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Abstract

Emerging distributed real-time and embedded (DRE)
systems, such as automotive infotainment, industrial au-
tomation, and medical imaging, are increasingly complex.
Without effective tool support to check the correctness of
the models, this complexity makes it infeasible to model dif-
ferent aspects, such as various deployments and configu-
rations of hardware and software components for specific
products. One way to ensure model correctness is to define
constraints using OCL or other languages. Even with these
constraint languages, however, it is still hard to create cor-
rect models manually due to the combinatorial nature of the
constraints and their interdependence.

This paper provides two contributions to work on im-
proving model correctness in domains where either model
size or constraint combinatorial complexity limits manual
approaches. First, we present our approach of Automatic
Role-based Constraint Solving (ARCS) and show how the
application of declarative constraint programming tech-
niques can ensure model correctness, as well as automat-
ically suggest (deduce) correct modeling steps. Second, we
show how model-driven engineering tools can help guide
modelers towards correct solutions based on the defined
constraints. The results of applying our declarative con-
straint programming techniques to a case study of a de-
ployment problem in the automotive domain show that this
approach can dramatically reduce complexity and improve
productivity when modeling DRE systems.

1 Introduction

There are many application domains where the con-
straints are so restrictive and the solution spaces so large
that it is extremely hard for modelers to produce correct
solutions manually. Graphical modeling languages such
as UML can help to visualize certain aspects of the sys-
tem under development and automate particular develop-
ment steps using code-generation. Domain-Specific Mod-
eling Languages (DSMLs) are another graphical modeling
approach that combine high-level visual abstractions that

are specific to a domain with constraint checking and code-
generation to simplify the development of a large class of
systems [20]. In these complex domains, however, any type
of graphical modeling tool that merely provides solution-
correctness checking via constraints provides few benefits
compared with handcrafted techniques.

Regardless of the modeling language and notation used,
the key challenge in complex domains is their combinato-
rial nature, not code construction. For example, specifying
the deployment of only a few tens of model entities that map
software components to Electronic Control Units (ECUs) in
an automobile can easily generate solution spaces with mil-
lions or more possible deployments but few correct ones
due to the complexity of configuration and resource con-
straints. For these combinatorially-complex modeling prob-
lems, it is impractical to create a complete and valid model
manually. As the number of model elements grows to hun-
dreds or thousands, the scalability challenges of large and
globally constrained domains clearly become intractable to
handle manually.

In general, respecting configuration and resource con-
straints implies constraint checking and associated revisions
to handle any invalid component→ECU assignments. Ap-
plying constraint checking alone, however, is often insuffi-
cient. For instance, constraint checking might reveal that a
component cannot be assigned to any ECU due to the lack
of remaining CPU capacity on each ECU. Unfortunately,
this information does not provide modelers with insights as
to whether redoing several previous assignment might lead
to a valid assignment of all currently considered ECUs, i.e.,
there is no indication on where to reassign the mapping.

To address the challenges of modeling combinatorially
complex domains, techniques and tools are needed to sim-
plify the combination of graphical modeling environments
with declarative constraint programming techniques that
can automatically leverage constraint solvers to guide users’
modeling steps and assist them in producing correct mod-
els. This combined approach should respect the domain-
specificity of the modeling tool and provide a flexible mech-
anism for specifying solvers using domain-specific nota-
tions.



This paper describes an approach called automatic role-
based constraint solvers that provides the following three
contributions to address scalability problems arising when
modeling complex application domains: (1) how to com-
bine automatic constraint solving with domain-specific
modeling to offer automated guidance to modelers and ap-
ply constraint-aware batch solving processes to automati-
cally complete models of large systems, (2) how modelers
can specify repair operations that can be leveraged by a con-
straint solver to automatically fix models that violate the
domain constraints, and (3) a case-study based on a tool for
automatically producing deployment plans to map software
components to Electronic Control Units (ECUs) (which are
CPUs in an automobile) in the context of the EAST-EEA
Embedded Electronic Architecture [3] defined in a Euro-
pean Union research project as a predecessor of the emerg-
ing AUTOSAR [4] middleware and modeling standard.

The paper extends our previous experience with AU-
TODeploy [9] and focuses on how to address the chal-
lenges related to the complexities of aspect weaving iden-
tified there. Our prior work focused on applying the re-
lationship between automated role-based constraint solv-
ing and aspect weaving. This paper generalizes our ear-
lier approach to a broader range of modeling-related activ-
ities, including applying batch processes to create connec-
tions and automatically adding model elements to satisfy
domain constraints. This paper also presents a case study
that shows how we use our automatic role-based constraint
solving techniques to map deployment problems to config-
uration and bin-packing solvers.

