
Hierarchical Control of Multiple Resources in
Distributed Real-time and Embedded Systems∗

Nishanth Shankaran, Xenofon D. Koutsoukos, Chenyang Lu
Douglas C. Schmidt, and Yuan Xue Department of Computer Science and Engineering

Department of EECS Washington University, St. Louis
Vanderbilt University

Abstract

There is an increasing demand to introduce adap-
tive capabilities in distributed real-time and embedded
(DRE) systems that execute in open environments where
system operational conditions, input workload, and re-
source availability cannot be characterized accurately a
priori. To meet these needs, this paper presents the Hi-
erarchical Distributed Resource-management Architecture
(HiDRA), which provides adaptive resource management
using control-theoretic techniques that adapt to workload
fluctuations and resource availability. In contrast to adap-
tive control techniques that manage only one type of system
resource, HiDRA features a hierarchical control scheme
that manages both bandwidth and processor utilization si-
multaneously. This paper presents three contributions to
research in adaptive resource management for DRE sys-
tems. First, we describe the structure and functionality of
HiDRA. Second, we present an analytical model of HiDRA
that formalizes its control theoretic behavior and present
analytical performance guarantees. Third, we evaluate the
performance of HiDRA via experiments on a representa-
tive DRE system that performs distributed target tracking
in real-time. Our analytical and empirical results indicate
that HiDRA yields predictable, stable, and high system per-
formance, even in the face of changing workload.

1 Introduction
Distributed real-time and embedded (DRE) systems

form the core of many mission-critical domains, including
autonomous air surveillance, total ship computing environ-
ments, and supervisory control and data acquisition. Such
DRE systems execute in open environments where system
operational conditions, input workload, and resource avail-
ability cannot be characterized accurately a priori. Achiev-
ing end-to-end quality of service (QoS) is an important and
challenging issue for these types of systems due to their
unique characteristics, including (1) constraints in multi-

∗This work is supported in part by DARPA, NSF CAREER
award (CNS-0448554), Lockheed Martin ATL, BBN Technologies, and
Raytheon.

ple resources (e.g., limited computing power and network
bandwidth) and (2) highly fluctuating resource availability
and input workload.

Conventional resource management approaches, such as
rate monotonic scheduling [9], are designed to manage sys-
tem resources and providing QoS in closed environments
where operating conditions, input workloads, and resource
availability are known in advance. Since these approaches
are insufficient for open DRE systems, there is an increas-
ing need to introduce resource management mechanisms
that can adapt to dynamic changes in resource availability
and requirements. A promising solution is feedback con-
trol scheduling (FCS) [5, 1], which employs software feed-
back loops that dynamically control resource allocation in
response to changes in input workload and resource avail-
ability. These techniques enable adaptive resource manage-
ment capabilities in DRE systems that can compensate for
fluctuations in resource availability and changes in applica-
tion resource requirements at run-time. When FCS tech-
niques are designed and modeled using rigorous control-
theoretic techniques and implemented using QoS-enabled
software platforms, they can provide robust and analytically
sound QoS assurance.

Although existing FCS algorithms have been shown to
be effective in managing a single type of resource, they
have not managed multiple types of resources. It is still
an open issue, therefore, to extend individual FCS algo-
rithms to work together to manage multiple types of re-
sources in a coordinated way, such as managing com-
putational power and network bandwidth simultaneously.
To address this issue, we have developed a control-based
multi-resource management framework called Hierarchical
Distributed Resource management Architecture (HiDRA).
HiDRA employs a control-theoretic approach featuring two
types of feedback controllers that coordinate the utilization
of computational power and network bandwidth to prevent
over-utilization of system resources. This capability is im-
portant because processor overload can cause system fail-
ure and network saturation can cause congestion and severe
packet loss. Subject to the constraints of the desired utiliza-
tion, HiDRA improves system QoS by modifying appropri-
ate application parameters.

This paper provides contributions to theoretical and ex-
perimental research. Its theoretical contribution is its use
of control theory to formally prove the stability of HiDRA
and derive its equilibrium resource utilization. Its experi-
mental contribution is to evaluate how HiDRA works for a
distributed target tracking application built atop The ACE
ORB (TAO) [16], which is an implementation of Real-time
CORBA [15]. Our experimental results validate our theo-
retical claims and show that HiDRA yields predictable and
high-performance resource management and coordination
for multiple types of resources.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the architecture and QoS requirements of
our DRE system case study; Section 3 explains the struc-
ture and functionality of HiDRA; Section 4 formulates the
problem described in Section 2 and presents an analysis of
HiDRA; Section 5 empirically evaluates the adaptive be-
havior of HiDRA for our DRE system case study; Section 6
compares our research on HiDRA with related work; and
Section 7 presents concluding remarks.

2 Case Study: Target Tracking DRE System
This section describes a distributed target tracking sys-

tem that we use as a representative case study to investi-
gate adaptive management of multiple system resources in
open DRE systems. The tracking system provides emer-
gency response and surveillance capabilities to help com-
munities and relief agencies recover from major disasters,
such as floods, hurricanes, or earthquakes. Figure 1 shows
how multiple unmanned air vehicles (UAVs) fly over a pre-
designated area (known as an “area of interest”) in this dis-
tributed target tracking system.

Figure 1: Target Tracking DRE System Architecture

Each UAV serves as a data source, captures live images,
compresses them, and transmits them to a receiver over a
wireless network. The receiver serves as a data sink, re-
ceives the images sent from the UAVs, and performs object
detection. If the presence of an object of interest is detected
in the received images, the tracking system determines the
coordinates of the objects automatically and keeps track-
ing it. The coordinates of the object is reported to respon-
ders who use this information to determine the appropriate
course of action, e.g. initiate a rescue, airlift supplies, etc.
Humans, animals, cars, boats, and aircraft are typical ob-
jects of interest in our system.

