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Abstract— Many future earth and space science missions will 
be composed of multiple spacecraft requiring autonomous ca-
pabilities for both opportunistic and coordinated science 
observations.  The Adaptive Network Architecture (ANA) is a 
software framework composed of multiple, heterogeneous 
software agents designed for real-time operation of 
constellations or formations of spacecraft.  The ANA is built 
upon mature terrestrial standards and best practices for 
software development, including CORBA Component 
middleware designed for distributed real-time embedded 
systems.  In this paper we present the further development of the 
ANA’s Science Agent to include a hierarchical computational 
architecture for reconfigurable onboard science processing.  
The architecture allows for runtime reconfiguration and/or re-
deployment of software components across a set of processors 
based on the available computational resources and changes in 
operating mode.  Application of the science data processing 
framework to the upcoming Magnetospheric Multi-Scale 
(MMS) mission is also discussed. 

I. INTRODUCTION 

Future space missions will rely on constellations of space-
craft with heterogeneous sensor/instrument suites to coopera-
tively meet their mission objectives.  However, the traditional 
stovepipe operations model cannot sustain the increased com-
plexity associated with these multi-spacecraft missions.  This 
problem can be addressed by increasing the amount of on-
board data processing and autonomy to reduce the ground 
operator’s workload.  Example tasks include sensor and com-
puting resource management and the scheduling, execution, 
and monitoring of activities.  Software agent technology pro-
vides a level of abstraction that is ideal for the distributed 
autonomy needed for spacecraft constellations. 

The Adaptive Network Architecture (ANA) is a software 
framework composed of multiple, heterogeneous software 
agents designed to run integrated Guidance Navigation & 
Control (GNC), data collection, analysis, compression, and 
data streaming operations on constellations or formations of 
spacecraft.  It provides a foundation for real-time autono-

mous responses to environmental events and ground user 
requests for managing 
• The efficient allocation of computing and sensor re-

sources 
• Instrument reconfiguration as part of either current mis-

sion needs or fault management 
• Distributed science processing and data aggregation.   

The ANA is built upon mature terrestrial standards and 
best practices for software development, including the Com-
ponent Integrated ACE ORB (CIAO) and the Deployment 
and Configuration Engine (DaNCE).  CIAO and DaNCE are 
open source implementations of Object Management Group’s 
(OMG) Lightweight Common Object Request Broker Archi-
tecture (CORBA) Component Model (CCM) [1]  and De-
ployment and Configuration (D&C) [2] specifications.  Com-
ponent-based technologies are increasingly used in large-
scale distributed real-time and embedded (DRE) systems, 
such as shipboard computing environments [3], avionics mis-
sion computing systems [4], and intelligence, surveillance 
and reconnaissance systems [5].  In these systems, applica-
tions can be viewed as workflow sequences of domain-
related tasks.  These workflow sequences are represented as 
operational strings, which are sequences of tasks (sequential 
and parallel with temporal constraints) that can be imple-
mented by software components.  Software components are 
defined units of implementation and composition that contain 
parameterized executable code with quality of service (QoS) 
requirements (such as maximum latency and minimum 
throughput values) and resource consumption profiles (such 
as expected CPU and memory usage). 

In this paper, we describe our recent work in reconfigur-
able onboard science processing within the ANA framework 
using this concept of operational strings.  Deployment and 
run-time management of the operational strings is achieved 
through the incorporation two key technologies: 
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• A computationally efficient Spreading Activation Partial 
Order Planner (SA-POP) [6] for dynamic (re)planning 
under uncertainty into the ANA’s Science Agent, and  

• A Resource Allocation Control Engine (RACE) [7] for 
allocating computational resources and enforcing QoS 
requirements. 

The remainder of the paper is organized as follows;  
Section II provides an overview of the ANA software frame-
work and it’s underlying component middleware infrastruc-
ture; Section III covers the Science Agent and the computa-
tional architecture used for onboard science processing in 
more detail; Section IV will describe the application of ANA 
in the context of managing and executing mission goals for a 
simplified representation of the upcoming Magnetospheric 
Multi-Scale (MMS) Mission; Section V compares our work 
with related research; and Section VI presents concluding 
remarks. 