The rest of the paper is organized as follows: Section 2
addresses these considerations in the context of the EAST-
EEA automotive architecture, using the deployment of soft-
ware functions to ECUs as a motivating example; Section 3
shows how our automatic role-based constraints solving
technique addresses the scalability challenges of modeling
DRE domains; Section 4 describes the results of applying
our constraint solvers to model EAST-EEA component de-
ployments; Section 5 presents related work; and Section 6
presents concluding remarks.

2 Motivating Example

EAST-EEA defines the embedded electronic architec-
ture and structure of automotive middleware to help stan-
dardize solutions to problems that arise when developing
large-scale, distributed real-time and embedded (DRE) sys-
tems for the automotive domain. For instance, it is com-
plicated to (re)deploy software components in ECU com-
puters and micro-controllers running software components
within a car. Key complexities of (re)deployment include:
(1) components often have many constraints that must be
met by the target ECU and (2) there are many possible map-
pings of components→ECUs in a car and finding the opti-

mal one(s) is hard.
For example, finding a set of interconnected ECUs able

to run a group of components that communicate via a bus is
hard to do manually. Modelers must determine whether the
available communication channels between the target ECUs
meet the bandwidth, latency, and framing constraints of the
components communicating through them. It is also impor-
tant in automotive domain to optimize the overall solution
costs, e.g., by finding deployments that use as few ECUs as
possible or by minimizing bandwidth requirements and us-
ing cheaper buses. It is hard, if not impossible, to answer
these questions manually for production system models.

To illustrate the practical benefits of integrating au-
tomatic role-based constraint solvers with a DSML, we
present a case study based on AUTODeploy [13], which is
a model-driven tool we developed to solve EAST-EEA-like
constraints that ensure correct deployment of software com-
ponents to ECUs. The following is a summary of the as-
pects of EAST-EEA that are relevant to our example, start-
ing with the two primary viewpoints on EAST-EEA-based
systems:

• Logical collaboration structure, which specifies
components or functions that should communicate
with each other and through what interfaces.

• Physical deployment structure, which captures the
capabilities of each ECU, their interconnecting buses,
and their available resources.

A typical task for an EAST-EEA developer is to specify
on which ECU each component should run. This map-
ping from logical collaboration structure to physical deploy-
ment structure is generally specified with a graphical tool,
as shown in Figure 1.

Modern cars (such as the BMW 7 Series, Mercedes S-
class, and Audi D3) are typically equipped with 80 or more
ECUs and several hundred or more software components.
Simply drawing arrows from 160 components to 80 ECUs
is tedious. Adding to the difficulty of a manual approach,
moreover, are requirements governing which ECUs can host
a component, which involves assessing the amount of mem-
ory required to run, CPU power, operating system type and
version (if any), etc. These constraints must be consid-
ered carefully when deciding where to deploy a particular
component. The problem is further exacerbated when con-
sidering physical communication paths and aspects, such
as available bandwidth in conjunction with periodical real-
time messaging.

The work presented in this paper uses the AUTODeploy
tool to specify the mapping of components to ECUs for
EAST-EEA models as our case study. The goal of this case
study was to create (semi)automated mechanisms to map
software components to ECUs without violating the known
constraints. In addition, when there is no way to deploy
all the components in the model (e.g., if certain components
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Figure 1. Mapping from the Logical Collabo-
ration to the Physical Deployment Structure

need more memory then available on the ECUs), rather than
saying “a deployment is impossible,” we want to provide
suggestions on how to change the system to make a full
deployment possible, e.g., the tool could suggest trying a
different deployment strategy, relaxing certain constraints,
increasing the memory on a certain ECU by a designated
amount, or adding a higher speed bus. The following sec-
tions describe AUTODeploy and show how it can signifi-
cantly reduce the time and effort needed to creating EAST-
EEA deployment models.

3 Automatic Role-based Constraint Solving

Based on the motivation and the example in Sections 1
and 2, the goals of our AUTODeploy project were to (a)
create a model-driven tool to guide EAST-EEA modelers by
suggesting valid modeling steps to create a correct model,
(2) provide mechanisms that perform domain constraint-
compliant batch processes to complete a partially specified
model, and (3) allow users to express valid repair opera-
tions that can be utilized by a constraint solver to fix invalid
models.