The QoS of our resource-constrained DRE system is
measured as follows:

• Target-tracking precision, which is the distance be-
tween the computed center of mass of an object and
the actual center of mass of the object and

• End-to-end execution, which is the time between im-
age capture by the UAV and computation of the coordi-
nates of an object of interest. End-to-end execution in-
cludes image transmission latency and execution time
of the object detection and tracking system.

There are two primary types of resources that may con-
strain the QoS of our DRE system: (1) processors that pro-
vide computational power available at the UAVs and the re-
ceiver and (2) the wireless network bandwidth that provides
communication bandwidth between UAVs and the receiver.
To determine the coordinates accurately, the images cap-
tured by the UAVs must be transmitted at a higher quality
and a faster rate when an object is present, which in turn re-
quires higher network bandwidth consumption and higher
computing power. The utilization of the system resources
(i.e., wireless network bandwidth and computing power at
the receiver) are therefore subject to sudden changes caused
by the presence of varying numbers of objects of inter-
est. Moreover, the wireless network bandwidth available
to transmit images from the UAVs to the receiver depends
on the wireless connectivity between the UAVs and the re-
ceiver, which in-turn depends on dynamic factors, such as
the speed of the UAVs and the relative distance between
UAVs and the receiver.

The observations above motivate the need for adaptive
management of multiple resources. To meet this need, the
captured images in our system are compressed using JPEG,
which supports flexible image quality. Likewise, we choose
to use image streams rather than video because video com-
pression algorithms are computationally expensive, and the
computation power of the on-board processor on the UAVs
is limited. Moreover, emergency response and surveillance
applications and operators do not necessarily need video at
30 frames per sec.

In JPEG compression, a parameter called the quality fac-
tor is provided as a user-specified integer in the range 1 to
100. A lower quality factor results in smaller data size of
the compressed image. The quality factor of the image com-
pression algorithm can therefore be used as a control knob
to manage the bandwidth utilization of an UAV. To manage
the computational power of the receiver, end-to-end execu-
tion rate of applications are used as the control knob.

3 The Hierarchical Distributed Resource-
management Architecture – HiDRA

This section analyzes the adaptive management of mul-
tiple resources in open DRE systems using a control-
based approach and presents the Hierarchical Distributed
Resource-management Architecture (HiDRA), which em-
ploys a control-theoretic approach to manage processors

and network bandwidth simultaneously. Our control frame-
work is shown in Figure 2 and consists of three entities:
monitors, controller, and effectors. A monitor is associated

Monitors Controller Effectors Application
System

Resource
Utilization

Adaptation
Decisions

Application
Resource
Utilization

Application
Parameters

Figure 2: Control Framework

with a specific system resource and periodically updates the
controller with the current resource utilization. The con-
troller implements a particular control algorithm and com-
putes the adaptations decisions for each (or a set of) appli-
cation(s) to achieve the desired system resource utilization.
Each effector is associated with an application and modifies
the application parameters to achieve the controller recom-
mended application adaptation.

We proceed to instantiate the HiDRA control framework
to the domain of target tracking described in Section 2.
Each application in our DRE system is composed of two
subtasks: image compression and target tracking. To en-
sure end-to-end QoS, therefore, resource utilization of both
subtasks must be controlled.

Processor

Controller

Processor

Utilization

Set-point

Image

Transmission

Rate

Bandwidth

Controller
Effector JPEG Compressor

Bandwidth Utilization Monitor

Target

Tracker

Bandwidth

Allocator
Number of Targets

Processor Utilization Monitor

Bandwidth

Utilization

Set-point

 Rate &

 Utilization

 Quality

Factor & Rate
Target

Coordinates

Figure 3: HiDRA Illustration.

As shown in Figure 3, HiDRA consists of two types of
feedback control loops: (1) a processor control loop located
at the receiver that manages the processor utilization and (2)
a bandwidth control loop located at each UAV that manages
the bandwidth utilization. These loops effectively control
the utilization of two critical system resources and coordi-
nate the execution of two subtasks. We structure these con-
trol loops in an hierarchical fashion so that the processor
control loop at the receiver is viewed as the outer control
loop and the bandwidth control loop at each UAV is viewed
as the inner control loop.

The processor utilization monitor and processor con-
troller serve as the resource monitor and controller of the
processor control loop. The utilization set-point of the re-
ceiver processor is the input to the processor controller,
and is specified during system initialization. The controlled
variable for this loop is the processor utilization of the re-
ceiver, and the control input from the processor controller
to the system is the image transmission rate, which is fed
to the bandwidth controller of each UAV. For the processor
control loop, therefore, the bandwidth controller serves as
the effector.

The bandwidth utilization monitor and the bandwidth
controller serve as the monitor and controller of the band-
width control loop. The image transmission rate and band-
width utilization set-point are the inputs to the bandwidth
controller. Based on these inputs, the bandwidth controller
computes an appropriate value of the JPEG quality factor
to transmit the image of the highest quality, subjected to
the specified bandwidth limitation. The controlled variable
is the network bandwidth utilization of each UAV and the
control input from the bandwidth controller to the system is
the quality factor of the JPEG compression algorithm. This
input is fed to the implementation of the JPEG compression
algorithm, which serves as the effector for this control loop.

The bandwidth allocator is responsible for dynamically
computing the bandwidth allocation to each UAV based on
the presence/absence of objects of interest in the images re-
ceived from the corresponding UAV. The bandwidth con-
troller of each UAV views this allocation as bandwidth uti-
lization set-point. The bandwidth allocator ensures that the
bandwidth requirement of UAVs capturing images of one or
more objects of interest is met.