II. ADAPTIVE NETWORK ARCHITECTURE OVERVIEW 

A. Overview 
The ANA is constructed using agent technology to provide 

autonomous reconfigurability of on-board resources to ensure 
improved science data returns to users.  The ANA agents are 
themselves a heterogeneous suite i.e. specific roles and re-
sponsibilities are distributed such that the various on-board 
functions of a science mission ranging from guidance, atti-
tude control, communication, and health management to data 
collection, analysis, and streaming are properly addressed.  
The intent is that although each agent type has its own tasks 
to perform, more complex processes are achieved through 
interactions and collaborations of multiple agents [8].   

The ANA, along with the underlying CCM and D&C lay-
ers, provides additional flexibility by allowing different con-
figurations of agents to be instantiated at system initialization 
or runtime, depending on the desired functionality. Figure 1 
shows a schematic of the ANA architecture, which is com-
posed of a set of heterogeneous agents that rely on several 
CORBA services for agent discovery and inter-agent com-
munication.  All agents contain a common basic level of 
functionality such as messaging, health reporting, and te-
lemetry handling.  These fundamental capabilities are pro-
vided for each specific agent through inheritance from a par-
ent ‘BaseAgent’ class.  The set of agents resident on a 
spacecraft include: 
• Executive (Exec) Agent, which is responsible for over-

all health management 
• Communication (Comm) Agent, which is responsible 

for collecting and formatting local telemetry streams and 
transmitting it to the Interface Agent 

• Gizmo Agent(s), which manage the operation and con-
trol of “negotiable” physical devices, such as the payload 
sensors. 

• Guidance Navigation & Control (GNC) Agent, which 
is responsible for spacecraft guidance, navigation, and 
attitude control along with its set of specialized Gizmo 
agents. 

• Science Agent(s), which uses a planning and scheduling 
mechanism, discussed in section III, to generate the op-
erational strings that define the sequence of tasks to be 
executed in order to meet the science goals of the mis-
sion.  The agent also has a task map, which it then uses 
to allocate the tasks in the operational strings to the 
GNC, Comm, and other Gizmo agents.   

The ground set is comprised of an Interface Agent that 
handles the telemetry processing and display and command-
ing of the space agents. 

B. ANA’s Middleware and Modeling Infrastructure 
The ANA is developed in accordance with the OMG’s 

Lightweight CCM [1]. This specification standardizes the 
development, configuration, and deployment of component-
based applications that are not tied to any particular lan-
guage, OS platform, or network. Components in Lightweight 
CCM are implemented by executors and collaborate with 
other components via the following types of ports: 
• Facets, which define an interface that accepts point-to-

point method invocations from other components. 
• Receptacles, which indicate a dependency on point-to-

point method interface provided by another component. 
• Event sources/sinks, which indicate a willingness to 

exchange typed messages with one or more components. 
The CCM implementation used for ANA is the Component 

Integrated ACE ORB (CIAO) and the Deployment and Con-
figuration Engine (DAnCE). CIAO and DAnCE are open-
source (all open-source middleware and modeling tools de-
scribed in this paper can be downloaded from 
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Fig. 1  The ANA is composed of a set of heterogeneous agents that rely on 
several CORBA services for agent discovery and interagent 

communication. 
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www.dre.vanderbilt.edu.) QoS-enabled component middle-
ware built atop The ACE ORB (TAO). TAO is a highly con-
figurable, open-source Real-time CORBA Object Request 
Broker (ORB) that implements key patterns to meet the de-
manding QoS requirements of DRE systems.  

CIAO extends TAO by abstracting key QoS concerns 
(such as priority models, thread-to-connection bindings, and 
timing properties) into elements that can be configured de-
claratively via metadata (such as standards for specifying, 
implementing, packaging, assembling, and deploying com-
ponents). Promoting these QoS concerns as metadata disen-
tangles code for controlling these non-function concerns 
from code that implements the application logic, thus making 
space system development more flexible and productive. 
DAnCE extends TAO by allowing application deployers to 
specify how existing components should be packaged, as-
sembled, and customized into reusable services. 