In previous work [11, 12, 10], we illustrated how a
DSML can improve the modeling experience and bridge the
gap between the problem and solution domain by the intro-
duction of domain-specific abstractions. As a result of these
efforts, the Generic Eclipse Modeling System (GEMS) was
created and integrated with the Eclipse Generative Model-
ing Technologies (GMT) project. GEMS provides a conve-
nient way to define the metamodel, i.e., the visual syntax of

the DSML. Based on the metamodel, GEMS can automat-
ically generate a graphical editor that enforces the gram-
mar specified in the DSML. In addition, to facilitate code-
generation, GEMS provides some convenient infrastructure
(such as built-in support for a Visitor pattern [15] imple-
mentation) to simplify model traversal. We used GEMS as
the basis for AUTODeploy and our work on automatic role-
based constraint solving.

3.1 Domain Constraints as the Basis for
Automatic Solvers

A key research challenge was to determine how to spec-
ify model constraints in such a way that they could be
used not only to check models for correctness, but also to
enable constraints solvers to derive solutions to the con-
straints. We considered using Java, the Object Constraint
Language (OCL), and Prolog for our constraint specifica-
tion language. Initially, we implemented our EAST-EEA
deployment constraints in each of the three languages to
evaluate their pros and cons. As a result of the evaluation
we conducted, we came to the conclusion that Prolog was
the most appropriate language for providing both constraint
checking and model suggestions.

Prolog is a declarative programming language that al-
lows programmers to define the set of rules in terms of
known facts or a knowledge base (KB). Prolog can then
evaluate these rules and determine if they can be satisfied
by the known facts. Prolog provides a unique degree of
flexibility for writing constraints in that it not only replies
with whether or not a rule can be satisfied but also with
what the valid fact combinations are that will satisfy it. If
users completely specify the input variables values, Prolog
merely checks whether the rule holds for the facts from KB.
If, however, some of the input variables are not bound, Pro-
log has the unique ability to return the set of possible facts
from the KB that lead the rule to evaluate to “true”.

In the context of AUTODeploy and EAST-EEA, the
declarative nature of the Prolog reduces the number of lines
of code needed to transform an instance of a DSML into
a knowledge base and create constraints (its roughly com-
parable to OCL for writing constraints). Moreover, Prolog
enables AUTODeploy to derive sequences of modeling ac-
tions that will take the model from an invalid or incomplete
state to a valid one. As discussed in Section 2, this capa-
bility is crucial for domains, such as EAST-EEA-based de-
ployment, where completely manual model specification is
infeasible or extremely tedious and error-prone.

The remainder of this section describes how we applied
Prolog and GEMS to create the automatic role-based con-
straint solvers used in AUTODeploy. Our research focused
on providing modeling guidance with respect to single mod-
eling steps, automatic model completion via batch process-
ing, and automated model repair guided by a constraint
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solver.

3.2 Local Modeling Guidance on-the-fly

To provide automatic role-based constraint solving, AU-
TODeploy must capture the current state of the model and
reason about how to guide the model through a series of
modifications so that it satisfies the domain constraints. For
our EAST-EEA deployment example, when AUTODeploy
is given a set of components, ECUs, and their resources and
constraints, it must suggest a valid assignment of compo-
nents to ECUs. Our work provides this reasoning capability
to GEMS by automatically generating a Prolog represen-
tation of each model as a knowledge base (KB), allowing
users to specify Prolog constraints, and then querying the
constraints for valid sequences of model changes to bring
the model to a valid state.

GEMS metamodels represent a set of model entities and
role-based relationships between them. For each model, the
generated DSML editor populates a Prolog KB using these
metamodel-specified entities and roles. For each entity, we
generate a unique id and a predicate statement specifying
the type associated with it. For example, each component
in our EAST-EEA model is transformed into the predicate
statement component(id), where id is the unique id for
the component.

For each instance of a role-based relationship in the
model, a predicate statement is generated that takes the id
of the first participating entity and the id of the entity the
first one is relating it to. For example, if a component, with
id 23, has a TargetECU relationship with a ECU, with id
25, the predicate statement targetECU(23,25) is gen-
erated. This predicate statement specifies that the entity
with id 25 is a TargetECU of the entity with id 23. Each
KB provides a domain-specific set of predicate statements.

Based on this domain-specific knowledge base, model-
ers can specify user-defined constraints in the form of Pro-
log rules for each type of metamodel relationship. These
constraints are a semantical enrichment of the model that
indicate the requirements of a correct model. They are also
used by constraint solvers to automatically deduce the sets
of valid model changes to create a correct model. For ex-
ample, consider the following constraint to check whether a
ECU is a valid ECU of a component:

is_a_valid_component_targetECU(Component,
ECU).