4 Control Design and Analysis
This section first formalizes the resource management

problem of our target tracking DRE system. We then map
HiDRA to our DRE system to show how it addresses key
resource management challenges. Finally, we present the
stability analysis and show that HiDRA ensures the stabil-
ity of our DRE system. The formalism presented below
forms the foundations for the design and implementation of
HiDRA and also provides analytical guarantees about sys-
tem performance even under fluctuating workload.

4.1 Problem Formulation
The following formal notations are used throughout the

remaining of the paper. The target tracking system consists
of n UAVs, and therefore, n end-to-end tasks {Ti|1 ≤ i ≤
n}, each with two subtasks, i.e., image compression subtask
executed at the UAVi and target-tracking subtask executed
at the receiver. The sampling period of the processor con-
troller (outer feedback loop) and the bandwidth controller
(inner feedback loop) are represented by T out

s and T in
s , re-

spectively. Each end-to-end task Ti is invoked periodically
at a rate ri(k) at the kth sampling instant of the processor
controller. The rate ri(k) is assumed to take values within
the range [rmin

i , rmax
i].

During the kth sampling instant of the processor con-
troller, images are compressed and transmitted by Ti’s data
source, UAVi, to the receiver at the rate of ri(k) im-
ages/second. The sampling periods T out

s and T in
s are se-

lected to be larger than the maximum task period. T out
s is

selected to be greater than or equal to T in
s . In our model,

kth and κth sampling period represent the kth sampling pe-
riod of the processor controller and the κth sampling pe-

riod of the bandwidth controller respectively. The processor
utilization set-point of the receiver and the wireless band-
width utilization set-point are represented as U s and Bs,
respectively. Although the net available bandwidth Bs is
assumed to be constant, the capacity of the wireless network
may change dynamically at runtime. However, the available
wireless bandwidth can be measured [17] and modeled as a
time varying reference signal. The stability of the system
can be proved even for a time varying reference signal.

4.1.1 Bandwidth Allocator
During each sampling period of the processor controller, the
task of the bandwidth allocator is to compute a desirable
bandwidth allocation for each task Ti. The wireless network
bandwidth allocation to each task Ti is recomputed by the
bandwidth allocator if the presence of an object of interest
was detected by any of the target-tracking subtasks during
the previous sampling period. For each task, bandwidth is
allocated such that the net bandwidth utilization is below
the set-point of Bs, i.e.:

n
∑

i=1

bs
i (k) ≤ Bs (1)

where bs
i (k) is the bandwidth allocation (utilization set-

point) for task Ti during the kth sampling period of the pro-
cessor controller.

Let p(k) and pi(k) represent the total number of objects
of interest tracked by the system and the number of objects
being tracked by Ti during the kth sampling period, respec-
tively. Let bmin represent the minimum bandwidth alloca-
tion to each task so that images of the lowest quality can be
transmitted to the receiver. Bandwidth is allocated to each
end-to-end task as a function of p(k) and pi(k) as follows:

bs
i (k) =

{

Bs/n if p(k) = 0

bmin + (Bs
−nbmin)pi(k)

p(k) if p(k) > 0

∀ Ti | 1 ≤ i ≤ n. (2)

If the total number of objects of interest tracked by the sys-
tem is 0, bandwidth is equally allocated to each task. If the
total number of objects of interest tracked by the system is
greater than 0, bandwidth allocation to tasks is based on the
number of objects currently being tracked by that task. This
design ensures that a greater amount of bandwidth is allo-
cated to tasks that are currently tracking objects of interest
as compared to the ones that are not.

4.1.2 Processor Utilization Controller
We use the approach in [12] to model processor utilization.
Section 4.2 uses the following model in the stability analysis
of HiDRA. The target-tracking subtask of each end-to-end
task Ti has an estimated execution time of ci known at de-
sign time. The estimated processor utilization by the target-
tracking subtask of task Ti during the kth sampling period
is denoted as Ei(k) and is computed as Ei(k) = ciri(k),

where ri(k) is the invocation rate of end-to-end task Ti dur-
ing the kth sampling period. The net estimated processor
utilization during the kth sampling period is therefore

E(k) =
n

∑

i=1

ciri(k). (3)

At runtime, however, the actual execution times may be dif-
ferent since they depend on the presence (and number) of
objects in the images. At runtime, therefore, the actual pro-
cessor utilization U(k) can be written as

U(k) = Gp(k)E(k) (4)

where Gp(k) is the processor utilization ratio. Although,
Gp(k) is unknown, it is reasonable to assume that the worst
case utilization ratio Gp = maxk{Gp(k)} is known. From
(4), the process utilization model can be written as

∆U(k + 1) = ∆U(k) + Gpvp(k) (5)

where ∆U(k) = U(k)−U s and vp(k) = E(k+1)−E(k).
The task of the feedback controller is to compute vp(k) so
that U(k) converges to U s (or ∆U(k) → 0).