In addition to QoS-enabled middleware, ANA also uses 
Model-Driven Engineering (MDE) technologies that combine 
• Domain-Specific Modeling Languages (DSMLs) whose 

type systems formalize the application structure, behav-
ior, and requirements within particular domains, such as 
software defined radios, avionics mission computing, 
satellite constellations, online financial services, ware-
house management, or even the domain of middleware 
platforms. DSMLs are described using metamodels, 
which define the relationships among concepts in a do-
main and precisely specify the key semantics and con-
straints associated with these domain concepts. Develop-
ers use DSMLs to build applications using elements of 
the type system captured by metamodels and express de-
sign intent declaratively rather than imperatively. 

• Transformation engines and generators that analyze cer-
tain aspects of models and then synthesize various types 
of artifacts, such as source code, simulation inputs, XML 
deployment descriptions, or alternative model represen-
tations. The ability to synthesize artifacts from models 
helps ensure the consistency between application imple-
mentations and analysis information associated with 
functional and QoS requirements captured by models. 
This automated transformation process is often referred 
to as “correct-by-construction,” as opposed to conven-
tional handcrafted “construct-by-correction” software 
development processes that are tedious and error-prone. 

The MDE tool suite used in ANA is called Component 
Synthesis using Model Integrated Computing (CoSMIC), 
which is an integrated set of DSMLs that support the devel-
opment, deployment, configuration, and evaluation of enter-
prise DRE systems based on Real-time CCM. CoSMIC is 
implemented using the Generic Modeling Environment 
(GME), which is an open-source MDE toolkit for creating 
and using DSMLs.  

By combining CIAO, DAnCE, and CoSMIC as the infra-
structure for ANA, we tackled many integration challenges 
associated with configuring and deploying space systems by 

leveraging MDE tools to enforce correct-by-construction 
design. For example, we used CoSMIC’s model interpreters 
to generate Real-time CCM XML configuration files auto-
matically and CIAO’s DAnCE to deploy the resulting com-
ponent assemblies on space system nodes, as shown in Fig. 2. 

C. Base Agent Implementation 
The adoption of CIAO, DaNCE, and RACE provides dy-

namic re-configurability, and the new Base Agent definition 
has to be cast as a CORBA component.  While CORBA 2 
(used in the previous version of the ANA) shields applica-
tions from dependencies that arise from the use of heteroge-
neous platforms, e.g. language, operating system, and net-
work protocols, it does not handle the requirement that 
multiple interacting objects may be deployed on diverse plat-
forms for DRE systems.  The advantage this new scheme 
offers in the ANA context is the ability to assemble the 
agents and algorithms, into logical sets that can be dynami-
cally (re)deployed by DaNCE across the network of space-
craft and ground nodes based upon the resource monitoring 
results from RACE.  A more detailed discussion is presented 
in later sections of the paper. 

Integration into the CCM framework required the agent de-
scription to be based on the Component Interface Definition 
Language (CIDL) shown in Table 1.  The ‘provides’ clause 
in the Agent_Base component illustrates the use of facets, the 
‘uses’ clause in the ExecAgent component illustrates the use 
of receptacles, and the ‘publishes’ and ‘consumes’ clauses in 
the Agent_Base component illustrates the use of event 
sources/sinks.  

The Base Agent structure remains largely the same as pre-
sented in [6], but agent communication is conducted via Mes-
sages now defined as a CCM event type.  The routing, trans-
mission, and reception of these messages are handled by the 
CIAO middleware, thus shielding the developer from having 
to manage the requisite internal “plumbing”.  Further exten-
sion and specialization is provided by a distribution of func-

Fig. 2  Integrating CIAO, DAnCE, and CoSMIC. 
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tionality between the ‘Agent’ interface and the component 
‘Agent_Base’.  All derived Agent Types in the ANA now 
inherit from the component Agent_Base.  An example inheri-
tance that illustrates this well is shown in Table 2.  The Ex-
ecutive Agent encapsulated in the ExecAgent component 
provides run time connectivity to other agents local to a 
given host via the ‘uses multiple’ clause for the receipt of 
Heartbeat messages.  This connectivity is handled by the 
CIAO middleware at system initialization including the rout-
ing of messages via the TAO Real Time Event Service [9], 
much of which was previously handled directly by the 
Comm. Agent. 
 