This constraint can be used to (1) check a Component-
ECU combination, i.e.:

is_a_valid_component_targetECU(23,[25]).

and (2) to find valid ECUs that can play the TargetECU
role for a particular component using the Prolog’s ability to
deduce the correct solution:

is_a_valid_component_targetECU(23,
ECUs).

In this example, the ECUs variable will be assigned the
list of all constraint-valid ECUs for the TargetECU role
of the specified component. This example shows how the
constraint predicate can be used as an automatic role-based
constraint solver to check and generate the solution.

Figure 2 depicts what the dynamic suggestions mech-
anism looks like for modelers and how it simultaneously
supports the visual modeling steps. The upper part of the

Figure 2. Highlighting valid target ECU

figure shows the fragment of the metamodel that describes
the “Deployment” relationship between “Component” and
“ECU” model entities. The lower part of the picture illus-
trates how the generated editor shows “ABS” and “ECU10”
as instances of the “Component” and “ECU” types respec-
tively. This screenshot was made at the moment when the
modeler starts dragging the connection line using “ABS”
as starting point. The rectangle around “ECU10” labeled
“Valid TargetECU” is drawn automatically as a result of
triggering the corresponding solver rule and receiving a
valid solution as feedback.

3.3 Constraint Solver Integration With
GEMS

We have integrated a tool infrastructure into the GEMS-
generated DSML editors that listens for user-initiated ac-
tions, finds all valid relation roles that the source entity may
participate in, and then finds the set of all valid values for
these connection relationships. These valid connection end-
points are then suggested to the user by highlighting valid
model entities. This feedback mechanism is automatically
incorporated into GEMS. The DSML editors generated by
GEMS can leverage multiple Prolog implementations, in-
cluding SWI Prolog [21] and XSB Prolog [18], and can
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use the Java Prolog Library (JPL) [2] or Interprolog [6] li-
braries to invoke Prolog queries from within Java. The KB
is synchronized with the model by issuing Prolog assert/1
and retract/1 statements when new information is added or
removed from the model.

Using the tools and techniques described above, mod-
elers only need to specify the constraints and the gener-
ated DSML editor can automatically find valid solutions for
many types of problems. The feedback mechanism and the
respective automatic role-base constraint solvers are also
dynamic, i.e., users can add or modify role-based constraint
(solvers) at modeling time and immediately begin receiving
step-wise guidance. Having all these mechanisms, mod-
elers can receive on-the-fly suggestions for each modeling
step, e.g., while dragging the mouse to create a connection
relation between component and ECU, the valid drop tar-
gets are highlighted.

There are also mechanisms to trigger arbitrary Prolog
rules from the modeling tool and incorporate their results
back into a model. In our EAST-EEA case study, this mech-
anism can be used to resolve complete component to ECU
deployments and add deployment relationships based on a
model of partially specified component-ECU assignments.
User-defined solvers usually apply generic rules that can be
derived from the metamodel and often incorporate certain
heuristics to simplify the solution-finding process. These
solvers encapsulate formalized experience gained while de-
veloping similar systems and can greatly improve the qual-
ity of the model.

An example of a situation where user-defined rules are
helpful is the deployment problem described above. It is
very hard to define a correct global deployment manually if
there are 300 components and 80 ECUs available. In con-
trast, we were able to solve this scale of problem in ∼3
seconds using AUTODeploy.

3.4 Layered Constraint Solving

We initially used a single-solver approach to deduce so-
lutions to the deployment constraints. The single-solver
approach used local rules to find valid deployment targets
for each component based on the configuration constraints.
When resource and other global constraints began being
added, we had to adopt a multi-solver approach to solve
deployments.

As can be seen in Figure 3, local constraint solving is
the initial step of our automatic constraint-aware deploy-
ment. We used AUTODeploy to check the feasibility of our
multi-solver approach. The local constraints in AUTODe-
ploy correspond to the configuration constraints, such as re-
quired OS, that impact only the valid target ECU sites for
a single component. The solution space initially contained
many millions or more possible deployment combinations,
as shown in step 1 of Figure 3. Any global constraint-aware

deployment solving began by iterating over each unassigned
component and considering only valid ECUs respecting the
configuration constraints. After pruning the solution space,

Figure 3. Layered Deployment Solving

global constraints, such as resource requirements, are con-
sidered, as shown in step 2 of Figure 3. After solving the
global constraints, AUTODeploy is left with a drastically
reduced number of deployment solutions to select from. At
this point, depending on the number of solutions available,
optimization algorithms can be applied to select a solution
that optimizes a particular criteria, such as the number of
ECUs used.