We consider a linear proportional controller

vp(k) = Kp∆U(k) (6)

where Kp is a control gain which will be selected so that the
system is stable. The control signal vp(k) is implemented
by the actuators by changing the invocation rate of end-to-
end tasks. The closed-loop system is described by

∆U(k + 1) = [1 + KpGp]∆U(k) (7)

The control algorithm is implemented as follows. Dur-
ing each sampling period, the controller compares the cur-
rent processor utilization U(k) with the utilization set-point
Us, and computes the net estimated utilization E(k+1) for
the next sampling period based on the equation E(k +1) =
E(k) + Kp∆U(k). Since the presence of one or more ob-
jects of interest in the received images increases the execu-
tion time the target-tracking subtask, computational power
is allocated to target tracking subtasks based on the number
of objects of interest that are present in the received images.
We therefore have

Ei(k + 1) =

{

E(k+1)
n if p(k) = 0

E(k+1)pi(k)
p(k) if p(k) > 0

∀ Ti | 1 ≤ i ≤ n (8)

where p(k) represents the total number of objects of inter-
est captured by all the tasks in the system and pi(k) rep-
resents the number of objects of interest being captured by
Ti during the kth sampling period. If the total number of
objects of interest tracked by the system is 0, computational
power is equally allocated to each task. If the total number
of objects of interest tracked by the system is greater than
0, however, allocation of computational resource to tasks

is weighted based on the number of objects currently be-
ing tracked by that task. This design ensures that a greater
amount of computational power is allocated to tasks that
are currently tracking objects of interest as compared to the
ones that are not. From equations (3) and (8) we derive the
task execution rate, as follows:

ri(k + 1) =

{

E(k)+(Us
−U(k))/Gp

nci
if p(k) = 0

pi(k)(E(k)+(Us
−U(k))/Gp)

p(k)ci
if p(k) > 0

∀ Ti | 1 ≤ i ≤ n (9)

4.1.3 Bandwidth Utilization Controller
We present the analytical model of the bandwidth controller
for each UAV. The following notations are used in this
model:

• b(κ): Bandwidth utilization in the κth sampling pe-
riod.

• bs(k): Desired bandwidth utilization (set-point) com-
puted by the bandwidth allocator in the kth sampling
period as shown in equation (2).

• r(k): Task rate computed by the processor controller
in the kth sampling period, as shown in equation (9).

• s: Size of an uncompressed image, which is a constant
and known at design time.

• q(κ): Quality factor of image compression algorithm
(JPEG) computed by the bandwidth controller in the
κth sampling period.

• φ(q) : Estimated size of the compressed image com-
pressed with quality factor q.

The controlled variable of this feedback control loop is
the bandwidth utilization, b(κ), and the control input from
the controller to the UAV is the quality factor of the image
compression algorithm, q(κ). The controller computes an
appropriate value of q(κ) to ensure b(κ) converges to bs(k).

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

70605040302010

C
om

pr
es

si
on

 R
at

io

Quality Factor (q)

Figure 4: Linearization of φ(q)
The average size of the compressed image, φ(q), is re-

lated to the quality factor of the image compression algo-
rithm, q, by a non-linear function as shown in Figure 4. For

the purpose of our control design, however, we choose q
within the range [10, 70] where this function can be approx-
imated by a linear one. A piecewise linear function can also
be used. For 10 ≤ q ≤ 80, we have

φ(q) = sgq + ω (10)

where g is the slope and ω is the y-intersect of the linear
approximation of the function in Figure 4.

Images are compressed with a quality factor q and trans-
mitted at the rate of r(κ) images per second from the UAV
to the receiver. The following expression gives the esti-
mated bandwidth utilization by the UAV:

b(κ) = r(κ)φ(q)

= r(κ)sgq(κ) + r(κ)ω (11)

from which we get the network utilization model as

∆b(κ + 1) = ∆b(κ) + r(κ)sgvb(κ) (12)
where ∆b(κ) = b(κ)− bs(κ) and vb(κ) = q(κ+1)− q(κ).

We consider a linear controller

vb(κ) = Kb∆b(κ) (13)

where Kb is the control gain that will be selected so that the
system is stable. The closed-loop system is

∆b(κ + 1) = [1 + r(κ)sgKb]∆b(κ). (14)

During each sampling period, the controller compares
the current bandwidth utilization b(κ) with the utilization
set-point bs(κ), and computes the quality factor q(κ+1) by

q(κ + 1) = q(κ) + Kb∆b(κ). (15)

4.2 Stability Analysis

A control system is said to be stable if and only if the sys-
tem converges to an equilibrium for any set of initial con-
ditions. In our case, the initial conditions are used to repre-
sent the abrupt changes in the workload due to the change of
the images’ content. Our target tracking system is therefore
stable if resource utilization of both the system resources
(i.e., processor utilization at the receiver and the network
bandwidth utilization), converges to their respective utiliza-
tion set-points in the presence of workload changes. Al-
though the controller is designed based on a time-invariant
model (constant upper bounds on resource utilization), we
show that the system is stable even when resource utiliza-
tion changes at run time, i.e., the system is time varying.

We can stabilize each of the two types of feedback con-
trol loops by selecting the gains Kp and Kb so that the cor-
responding poles are in the unit circle. Such a design, how-
ever, does not necessarily guarantee the stability of the hier-
archical control architecture since it does not take into con-
sideration the interaction between the feedback loops (due
to the presence of r(κ) in equation (14)). Next, we present
an analysis result that allows us to select the control gains
so that the overall stability is guaranteed.

Assuming that the input buffer of the receiver is never
empty, it is clear that the processor utilization is indepen-
dent of the bandwidth utilization. If we select Kp so that
−2/Gp < Kp < 0 then

∆U(k) = [1 + KpGp(k)]k∆U(k0), k ≥ k0

and ∆U(k) → 0 since |1 + KpGp(k)| < 1.
From equation (9), it follows that in the steady state the

utilization for each task Ui(k) will be stable (it will con-
verge to a set-point U s

i that depends on the presence of ob-
jects in the image data) and we can write

∆Ui(k + 1) = αi(k)∆Ui(k) (16)

where the function αi(k) satisfies |αi(k)| < 1.
Denote rs

i the rate of the ith task at the steady state, then
ri(k) = rs

i + ∆ri(k) where ∆ri(k) → 0. From equation
(14), the bandwidth utilization model for the ith UAV is

∆bi(κ + 1) = [1 + (rs
i + ∆ri(κ))sgKi

b]∆bi(κ) (17)

Our objective is to deduce the stability properties of the
system (16-17) by studying the isolated system

∆Ui(k + 1) = αi(k)∆Ui(k) (18)

∆bi(κ + 1) = [1 + rs
i sgKi

b]∆bi(κ) (19)

where the equations have been decoupled by setting
∆ri(κ) = 0.