III. ONBOARD SCIENCE PROCESSING VIA THE SCIENCE AGENT 

The Science Agent is responsible for performing the on-
board data processing required to achieve pre-defined science 
mission goals for the spacecraft.  These goals are typically 
chosen by the mission planners and scientists on the ground, 
or potentially other spacecraft when performing missions 
requiring distributed observations and measurements.  The 
goals are communicated to the Science Agent using the 
Foundation for Intelligent Physical Agents (FIPA) standard-
ized Messages [10] and Interaction Protocols [11] (e.g. Re-
quests, Informs, or Publish/Subscribe) containing an Agent 
Communication Language predefined by the Science Agent  
developers.   

The Science Agent employs the computational architecture 
shown in Fig. 3 to achieve its goals.  The architecture is com-
posed of two primary subsystems: (1) the SA-POP planner 
and scheduler that generate the operational strings directed to 
solving the specified goals, and (2) the RACE framework that 
monitors and manages runtime resource allocation to enforce 
QoS requirements. 

A. SA-POP 
To generate an operational string that achieves a given set 

of goals, e.g. study the physics of plasma reconnection and 
charged particle acceleration for the MMS mission, the SA-
POP planner, shown in Fig. 4, first generates partial order 
task sequences that achieve specified goals using a spreading 
activation mechanism [12].  Individual tasks in the generated 
sequences are then mapped to available executable software 
components, e.g. the planner may pick a data compression 
task and then select an appropriate component implementa-
tion for a chosen compression algorithm.  The planner uses a 
task network, which is a directed graph that represents both 
tasks and conditions (preconditions, data input, effects, and 
data output), to establish the preconditions required for a task 
component to execute successfully, the input data stream and 
the output that will be generated from this data stream, and 
other post condition effects resulting from their operation. 

TABLE 1: ANA BASE AGENT CIDL 
  // Assumes all messages are passed through the event channel 
  // Modified FIPA ACL message structure 
  eventtype Message 
  { 
    public PerformativeList performatives; 
     
    // AgentName of sender   
    public string sender; 
     
    // AgentName of receiver 
    public string receiver; 
     
    // AgentName of agent to reply to 
    public string reply_to; 
     
    // Time stamp of message 
 public long time_stamp;        
 
    // Content of the message. 
    public any content; 
 
    // Internal id to relate message -> conversation 
    public string conversation_id; 
  }; 
 
  // Heartbeat message is just the state and sender name 
  struct HeartBeat 
  { 
         string sender; 
        StateType CurrentState;  
      };   
 
  // Standardized agent interface 
  interface Agent 
    { 
      readonly attribute string AgentName; 
      readonly attribute AgentClasses AgentType; 
       
      attribute float HeartBeatRate; 
      
      //Request agent becomes dormant 
      boolean Doze(); 
      
      //Request agent becomes active 
      void Wakeup(); 
    }; 
   
  component Agent_Base 
    { 
      // Name of the agent. 
      attribute string AgentName; 
 
      // Type of the agent. 
      readonly attribute AgentClasses AgentType; 
 
      // Provides a facet to control the state of the agent. 
      provides Agent agent_interface; 
 
      // Publishes messages. 
      publishes Message outgoing_message; 
 
      // Subscribes messages. 
      consumes Message incoming_message; 
    }; 
 
  home BaseAgentHome manages Agent_Base{ }; 
}; 
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The output generated by a component is a function of the 
input and environmental conditions during the actual opera-
tion.  Other computational properties of the component, e.g. 
the throughput and the quality of the output, depend on the 
available computational resources.  As a result, there is un-
certainty as to whether the component will produce the de-
sired output.  This uncertainty is captured by conditional 
probabilities associated with the component definitions.  To-
gether, the task-component relations and the conditional 
probability of success of components defines the functional 
signature of the task.  Different parameterizations of a given 
component may produce different functional signatures.  
Conversely, different components that have the same func-
tional signature may vary in time to completion, resource 
usage, and QoS parameters. 