In many cases, we observed that domain experts could
not formally specify certain types of constraints, such as
political, legacy, or vendor-specific constraints. For these
types of situations, we found it was essential to allow mod-
elers to fix certain modeling decisions so that the automated
role-based constraint solvers could not override them. We
therefore introduced a mechanism into AUTODeploy so
that developers could first fix the deployment locations of
certain components with un-specifiable constraints an then
use the constraint solver to complete the partially specified
deployment.

3.5 Model Completion Solvers

Global constraint solvers and their respective sugges-
tions are necessary for solving complex problems involv-
ing multiple model entities and roles. For example, in
AUTODeploy, we developed a suggestive solver that not
only checked configuration constraints, but also checked re-
source constraints for all components and derived a valid
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TargetECU for every component. Nevertheless, automatic
global constraint solvers should integrate into the modeling
experience and not be separate from visual modeling. Auto-
mated role-based constraint solving therefore uses the role-
based constraint rules to provide the glue between the vi-
sual modeling experience and user-defined global constraint
solvers.

For example, the following Prolog rule

batch_assign_component_targetECU(Component,
ECUs, Best, MaxSolutions, FitnessFunc) :-
...

represents a role-based constraint solver for finding valid
connections between a set of components and ECUs. The
modeling step of connecting a component to a valid ECU
is accompanied by a menu item offering to perform such
a step globally, i.e., assign a target ECU for each compo-
nent. After deploying several critical components to some
ECUs by using the step-wise guidance, modelers can trig-
ger the constraint-aware batch processor to request a com-
plete deployment. The domain-specific GEMS editor will
then attempt to calculate a deployment structure and if one
is found, the corresponding connections will appear in the
model. This type of batch processing can aim for an optimal
deployment structure by using constraint-based Prolog pro-
grams, such as CPL(X) [16]. It can also integrate domain-
specific heuristics known to domain modelers, as described
in Section 3.2.

There are many existing algorithms and libraries devel-
oped by the artificial intelligence community and other Pro-
log experts that can be used and adapted while perform-
ing complex model analysis. In other work, we have used
the automated role-based constraint solving capabilities of
GEMS to integrate an existing Prolog Qualitative Differen-
tial Equation simulator, based on the QSim algorithm, into
one of our DSMLs. The integration was straightforward and
required less than 100 lines of Prolog code.

The drawbacks of allowing modelers to fix certain mod-
eling decisions becomes apparent when batch processing is
applied. Modelers can build models with no valid global de-
ployment that satisfies the supplied constraints and the set of
available ECUs. For these situations, we further developed
our automated role-based constraint solving approach to al-
low modelers to provide model repair operations that could
be leveraged by the constraint solver, as discussed next.

3.6 Model Repair

It quickly became apparent that an AUTODeploy model
could be defined with various errors, such as conflicting
constraints or insufficient resources, that would make de-
ployment impossible. With numerous complex composition
rules guiding the deployment process, it was hard for mod-
elers to figure out why there was no valid way of deploying

the components and how to repair the model to overcome
the problem. Simply failing to deploy the components and
not providing an explanation would leave the reasoning of
the underlying cause to modelers, without any hints on pos-
sible modifications (such as resource expansions) to make it
work. In these situations, deducing the errors in the model
could be as hard as finding a valid concern composition
manually.

A key question we needed to address, therefore, was
what type of feedback should be provided to modelers.
One approach we evaluated was marking model elements,
such as components, that could not satisfy their domain
constraints. For example, we considered marking compo-
nents with resource requirements exceeding the available
resources of any available ECU. We found this approach
unsatisfactory for the following reasons:

• For global constraints, such as resource constraints, the
overall state of the system determines whether or not
the constraint succeeds. In the automotive domain, if
the ECUs do not provide sufficient resources to ECU
all of the components, more than a single component
may be causing the problem. Marking the first com-
ponent that could not be placed would therefore make
no sense since different packing orders could result in
different components marked as the cause of failure.

• Even if the cause of the failure was marked in some
manner, modelers would still need to manually deter-
mine how to modify the model from its present state
to make it compliant with its constraints. Although
fixing the model might appear trivial when the failing
constraint was identified, changing the model could
have unforseen affects on the other domain constraints.
Again, manual approaches do not scale for these types
of constraint satisfaction problems.