Theorem 1. The system (16-17) is stable if and only if the
isolated system (18-19) is stable.

Proof. Define the norm ||[x1, x2]|| = ||[x1, x2]||∞ =
max{|x1|, |x2|} and denote ∆Ui(k), ∆bi(κ) and
∆U I

i (k), ∆bI
i (κ) the solutions of (16-17) and (18-19)

respectively.
”Only-if”: If the system (16-17) is stable, then there exists
function α(κ) with α(κ) → 0 such that

||[∆Ui(κ), ∆bi(κ)]T || ≤ α(κ)||[∆Ui(κ0), ∆bi(κ0)]
T ||
(20)

∀κ ≥ κ0 and for every initial condition
[∆Ui(κ0), ∆bi(κ0)]

T where ∆Ui(κ) = ∆Ui(k), k ≤
κ < k + 1.

In particular, suppose that the initial condition is
[0, ∆bi(κ0)]

T , then by equation (20) ∀κ ≥ κ0, |∆bI
i (κ)| ≤

α(κ)|∆bI
i (κ0)|, which shows that the system (18-19) is sta-

ble.
”If”: It is easy to see that ∆Ui(k) = ∆U I

i (k) so we have
to analyze only ∆bi(κ). Define ηI(κ) = 1 + rs

i gKi
b and

η(κ, ∆ri(κ)) = 1+(rs
i +∆ri(κ))gKi

b. From the stability of
(18-19), we have that |ηI (κ)| < 1 and there exists a function
α2(κ) with 0 ≤ α2(κ) → 0 such that

∆b2
i (κ)(η2

I (κ) − 1) ≤ −α2(κ)∆b2
i (κ0)

for every ∆bi(κ0) and κ ≥ κ0. But we can write

∆b2
i (κ + 1) − ∆b2

i (κ) = ∆b2
i (κ)(η2

I (κ) − 1) +

∆b2
i (κ)(η2(κ, ∆ri(κ)) − η2

I (κ))

≤ −α2(κ)∆b2
i (κ0) + γ(κ)

where γ(κ) → since ∆ri(κ) → 0. ∆bi(κ) → 0 and the
system (16-17) is therefore stable.

Using the above theorem, we can select the control gains
so that our hierarchical control architecture is stable. For
the processor utilization feedback loop, the gain could be
selected to satisfy −2/Gp < Kp < 0 that guarantees sta-
bility [12, 14]. Similarly, for the bandwidth utilization con-
trol loop, the gain should be selected so that (19) is sta-
ble. Since rs

i is not known at design time, we can select the
gain to satisfy −2/(rmax

i) < Ki
b < 0. A reasonable choice

for selecting the control gains is to use deadbeat control [7]
based on the worst case utilization ratio and maximum task
rate respectively, i.e. Kp = −1/G and Ki

b = −1/rmax
i .

This selection tries to minimize the settling time keeping
the overshoot equal to zero. Other criteria for selection of
the gain can be found in [12].

5 Performance Results and Analysis
This section presents the testbed for our target tracking

DRE system, which was used to evaluate the performance
of HiDRA. We then describe our experiments and analyze
the results obtained to empirically evaluate the performance
of our DRE system with and without HiDRA under vary-
ing input workload. The goal is to validate our theoret-
ical claims and show that HiDRA yields predictable and
high-performance resource management and coordination
for multiple types of resources.
5.1 Hardware and Software Testbed

Our experiments were performed on the Emulab testbed
at University of Utah (www.emulab.net). The hardware
configuration consists of three nodes acting as UAVs and
one receiver node. Images from the UAVs were transmitted
to a receiver via a wireless LAN configured with a channel
capacity of 1 Mbps. The network bandwidth was chosen
to be 1 Mbps since each UAV in the DRE system required
a minimum of 350Kbps to transmit 5 images per second,
each image of size 320x240 compressed with a quality fac-
tor of 30. The hardware configuration of all the nodes was
a 3 GHz Intel Pentium IV processor, 1 GB physical mem-
ory, 802.11 a/b/g wifi interface (Atheros 5212 chipset), and
120 GB hard drive. The Redhat 9.0 operating system with
wireless support was used for all the nodes.

The following software packages were also used for our
experiments:

• Ffmpeg 0.4.9-pre1 with the Fobs-0.4.0 front-end,
which is an open-source library that decodes video en-

coded in MPEG-2, MPEG-4, Real Video, and many
other video formats to yield raw images.

• ImageMagick 6.2.5, which is an open-source software
suite that we used to compress the raw images to JPEG
image format.

• TAO 1.4.7, which is an open-source implementation
of Real-time CORBA [15] that HiDRA and our DRE
system case study are built upon.

5.2 Target Tracking DRE System Imple-
mentation

The entities in our target tracking DRE system are im-
plemented as CORBA objects and communicate over the
TAO [16] Real-time CORBA Object Request Broker to
achieve desired real-time performance. The end-to-end ap-
plication consists of pairs of CORBA objects: the UAV
data source and the receiver data sink. The UAV data
source object that executes on each UAV’s on-board pro-
cessor “pushes” the compressed images to the data sink ob-
ject via a CORBA oneway method invocation. A data sink
object at the receiver processes the images received from
the corresponding UAV. Each data sink object contains two
functional modules: one that determines the presence of one
or more objects of interest in the received images, and the
other tracks the coordinates of objects of interest in the re-
ceived image, if present. The second functional module is
executed only if the presence of one of more objects of in-
terest is detected by the first module.