We define a task as one or more parameterized compo-
nents with a single functional signature.  The functional sig-
nature of each task is also captured in the task network.  With 
the task network whose links encode the requisite probability 
of success information, and a given set of utility values for 
goal conditions and/or data, the planner computes expected 
utility values for each task using the spreading activation 
mechanism.[12] 

To ensure applications do not violate resource constraints, 
the planner also requires knowledge of each task’s resource 
consumption and execution time, i.e. its resource signature.  
A given task may be associated with multiple parameterized 
components, each with different resource signatures.  SA-
POP and RACE therefore use a shared task map that maps 
each task to a set of parameterized components and their as-
sociated resource signatures.  The combination of functional 
and resource signatures in a task sequence defines an opera-
tional string, which specifies the tasks, a suggested imple-
mentation for each task, the control (ordering) dependencies, 
the data (producer and/or consumer) dependencies, and re-
quired start and end times for tasks, if any.  These operational 
strings are given as input to RACE for deployment and run-
time monitoring. 

B. RACE 
The Resource Allocation and Control Engine (RACE) is a 

reusable framework that separates resource allocation and 
control algorithms from the underlying middleware deploy-
ment, configuration, and control mechanisms so that different 
algorithms can reuse these common middleware mechanisms 
to (re)deploy components onto nodes and manage the node’s 
resources among competing applications.  RACE provides a 
range of resource allocation and control algorithms that use 
the middleware deployment and configuration mechanisms of 

TABLE 2: ANA EXECUTIVE  AGENT CIDL 

module ANA 
{ 
  module ExecModule 
  {    
    component ExecAgent : Agent_Base 
    { 
     uses multiple Agent local_agent; 
    }; 
       
    home ExecAgentHome manages ExecAgent 
    { 
    }; 
 
  }; 
   
}; 
 

 
Fig. 3  The computational architecture for onboard science processing 
involves the SA-POP embedded in the Science Agent, RACE, and the 

CIAO/DaNCE middleware infrastructure 

Fig. 4  SA-POP Planner. 
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the OMG D&C specification to allocate resources to opera-
tional strings and control system performance after opera-
tional strings have been deployed. 

RACE’s algorithms determine how to deploy and redeploy 
operational strings of application components at system ini-
tialization and during runtime.  Its allocation algorithms de-
termine the initial component deployment using a bin pack-
ing algorithm that maps these components to the appropriate 
target nodes based on available system resources.  For exam-
ple, an allocation algorithm could apportion CPU resources 
to components in such a way that avoids saturating these re-
sources. 

Likewise, RACE’s control algorithms adapt the execution 
of an operational string’s components at runtime in response 
to changing environmental conditions and variations in re-
source availability and/or demand.  For example, a control 
algorithm could (1) modify an application’s current operating 
mode, (2) dynamically update component implementations, 
and/or (3) redeploy all or part of an operational string’s com-
ponents to other target nodes to meet end-to-end QoS re-
quirements. 

The RACE architecture consists of the entities shown in 
Figure 5. These entities are implemented as CCM compo-
nents using CIAO and are deployed via DAnCE. The key 
entities in RACE are described below: 
• Application QoS Monitors are CCM components that 

track the performance of application components by ob-
serving QoS properties, such as throughput and latency. 
One or more Application QoS Monitors are associated 
with each type of application component. 

• The Target Manager is a CCM component defined in 
the D&C specification [2] that receives periodic resource 
utilization updates from resource monitors within a do-
main. It uses these updates to track resource usage of all 
resources within the domain. The Target Manager pro-
vides a standard interface for retrieving information per-
taining to resource consumption of each component and 
an assembly in the domain, as well as the domain's over-
all resource utilization. The Target Manager provides in-

formation on resource utilization component ports in op-
erational strings. 

• The Deployment Manager is an assembly of CCM 
components that encapsulates and coordinates one or 
more allocation and control algorithms. This manager 
deploys assemblies by allocating resources to individual 
components in an assembly. After assemblies are de-
ployed, the Deployment Manager manages the perform-
ance of (1) operational strings and (2) domain resource 
utilization. This manager ensures desired performance of 
the operational strings by performing the following ac-
tions to the components that make up the operational 
strings: (1) (re)allocating resources to the component, (2) 
modifying component parameters such as execution 
mode, and/or (3) dynamic replacing the component im-
plementations.  