We adopted a strategy in automatic role-based constraint
solving of allowing modelers to express a set of legal model
modifications that could be performed, which we call “re-
pair operations.” We then used the role-based constraint
solvers to apply these repair operations to the model to make
deployment possible. Repair operations can be any valid
modeling action, such as changing attribute values, adding
or removing modeling elements, or creating connection and
containment relationships. For example, a repair operator
IncreaseCPUPower could be used to allow the constraint
solver to place a component on a ECU or if no suitable ECU
was found to increase the power (a suggestion to improve
the hardware) of an upgradeable ECU. By specifying a se-
ries of repair operations, such as IncreaseCPUPower, In-
creaseRAM, and AddECU, the constraint solver could first
try to upgrade an existing ECU or if none could be up-
graded, add an ECU to the merged model.

Suggesting corrective model changes can be applied to
both failed local constraints or global constraints. For in-
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stance, modelers could try to deploy a component manu-
ally and find that the automatic deployment guidance does
not provide any valid ECUs. This failure might occur if no
ECU matching the configuration requirements of the com-
ponent (e.g., the required operating system or target ECU
type). Another reason for failure could be that all resources
of valid ECUs have been exhausted by previous component
assignments. Corresponding suggestions could therefore
be to create a compliant ECU or to increase respective re-
sources of a single ECU. Conversely, a global solver could
use the repair operations to apply a batch of corrections to
the model to make deployment possible.

The key concept enabling repair operations was our ex-
tension of the automatic role-based constraint solvers by
adding additional parameters for the repair operations. For
example, consider the format of the component-targetECU
constraint again:

is_a_valid_component_targetECU(
Component, ECU,
RepairOperations,
DoneModificationOperatorL).

This constraint can be used to pass the following opera-
tor to a call of is a valid component targetECU:

modify_resource_increment_by_factor(
Component, ECU,
ApplicationMode,
InputArgs, OutputArgs).

This rule uses the same pair of component/ECU vari-
ables. In addition, there are some input arguments and out-
put arguments, e.g., the third application mode parameter
specifies whether

• The correction operator should check the repair opera-
tion’s applicability (Mode = try) to the current model,

• Perform the repair operation and record them in the
Prolog record database (Mode = do), or

• Undo a repair operation that has already been per-
formed (Mode = undo) by removing the respective pre-
vious repair recordings.

Distinguishing these three modes is essential to keep the
modularity of all correction related activities.

A modification solver capable of increasing a resource
capacity of a ECU must first check whether the currently
considered invalid component/ECU pair is caused by a lack
of resources on the ECU and whether or not the insuffi-
cient resources can be increased. Once the repair operation
is deemed appropriate, it is applied to the model using the
’do’ mode. Calling the modification solver with the ’undo’
mode allows it to remove a suggested modification from the
Prolog recording database, which allows it to undo all the
repairs performed by an operator. This mechanism is essen-
tial since the Prolog constraint solver may discover that the
repair operations it has performed must be undone to allow

it to backtrack and undo some component to ECU assign-
ments it has made.

The role-based constraint solving model repair capabil-
ities described above go beyond standard Prolog tracing.
Standard Prolog tracing would track execution down to the
point of any assignment problem and force the modeler to
figure out the reason behind a failure to find proper solution.
In contrast, these model repairs raise the level of abstraction
by specifying possible domain-specific corrections within
the underlying domain structure and domain entities.

4 Case Study: Applying AUTODeploy to
EAST-EEA Deployments

To validate our automatic role-based constraint solving
paradigm, we created a DSML called AUTODeploy that
model EAST-EEA deployment problems. AUTODeploy
enables users to specify partial solutions as sets of compo-
nents, requirements, ECUs, and resources. It can produce
both valid assignments for a single component’s TargetECU
role and global assignments for the TargetECU role of all
components.

It is often the case in the automotive domain that certain
software components cannot be moved between ECUs from
one model car to the next due to manufacturing, quality as-
surance, or other concerns. In these situations, developers
must be able to fix the TargetECU role of certain compo-
nents and allow the tool to solve for valid assignments of the
remaining unassigned component TargetECU roles. There
are also cases where it is infeasible to specify formal rules,
so instead the knowledge of domain engineers must be used
to assign critical components to ECUs. There are typically
only a few of these cases and the rest of the assignments
can be calculated automatically. AUTODeploy can there-
fore complete a partially specified deployment of compo-
nents to ECUs, if a valid deployment exists.

The first step in developing AUTODeploy was to create
a deployment metamodel that defines a DSML that users
can apply to model components with arbitrary configuration
and resource requirements and ECUs with arbitrary sets of
provided resources. Each component configuration require-
ment is specified as an assertion on the value of a resource
of the assigned TargetECU. For example, OSVersion > 3.2
would be a valid configuration constraint.