To perform target tracking, received images are com-
pared with a reference image, that is given during system
initialization. The received images are converted from color
to gray-scale, and the processed image is “subtracted” from
the reference image to obtain the difference image. If the
average pixel value of the difference image is greater than
a threshold (which indicates the presence of one of more
objects of interest), the center of mass of the objected is
computed. This approach is common, e.g., [6] track the co-
ordinated of moving objects using on Kalman filter.

5.3 Experiment Configuration

Our experiments consisted of three (emulated) UAVs
containing the data source object that (1) decoded the video
from a file, (2) extracted the raw images, (3) compressed
them using JPEG compression, and (4) transmitted the com-
pressed images to the corresponding data sink object at the
receiver node. Wireless network bandwidth was shared be-
tween the three data source/data sink object pairs, and the
computational power at the receiver node was shared be-
tween the three data sink CORBA objects.

To evaluate the performance of HiDRA, we monitored
the processor utilization at the receiver, and wireless net-
work bandwidth utilization between the UAVs and the re-
ceiver. We assume that the channel capacity of the wireless

network is constant (1 Mbps). Bandwidth consumption by
each UAV is measured by the rate a which data is written
to the underlying network stack by the UAV data source
CORBA object. Processor utilization at the receiver was
measured using the data from the /proc/stat file. A
smoothing filter such as [2] can be used to suppress the dis-
turbances in the measured resource utilization.

Processor utilization at each UAV node was not mon-
itored since the computational power the UAV on-board
processor was sufficiently large to compress images of the
highest quality and resolution and transmit them to the re-
ceiver without overloading the processor. In our experi-
ments, we also measured application QoS properties such
as target-tracking precision and end-to-end execution time.
For our experiment, we chose the sampling period of the
processor controller and the bandwidth controller as 10 sec-
onds and 1 second respectively. The minimum and max-
imum image transmission rate [rmin, rmax] was 5 and 15
images/second. The control gains for the processor con-
troller (Kp) and the bandwidth controller (Kb) were -0.1
and -0.15, respectively. The processor utilization set-point
was selected to be 0.7, which is slightly lower than RMS [9]
utilization bound of 0.77. Since an IEEE 802.11 DCF-based
network has a utilization of approximately 0.7 with 20 ac-
tive nodes [3], the wireless bandwidth utilization set-point
was also selected to be 0.7.

5.4 Analysis of Empirical Results

This section presents the results obtained from running
the experiment described in Section 5.3 on our DRE system
testbed. We used system resource as a metric to evaluate the
adaptive resource management capabilities of HiDRA un-
der varying input workloads. Comparison of system perfor-
mance is decomposed into comparison of resource utiliza-
tion and application QoS. For system resource utilization,
we compare (1) wireless network bandwidth utilization and
(2) processor utilization of the receiver node. For applica-
tion QoS, we compare (1) tracking-precision and (2) mean
value of end-to-end execution time.

5.4.1 Comparison of Resource Utilization

Figures 5 and 6 compare the processor utilization at the
receiver node and wireless network bandwidth utilization
with and without HiDRA. Table 1 summarizes the num-
ber of objects of interests that were tracked as a function
of time.

Figure 5 and Table 1 show that the increase in the proces-
sor utilization at T = 200s is due to the presence of the first
object of interest. Figure 5 also shows that although the pro-
cessor utilization reached 0.8, within the next several sam-
pling periods, HiDRA restored the processor utilization to
the desired set-point of 0.7. This was achieved by reducing
the execution rates of data-source/receiver pair(s) deemed

Time (sec) Number of Objects
0 - 200 0

200 - 600 1
600 - 900 2

900 - 1,100 1
1,100 - 1,600 0
1,600 - 1,900 1
1,900 - 2,000 0

Table 1: Objects of Interest as a Function of Time

less important, i.e., ones that captured images where ob-
jects of interest were absent. Figure 5 shows that when the
system was operated without HiDRA the processor utiliza-
tion remained at 0.9, which is significantly higher than the
utilization set-point of 0.7.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

16001200800400

U
til

iz
at

io
n

Time (sec)

Without HiDRA

With HiDRA

Figure 5: Comparison of Processor Utilization

At T = 600s, the presence of the second object of inter-
est was detected. As a results, the processor utilization in-
creased to 0.89 with HiDRA, and the receiver node crashed
when the system was operated without HiDRA, which is
represented as a utilization of 1.0 for remaining duration
of the experiment. When the system was operated without
HiDRA, although the receiver crashed at T = 600s, the
sender continues to send images at a constant rate. This ac-
counts for the network bandwidth utilization shown in Fig-
ure 6. Within several sampling periods, HiDRA once again
restored the system utilization to the desired utilization set-
point.

At T = 900s when the total number of objects currently
being tracked reduced from 2 to 1, processor utilization re-
duced to 0.55. HiDRA restored the processor utilization
of 0.7 by increasing the execution rate of important data-
source/data sink pair(s). Similarly, HiDRA ensured that the
processor utilization converges to the desired set-point for
the reaming duration of the experiment.