IV. APPLICATION TO THE MMS MISSION 

The upcoming NASA MMS mission was chosen as an ex-
emplar application to assess the effectiveness and perform-
ance of both the onboard science processing framework and 
the ANA as a whole.  Although the mission does not cur-
rently require distributed processing or high levels of auton-
omy, the mission does have many characteristics (e.g. multi-
ple spacecraft and heterogeneous sensors, multiple operating 
modes, etc.) that the ANA was designed to address.  First, an 
overview of the MMS mission will be presented, followed by 
a description of how the onboard processing can be con-
ducted using the ANA. 

A. Mission Overview 
The goal of the MMS mission is to study the microphysics 

of three fundamental plasma processes in the Earth’s magne-
tosphere; magnetic reconnection, particle acceleration and 
turbulence [13].  MMS consists of a constellation of four 
identical spacecraft that maintain a tetrahedral formation in 
specific regions of scientific interest (ROI) within the con-
stellation’s orbit, as shown in Fig. 6.  Furthermore, each 
spacecraft has a suite of four primary payload sensor pack-
ages, i.e. FPI, FIELDS, HPCA, and EPD, which have varying 
data rate, data size, and compression requirements [14]. 

Since the plasma processes are inherently transient (espe-
cially magnetic reconnection), MMS requires reactive on-
board autonomy to enable the spacecraft to transition be-
tween three modes of operation; slow survey, fast survey, and 
burst.  Slow survey mode is entered outside the ROI’s and 
enables only a minimal set of data acquisition (primarily for 
health monitoring).  The fast survey mode is entered when 
the spacecraft are within a ROI, which enables data acquisi-
tion for all payload sensors at a moderate rate.  While in fast 
survey mode, the data from a subset of the payload sensors is 
analyzed onboard to compute a quality value indicating the 
likelihood of a transient plasma event as determined by Fig. 5  The RACE Architecture 
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changes in particle, ion, and field measurements.  This qual-
ity value is communicated to the other spacecraft in the con-
stellation via crosslinks.  A set of rules on each spacecraft 
determines when burst mode should be entered based upon a 
weighted combination of the local and remote quality values.  
Once entered, burst mode enables all payload instruments to 
acquire data at high rates (up to ~1.6 Mb/s), however this 
mode can be entered for at most 17.5 minutes per day be-
cause of onboard storage limitations [14].   

B. Science Processing using the ANA 
With the above concept of operations, we have a mission 

configuration that is well-suited to demonstrate the utility of 
the ANA.  Each MMS spacecraft has multiple payload sen-
sors interfaced to a payload processor, while the spacecraft 
bus functions are handled by a bus processor.  The agent 
components are logically packaged into two separate CCM 
assemblies as shown in Fig. 7.  The assemblies are initially 
deployed by DaNCE on the two target processors based on 
the division of functionality between the payload and bus, 
however the deployment can change at runtime based on user 
needs or resource constraints.  The payload processor assem-
bly contains the Science Agent supported by Gizmo Agents 
to provide a direct interface to the payload sensors.  In addi-
tion, the task library contains multiple data compression algo-
rithms that RACE can employ as directed by the SA-POP.  
Executive and Communication Agents are resident on both 
nodes.  The bus processor assembly contains the GNC Agent 
that provides orbital information to the Science Agent on the 
payload processor to determine the entry/exit from ROI’s.  
The Science Agent(s) on all spacecraft have mission goals 
that represent user or other Science Agent requests for the 
times and types of data to be acquired.   

Using this MMS Mission configuration, several scenarios 
have been developed to exercise the ANA.  While the follow-
ing scenarios have not been fully tested to date, individual 

subsets of the technologies have been demonstrated.  Fur-
thermore, we are progressing towards an end-to-end demon-
stration in our Distributed Systems Laboratory on multiple 
robots - developed in house - as a representative 2D simula-
tion of a spacecraft constellation.  Each robot hosts two dif-
ferent processor and operating system families representing 
the payload and bus processor.  We also provide a simulated 
ground control station with a GUI and an interface agent for 
command/telemetry processing. 