We then created resource constraints by specifying a re-
source name and the amount of that resource consumed by
the component. Each ECU was not allowed to have more
components deployed to it than its resources could support.
Each ECU in turn could provide an arbitrary number of re-
sources. Figure 4 shows an screenshot from AUTODeploy.

Typical resource requirements were the RAM usage and
CPU usage. Resource requirements were specified using
<, >, - and = signs to denote that the value of the resource
with the same name and type (for example OS version) must
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Figure 4. An AUTODeploy Deployment Dia-
gram Showing Component to ECU Mappings

be less, greater or equal to the value specified in require-
ment. The “-” relationship indicates a summation constraint
or that the total value of the demands on a resource, by the
components deployed to the providing ECU, does not ex-
ceed the amount present on the ECU.

This method of requirements specification blends both
the flexibility and intuitiveness of a textual approach with
the concrete meaning of a constraint solver format. The
Name can be any string and thus modelers can create mean-
ing by providing very descriptive names. The Type pro-
vides a clear definition of how the constraint is compared
to the resources available on a candidate node. The Type
also indicates exactly which constraint solver must be used
to analyze the constraint.

4.1 Solver Implementations

After defining the metamodel and generating the graph-
ical editor for deployment DSML using GEMS, we added
a set of automatic role-based constraint solvers to enforce
the configuration and resource constraint semantics of our
models.

Our constraint rules specified that for each child require-
ment element of a component, a corresponding resource
child of the TargetECU has to satisfy the requirement. The
resource constraints were mapped to a bin packing prob-
lem. A bin-packing problem is defined by a set of items
with various dimensions and a set of bins with various ca-
pacities that the items must be packed into. With AUTODe-
ploy, items and bins can be of an arbitrary number of dimen-
sions, so we provided rules for transforming a set of ECUs
and components into a list of n-dimensional items and n-
dimensional bins, as can be seen in Figure 5.

This mapping of resource constraints to bin-packing is

Figure 5. Resource Constraint Mapping to
Bin-Packing

created by the following rules that map requirements of type
’-’ to the various N-dimensions of the bins.

requirement_spec(Req, Name, Type) :-
self_type(Req, requirement),
self_name(Req, Name),
self_resourcetype(Req, Type).

resource_spec(Res, Name, Type) :-
...

requirement_resource_valid_pair(Req, Res) :-
...

requirement_to_resource(Req, ECU, Res) :-
...

Our solvers and repair operators were written so that
they could be applied to any kind of role-based relationship
and also reused across metamodels with minor amendments
only. We found that the right way to do this was by using
the bridge pattern [15] to decouple the actual problem spec-
ification implementation from its abstract interface. We de-
fined an abstract bin-packing problem interface that could
be re-implemented for different metamodels to change the
modeling elements and attributes the bin-packer operated
on.

4.2 Repair Operator Implementation

The repair operators we built work in three phases. First
the operators collect all bin-packing requirement/resource
pairs where the requirement exceeds the remaining resource
capacity. These tuples are then passed to a rule which tests
each repair operator using the ’try’ mode to see if the defi-
cient resource can be fixed with the operator. If the operator
can correct the deficiency, the operator is applied with the
do mode. By invoking the ‘do’ mode of the operator, each
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exceeded resource is expanded by the minimum necessary
to accommodate the failed requirement.

Repair operators can be applied in combination, such as
first adding a set of missing configuration resources and
then adding missing bin-packing resources. We applied
our global solver with two repair operators (adding miss-
ing configuration resources and adapting the resource ca-
pacities) to an entire 300 component and 80 ECU deploy-
ment in ∼4.5 seconds. In this test, the modification oper-
ators corrected deficiencies in 25 nodes that prevented the
deployment of 80 components.

An interesting result is that we discovered the repair op-
erators could be used to plan for future expansions to the
deployment model. For example, designers could take an
existing automotive deployment model and specify the new
components that would be added in the next year’s model.
The deployment solver would then use the repair operators
to find the most efficient way of upgrading the existing in-
frastructure to support the new functionality.

5 Related Work

Decision support systems are similar to the automated
role-based constraint solving approach proposed in this pa-
per. In [5], Achour and all propose a modeling tool based
on the Unified Medical Language System (UMLS), to cre-
ate KBs for diagnosing and treating diseases. Both their ap-
proach and the automated role-based constraint solving ap-
proach attempt to glean domain knowledge and constraints
from an expert and simplify a users ability to find the correct
solution to a partially specified problem. For the UMLS-
based decision support system, the goal is to, given a set of
patient condition information, find the appropriate diagno-
sis and course of treatment.