The results of these experiments show how HiDRA en-
sures that the processor utilization of the receiver node con-
verges to the desired set-point within bounded time, even
under fluctuating workloads. Similarly, from Figure 6 it can
be seen that HiDRA ensures that the wireless bandwidth
utilization converges to the desired set-point of 0.7 within
bounded time, even under fluctuating workloads. We there-
fore conclude that HiDRA ensures utilization of system re-

 0

 0.2

 0.4

 0.6

 0.8

 1

16001200800400

U
til

iz
at

io
n

Time (sec)

Without HiDRA

With HiDRA

Figure 6: Comparison of Bandwidth Utilization

sources is maintained within the specified bounds, thereby
ensuring system stability.

5.4.2 Comparison of QoS
We now compare the application QoS – (1) target-tracking
precision, and (2) average end-to-end execution time.

Target-tracking precision is defined as the inverse of
target-tracking error, which is the distance between the
computed center of mass of an object and the actual cen-
ter of mass of the object. To compute the actual center of
mass of the object, we identified an object present in the
video as the object of interest, performed target-tracking on
the raw images extracted from the video, and used this value
as a reference. At the data sink object, the target-tracking
results were then compared with this reference value.

Figure 7 compares the target-tracking error that were
obtained when the system was operated with and without
HiDRA. As described in Section 5.4.1, the system crashed
when operated without HiDRA when the presence of the
second object of interest was detected. We therefore use the
target-tracking error that was obtained in tracking the first
object of interest as the baseline for our comparison. Fig-
ures 7a, 7b, and 7c show that average target-tracking error
is lower when the system was operated with HiDRA com-
pared to when operated without HiDRA. HiDRA therefore
improves the target-tracking precision of our DRE system.

Average end-to-end execution time consists of (1) net-
work transmission latency and (2) processing time at the
receiver node. Table 2 compares the end-to-end execu-
tion time when the system was operated with and without
HiDRA. Since the system crashed when the number of ob-

Number of Objects End-to-End Execution Time (msec)
With HiDRA Without HiDRA

0 10 10
1 40 50
2 80 ∞

Table 2: Comparison of End-to-End Execution Time
jects being tracked increased to 2, we represent the end-to-
end execution time as ∞. Table 2 shows that end-to-end
execution time is much lower when the system is operated
with HiDRA than when it operates without HiDRA.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700

E
rr

or
 (

pi
xe

l)

Image

Without HiDRAWith HiDRA

(a) UAV-1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 200 400 600 800 1000 1200 1400

E
rr

or
 (

pi
xe

l)

Image

Without HiDRAWith HiDRA

(b) UAV-2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
rr

or
 (

pi
xe

l)

Image

Without HiDRAWith HiDRA

(c) UAV-3

Figure 7: Target-tracking Precision

HiDRA responds to fluctuation in resource requirements
by constant monitoring of resource utilization. Figures 5
and 6 show that when resources utilization increases above
the desired set-point, HiDRA lowers the utilization by mod-
ifying application parameters such as execution rates and
JPEG quality factor. These adaptations ensures that (1) sys-
tem resources are not over-utilized and (2) enough resources
are available for important applications. Figure 7 and Ta-
ble 2 show that the system QoS is significantly higher when
the system is operated with HiDRA compared to when it
operates without HiDRA.

Our conclusions from analyzing the results described
above are that applying hierarchical adaptive resource man-
agement to our target tracking system helps to (1) main-
tain system resource utilization within specified bounds and
(2) improve system QoS. These improvements are achieved
largely due to monitoring of system resource utilization,
adaptive resource provisioning, and efficient system work-
load management by means of HiDRA’s resource monitors,
hierarchical controllers, and effectors respectively.

6 Related Work
A number of control-theoretic approaches have been ap-

plied to DRE systems to overcome limitations with tradi-
tional scheduling approaches that are not suited to handle
dynamic changes in resource availability and result in a
rigidly scheduled system that adapts poorly to change. A
survey of these techniques is presented in [1].

Feedback control scheduling (FCS) [12] is designed to
address the challenges of applications with stringent end-
to-end QoS executing in open DRE systems. These al-
gorithms provide robust and analytical performance assur-
ances despite uncertainties in resource availability and/-
or demand. FC-U and FC-M [13] and HySUCON [8] to
manage the processor utilization. CAMRIT [18] applies
control-theoretic approaches to ensure transmission dead-
lines of images over an unpredictable network link and also
presents analytic performance assurance that the transmis-
sion deadlines are met.

A hierarchical control scheme that integrates resource

reservation mechanisms [5, 11] with application specific
QoS adaptation [4] is proposed in [14]. This control scheme
features a two-tier hierarchical structure: (1) a global QoS
manager that is responsible for allocating computational
resources to various applications in the system and (2)
application-specific QoS managers/adapters that modify ap-
plication execution to use the allocated resources efficiently
and improves application QoS.

Although these approaches are similar to HiDRA, these
algorithms/mechanisms perform resource management of
only one type of system resource, i.e., either computing
power or network bandwidth. HiDRA performs resource
management of both network and computing resources,
which is crucial for real-world DRE systems.

One approach to manage both computing power and net-
work bandwidth might use either the hierarchical control
structure proposed in [14], FC-U/FC-M, or HySUCON to
manage the processor utilization, and use CAMRIT to man-
age the network bandwidth utilization. Unfortunately, this
approach does not take into consideration the coupling be-
tween the two types of system resources and does not nec-
essarily guarantee system stability.

The work of [10] utilizes task control model and fuzzy
control model to enhance the QoS adaptation decision of
multimedia DRE systems. However, the control framework
established in this work is still confined to single type of re-
source, (i.e.), transmission rate in a distributed visual track-
ing system.

