create an instance of a service, (2)
connect the service instance to one or more peers, and (3) exe-
cute this service instance in one or more threads or processes.
By explicitly decoupling these initialization strategies from
the behavior of the service, the Connector and Acceptor pat-
terns increase the potential for reusing and extending service-
specific behavior in different environments.

5The distinction between “client” and “server” refer to communication
roles, not necessarily to initialization roles. Although clients often play the
active role when initiating connections with a passive server these initializa-
tion roles can be reversed, as shown in Section 2.3.

17