The approach in this paper differs significantly from the
research proposed in [5]. First, the research proposed here
facilitates the creation of decision support systems for any
domain-specific modeling language. Moreover, automated
role-based constraint solving is not limited solely to deci-
sion tree guidance, but also complex analysis and optimiza-
tions specified by users. Finally, the automated role-based
constraint solving proposed in this paper is generated from
a metamodel and integrated with a graphical modeling tool.
GEMS and its solver generation capabilities are a tool for
creating graphical modeling tools with integrated modeling
decision support for arbitrary domains.

Many complex modeling tools are available for describ-
ing and solving combinatorial constraint problems, such
as those presented in [17, 8, 19, 7, 14]. These tools
provide mechanisms for describing domain-constraints, a
set of knowledge, and finding solutions to the constraints.
These tools, however, are not designed to generate domain-
specific solvers based on a metamodel. These tools also
do not support the generation of a DSML graphical envi-

ronment and integrated graphical suggestions. Finally, as
discussed previously, these tools do not provide automation
of the problem specification as our GEMS-based role-based
constraint solvers do.

The Eclipse Graphical Modeling Framework (GMF) [1]
provides a generative component and runtime infrastructure
for developing graphical editors based on EMF and GEF.
Similar to GEMS, GMF supports meta-modeling and can
generate graphical editors for a meta-model. Both GEMS
and GMF use EMF as the in-memory model representa-
tion. The core advantage of GEMS is the role-based con-
straint solving capabilities for guiding complex modeling
tasks. As we have shown, for realistic size models, manual
modeling approaches do not work. GEMS, unlike GMF,
provides extensive support for handling large and complex
models with constraint solver assistance.

6 Concluding Remarks

The work presented in this paper addresses the scalabil-
ity problems of manual modeling approaches. These scal-
ability issues are particularly problematic for domains that
have large solutions spaces and few correct solutions. In
such domains, it is extremely time consuming to handcraft
correct models, so some type of automatic constraint solver
is needed. Moreover, transforming a DSML instance into
a native constraint solver input format is a time-consuming
task.

Our solution generates a DSML editor that encompasses
a semantically rich knowledge base in Prolog format and al-
lows users to specify constraints in declarative format that
can be used to derive modeling suggestions. The key ad-
vantages of this approach are that

• The same set of constraints can be used to check
whether a manually defined model is correct and to
generate valid solutions by keeping open some param-
eters, such as TargetHost.

• Modelers can specify constraints using the domain-
specific notation of the knowledge base and specify
constraint solver rules in a domain-specific manner.

• The role-based constraint solving model repair capa-
bilities allow modelers to not only construct valid mod-
els but to repair broken models, which is a key capa-
bility for complex modeling domains.

From our work thus far, we learned the following lessons
about how to write effective role-based constraint solvers,
as well as which problems are still hard to solve:

• Certain types of constraint comparisons, such as sum-
mation comparisons, require significantly more work
to solve. For these constraint types, it is critical that the
generated solvers include templatizations of known so-
lution algorithms since they are too costly to reinvent
and rediscover.
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• Many complex problems we faced have been solved
using Prolog in the past and validated with expert sys-
tem approaches. The solvers generated by GEMS can
often easily incorporate these existing algorithms with
a minimal amount of code.

• Automating the transformation from the modeling do-
main to native constraint solver input formats is a cru-
cial element of reducing the cost of integrating a con-
straint solver with a modeling environment. The level
of abstraction used to specify constraints must also be
raised to make constraint solvers usable by domain ex-
perts.

• Optimization of a model is a much harder than find-
ing a valid solution. In our EAST-EEA deployments,
for example, we created algorithms that minimized the
number of nodes used by a deployment. These algo-
rithms, however, do not scale well if there are a large
number of valid solutions. More work is needed to
provide templatizable optimization rules.

• Constraint solvers can easily be converted to repair
mechanisms by adding a simple check to see if an
assignment decision meets the domain constraint OR
meets a relaxed constraint specified by a repair oper-
ator. We have found that adding these checks is very
straightforward.

In future work, we plan to apply role-based constraint solv-
ing to multiple combinatorially challenging domains, such
as service configuration, failure analysis, and workflow
composition. We are also collaborating with optimization
researchers to develop reusable solution algorithms that can
be generated automatically.
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