A nominal day-in-the-life scenario is to be exercised start-
ing from system initialization through autonomous exit/entry 
into Fast Survey Mode, followed by the detection of an event 
that causes a transition to Burst Mode.  RACE will continu-
ally monitor resource use and provide feedback to SA-POP.  
The SA-POP can then change the active operational strings, 
e.g. swap in a different compression algorithm, if user-
specified resource constraints are violated.  The SA-POP can 
similarly alter the data acquisition and processing parameters 
to ensure acceptable data quality is maintained.  This interac-
tion is shown in Fig. 8. 

Potential off-nominal scenarios range from (among many) 
fault conditions such as (1) a lack of local storage capacity 
leading to compressed data being transmitted for storage to 
another spacecraft in the constellation, to (2) a catastrophic 
payload processor failure leading to a redeployment of the 
payload agent assembly on the spacecraft processor with 
minimal degradation in science data returns to the users. 

V. RELATED WORK 

As component middleware becomes more pervasive, there 
has been an increase in focus on technologies, platforms, and 
tools for deploying components effectively within distributed 
systems. We compare our work on ANA, SA-POP, and 
RACE with related efforts. 

The Autonomic Deployment and Management Engine 
(ADME) [16] provides a framework for deploying and 
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Fig. 7  ANA Agents packaged as logical CCM assemblies divided between 

the Payload and Bus processors.  Simulators for the Payload sensors are 
executed on a separate processor. 

Fig. 6  An artist’s rendering of the MMS spacecraft in the tetrahedral 
formation.  Courtesy of the SWRI [15]. 
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autonomically managing application components in distrib-
uted systems. Allocating resources to application components 
in ADME is framed as a constraint solving problem, where 
domain resources are allocated to application components, 
subject to specified constraints. ADME uses a domain-
specific constraint language called ``DEclarative Language 
for Describing Autonomic Systems'' (DELDAS) to specify 
desired system performance as goals at design time. At run-
time, the ADME infrastructure deploys and manages applica-
tion components to satisfy these goals. RACE has similar 
motivations as ADME, though RACE provides a pluggable 
framework where multiple resource allocation and control 
algorithms can be (re)configured at runtime. RACE also fo-
cuses more on the (re)deployment and (re)configuration of 
QoS-enabled applications executing in DRE systems. 

Plaint [7] is a tool that uses a temporal planner to manage 
and reconfigure a software system. A plan is defined as a 
sequence of execution steps that ensures desired system perf 

ormance. Plaint generates to types of plans: (1) deploy-
ment plans that allocate resources to application components, 
and (2) reconfiguration plans that dynamically reconfigure 
systems in response to changes in their operation that may be 
attributed to factors such as external attacks that result in loss 
of critical application components. The output from various 
planning techniques can be viewed as deployment plans and 
control plans that RACE can execute to ensure desired sys-
tem performance. RACE also augments this planning ap-

proach to system reconfiguration by providing the capability 
to link and unlink various planning mechanisms at runtime to 
handle system reconfiguration more transparently. 

VI. CONCLUSION 

It is recognized that autonomy is an important feature of 
future science missions that will involve networked space, 
airborne, terrestrial, and oceanic resources.  Any real-life 
system that provides autonomy involves multiple entities that 
require collaborative interactions and intelligent behavior in 
order to meet their own specific as well as overall mission 
goals.   Although designing systems of such complexity is 
hard, agent technology and multi-agent systems show prom-
ise in helping to alleviate development issues.  The ANA 
provides many key elements needed for autonomous opera-
tions of NASA missions. 

This paper describes the design and application of the 
Spreading Activation Partial Order Planner (SA-POP) and 
the Resource Allocation and Control Engine (RACE). RACE 
manages system resource utilization and ensures QoS re-
quirements of operational strings are met even under varying 
operational contexts and/or varying resource require-
ment/availability. 

REFERENCES 
[1] Object Management Group.  Light Weight CORBA Component Model 

Revised Submission, OMG Document realtime/03-05-05 edition, May 
2003. 