As described in Section 3, HiDRA uses hierarchical con-
trol feedback loops – the processor utilization feedback loop
and bandwidth utilization loop – to manage the utilization
of system resources, which can be extended to handle more
types of resources and end-to-end applications without sig-
nificant modifications to the existing architecture. More-
over, HiDRA’s feedback loops are designed so that the
adaptation decisions made by one does not conflict with the
decisions made by the other. As shown in Section 4.2, this
design results in a hierarchical control architecture that en-
sures system stability.

7 Concluding Remarks
This paper described HiDRA, which is a hierarchi-

cal distributed resource management architecture based on
control-theoretic techniques that provides adaptive resource
management, such as resource monitoring and application
adaptation, that are key to supporting open DRE systems.
We first presented the stability analysis of the system to
obtain theoretical guarantees that HiDRA ensures system
stability of our DRE system. We then evaluated the per-
formance of HiDRA using a representative target tracking
DRE system implemented using Real-time CORBA and
composed of two types of system resources (computational
power at the receiver and wireless network bandwidth) and
three applications (UAV data sender/receiver pairs). Our
theoretical analysis and empirical results show that HiDRA
ensures efficient resource utilization by maintaining the re-
source utilization of system resources within the speci-
fied utilization bounds even under fluctuating work loads,
thereby ensuring system stability and delivering effective
QoS.

The lessons learned by applying HiDRA to our target
tracking system thus far include:

• HiDRA’s Control-theoretic approaches yielded in an
adaptive resource management architecture that can
gracefully handle fluctuations in resource availability
and/or demand for open DRE systems.

• The formalism of a resource management framework
forms the foundation for the design and implementa-
tion of a resource management framework based on
control-theoretic principles. Moreover, using the for-
malism, stability analysis of the system can be per-
formed to obtain theoretical guarantees about system
performance.

• Developing applications that have various parameters
that can be fine-tuned to modify the application opera-
tion and utilization of system resources aid in achiev-
ing higher QoS of applications. This also enables in
maintaining the system resource utilization within the
desired bounds.

References

[1] T. F. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu.
Feedback Performance Control in Software Services. IEEE:
Control Systems, 23(3), June 2003.

[2] M. Amirijoo, J. Hansson, S. Gunnarsson, and S. H. Son. En-
hancing Feedback Control Scheduling Performance by On-
line Quantification and Suppression of Measurement Distur-
bance. In RTAS ’05: Proceedings of the 11th IEEE Real
Time on Embedded Technology and Applications Sympo-
sium, pages 2–11, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[3] G. Bianchi. Performance Analysis of the IEEE 802.11 Dis-
tributed Coordination Function. IEEE Journal on Selected
Areas in Communications, 18(1-2):535–547, Mar 2000.

[4] S. Brandt, G. Nutt, T. Berk, and J. Mankovich. A Dynamic
Quality of Service Middleware Agent for Mediating Appli-
cation Resource Usage. In RTSS ’98: Proceedings of the
IEEE Real-Time Systems Symposium, page 307, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

[5] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, and
L. Abeni. Adaptive Reservations in a Linux Environment.
In IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, pages 238–245, 2004.

[6] F. Dellaert and C. Thorpe. Robust Car Tracking Using
Kalman Filtering and Bayesian Templates. In Conference
on Intelligent Transportation Systems, 1997.

[7] G. F. Franklin, J. D. Powell, and M. Workman. Digital
Control of Dynamic Systems, 3rd edition. Addition-Wesley,
1997.

[8] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu. Hy-
brid Supervisory Control of Real-time Systems. In 11th
IEEE Real-time and Embedded Technology and Applica-
tions Symposium, San Francisco, California, Mar. 2005.

[9] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior. In Proceedings of the 10th IEEE Real-time
Systems Symposium (RTSS 1989), pages 166–171. IEEE
Computer Society Press, 1989.

[10] B. Li and K. Nahrstedt. A Control-based Middleware
Framework for QoS Adaptations. IEEE Journal on Selected
Areas in Communications, 17(9):1632–1650, Sept. 1999.

[11] G. Lipari, G. Lamastra, and L. Abeni. Task Synchroniza-
tion in Reservation-Based Real-Time Systems. IEEE Trans.
Computers, 53(12):1591–1601, 2004.

[12] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback
Control Real-Time Scheduling: Framework, Modeling, and
Algorithms. Real-Time Syst., 23(1-2):85–126, 2002.

[13] C. Lu, X. Wang, and C. Gill. Feedback Control Real-
time Scheduling in ORB Middleware. In Proceedings of
the 9th IEEE Real-time and Embedded Technology and Ap-
plications Symposium (RTAS), Washington, DC, May 2003.
IEEE.

[14] Luca Abeni and Giorgio Buttazzo. Hierarchical QoS Man-
agement for Time Sensitive Applications. In RTAS ’01: Pro-
ceedings of the Seventh Real-Time Technology and Appli-
cations Symposium (RTAS ’01), page 63, Washington, DC,
USA, 2001. IEEE Computer Society.

[15] Object Management Group. Real-time CORBA Specifica-
tion, OMG Document formal/02-08-02 edition, Aug. 2002.

[16] D. C. Schmidt, D. L. Levine, and S. Mungee. The De-
sign and Performance of Real-time Object Request Brokers.
Computer Communications, 21(4):294–324, Apr. 1998.

[17] S. H. Shah, K. Chen, and K. Nahrstedt. Dynamic Band-
width Management for Single-hop Ad Hoc Wireless Net-
works. Mob. Netw. Appl., 10(1-2):199–217, 2005.

[18] X. Wang, H.-M. Huang, V. Subramonian, C. Lu, and C. Gill.
CAMRIT: Control-based Adaptive Middleware for Real-
time Image Transmission. In Proc. of the 10th IEEE Real-
time and Embedded Tech. and Applications Symp. (RTAS),
Toronto, Canada, May 2004.