[2] Object Management Group.  Deployment and Configuration Adopted 
Submission, OMG Document ptc/03-07-08 edition, July 2003. 

[3] D. C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, and L. Di-
Palma.  Towards Adaptive and Reflective Middleware for Network-
Centric Combat Systems.  CrossTalk – The Journal of Defense Soft-
ware Engineering, Nov. 2001. 

[4] D. C. Sharp and W. C. Roll.  Model-Based Integration of Reusable 
Component-Base Avionics System.  In Proc. of the Workshop on 
Model-Driven Embedded Systems in RTAS 2003.  May 2003. 

[5] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro and G. 
Duzan.  Component-Based Dynamic QoS Adaptations in Distributed 
Real-time and Embedded Systems.  In Proc. of the Intl. Symp. On Dist. 
Objects and Applications (DOA ‘04), Agia Napa, Cyprus, Oct. 2004. 

[6] N. Shankaran, J. Balasubramanian D. Schmidt, G. Biswas, P. Lardieri, 
E. Mulholland, and T.Damiano, A Framework for (Re)Deploying 
Components in Distributed Realtime and Embedded Systems, poster 
paper at the Dependable and Adaptive Distributed Systems, Track of 
the 21st ACM Symposium on Applied Computing, April 23 -27, 2006, 
Bourgogne University, Dijon, France. 

[7] N. Arshad, D. Heimbigner, and A. L. Wolf. Deployment and Dynamic 
Reconfiguration Planning For Distributed Software Systems. In Proc. 
of the 15th IEEE International Conference on Tools With Artificial In-
telligence (ICTAI 2003), Sacramento, CA, USA, Nov. 2003. 

[8] D. Suri, A. Howell.  The Adaptive Network Architecture for formations 
of heterogeneous spacecraft.  In Proc. of the Earth-Sun System Tech-
nology Conference (ESTC2005), 2005.  

[9] T. H. Harrison, D. L. Levine, D. C. Schmidt, “The Design and Per-
formance of a Real-time CORBA Event Service, Proceedings of ACM 
OOPSLA '97 conference, Atlanta, GA, October 1997. 

[10] Foundation for Intelligent Physical Agents.  FIPA ACL Message Struc-
ture Specification, 2002.  Available: 
http://www.fipa.org/specs/fipa00061/index.html.  

Fig. 8  Onboard science processing for the MMS mission using the 
computational architecture described in Section III. 



ESTC 2006 Paper A7P1 

 

[11] Foundation for Intelligent Physical Agents.  FIPA Interaction Protocol 
Specifications.  Available: http://www.fipa.org/repository/ips.php3. 

[12] S. Bagchi, G. Biswas and K. Kawamura.  Task Planning under Uncer-
tainty using a Spreading Activation Network.  IEEE Transactions on 
Systems, Man, and Cybernetics, 30(6):639-650, Nov. 2000. 

[13] The Magnetospheric Multiscale Mission - Resolving Fundamental 
Processes in Space Plasmas.  Report of the NASA Science and Tech-
nology Definition Team for the Magnetospheric Multiscale (MMS) 
Mission, December 1999.  Available: 
http://stp.gsfc.nasa.gov/missions/mms/mms_documents.htm. 

[14] Southwest Research Institute.  SMART Proposal and Concept Report, 
2003.  Available: http://mms.space.swri.edu/proposal+CSR.html 

[15] Southwest Research Institute.  MMS-SMART Homepage.  Available: 
http://mms.space.swri.edu  

[16] A. Dearle, G. N. C. Kirby, and A. J. McCarthy. A Framework for Con-
straint-Based Deployment and Autonomic Management of Distributed 
Applications. In ICAC, pages 300-301. IEEE Computer Society, 2004. 

[17] J. Kinnebrew, N. Shankaran, G. Biswas, and D. Schmidt, A Decision-
Theoretic Planner with Dynamic Component    Reconguration for Dis-
tributed Real-Time Applications,. In Proceedings of Twenty-First Na-
tional Conference on Artificial Intelligence, July 16 20, 2006, Boston, 
Massachusetts. 

 


