
DOORS: Towards High-performance Fault Tolerant CORBA

Balachandran Natarajan
Dept. of Computer Science

Washington University

St. Louis, MO 63130
bala@cs.wustl.edu

Aniruddha Gokhale, Shalini Yajnik
Bell Laboratories

Lucent Technologies

600 Mountain Avenue
Murray Hill, NJ 07974

fagokhale, shalinig@lucent.com

Douglas C. Schmidt
Dept. of Electrical and Computer Engineering

University of California
Irvine, CA 92697
schmidt@uci.edu

This paper appeared in the Proceedings of the 2nd

Distributed Applications and Objects (DOA) conference,
Antwerp, Belgium, Sept. 21-23, 2000.

Abstract

An increasing number of applications are being devel-
oped using distributed object computing middleware, such
as CORBA. Many of these applications require the under-
lying middleware, operating systems, and networks to pro-
vide end-to-end quality of service (QoS) support to enhance
their efficiency, predictability, scalability, and fault toler-
ance. The Object Management Group (OMG), which stan-
dardizes CORBA, has addressed many of these application
requirements recently in the Real-time CORBA and Fault-
tolerant CORBA specifications.

This paper provides four contributions to the study
of fault-tolerant CORBA middleware for performance-
sensitive applications. First, we provide an overview of
the Fault Tolerant CORBA specification. Second, we de-
scribe a framework called DOORS, which is implemented
as a CORBA service to provide end-to-end application-level
fault tolerance. Third, we outline how the DOORS’ re-
liability and fault-tolerance model has been incorporated
into the standard OMG Fault-tolerant CORBA specifica-
tion. Finally, we outline the requirements for CORBA ORB
core and higher-level services to support the Fault Tolerant
CORBA specification efficiently.

Keywords: Fault-tolerant CORBA, Middleware protocols.

1. Introduction

Emerging trends: Developers of distributed applications
are increasing using the standard services and proto-
cols defined by distributed object computing middleware,
such as the Common Object Request Broker Architecture
(CORBA) [1]. CORBA is a distributed object computing
middleware standard defined by the Object Management
Group (OMG) that allows clients to invoke operations on
remote objects without concern for where the object re-
sides or what language the object is written in [2]. In ad-
dition, CORBA shields applications from non-portable de-
tails related to the OS/hardware platform they run on and
the communication protocols and networks used to inter-
connect distributed objects. These features make CORBA
ideally suited to provide the core communication infrastruc-
ture for distributed systems and applications.

A growing number of next-generation applications de-
mand varying degrees and forms of quality of service (QoS)
support from their middleware, including efficiency, pre-
dictability, scalability, and dependability. In CORBA-based
middleware, this QoS support is provided by Object Re-
quest Broker (ORB) endsystems [3]. ORB endsystems con-
sist of network interfaces, operating system I/O subsystems,
CORBA ORBs, and higher-level CORBA services.

Our prior research on CORBA middleware has explored
the efficiency, predictability, and scalability aspects of ORB
endsystem design, including static and dynamic scheduling,
event processing, I/O subsystem and pluggable protocol in-
tegration, synchronous and asynchronous ORB Core archi-
tectures, systematic benchmarking of multiple ORBs, and

optimization principle patterns for ORB performance. This
paper focuses on two other dimensions in the ORB endsys-
tem design space:(1) identifying key aspects of CORBA im-
plementations that support both high-performance and fault
tolerant properties and (2) demarcating the responsibility
between the service layer and ORB layer to support fault
tolerance.

Limitations with current fault tolerance strategies:
There is a large body of research literature [4] and tools
that focus on improving the reliability and recoverabil-
ity of applicationprocesses. For instance, Firstwatch [5],
Watchd [6], and Wolfpack [7] are tools designed to improve
the fault tolerance of application processes. Techniques fo-
cusing solely on process-based failure detection and recov-
ery, however, are not necessarily applicable to CORBA ap-
plications for the following reasons:

� Overly coarse granularity: Each application pro-
cess may contain several simultaneously active CORBA ob-
jects and threads. If individual objects or threads fail,e.g.,
due to a crash or abnormal termination, a process may not
terminate, however. Thus, a fault tolerance strategy that
detects only process failures may not identify these finer-
grained types of problems.

� Inability to restore complex object relationships:
Distributed objects communicate with other distributed ob-
jects via object references. When a failed object is recov-
ered, all object references for other local or remote CORBA
objects held just before failure must be recovered. Like-
wise, other CORBA objects holding object references to the
failed CORBA object must obtain new references, as well.
Moreover, object references can be persistenti.e., the refer-
ences can be reassigned to new servants if the original has
shutdown gracefully or abnormally. In contrast, processes
do not possess these characteristics. Thus, restoring object
reference relationships is a complex problem that is unique
to distributed object computing middleware and is not han-
dled well by process-based recovery strategies.

� Restrictions on process checkpointing and recov-
ery: Distributed objects often maintain state that must be
checkpointed periodically to survive crash failures. Fault
tolerance strategies used for process checkpointing may in-
cur excessive overhead or may be unable to checkpoint the
desired state for all objects. Thus, a finer level of granu-
larity for checkpointing process state is needed to permit
individual objects in a process to checkpoint their internal
state independently of each other.

As a result of the limitations with process-based reliability
and recovery outlined above, it is necessary to explore new
strategies or adapt existing strategies to provide high reli-
ability and availability to CORBA-based distributed object
computing applications.

Solution approach ! Supporting fault tolerance for
CORBA objects: Fault tolerance strategies for dis-
tributed object computing middleware, such as CORBA,
address the limitations of process-based fault tolerance. In
general, research on fault tolerance for CORBA ORBs and
its applications can be divided into the three strategies [8],
an integrationstrategy, aninterceptionstrategy, and aser-
vicestrategy, which are outlined below:

1. Integration strategy: In this strategy, the ORB is
modified to provide the necessary fault tolerance support,
which will likely make the ORB non-compliant with the
CORBA standard. The extent of the ORB modifications
depends on the functionality that is being added,e.g., a
reliable, totally ordered group communication mechanism
could be added to deliver CORBA requests. For instance,
a modified ORB can be linked with the client application
as shown in Figure 1, and used to convert the ORB re-

APP.
OBJECT

MODIFIED
CORBAORB

MODIFIED
CORBA ORB

SERVER
OBJECT

MODIFIED
CORBA ORB

SERVER
OBJECT

CORBA
REQUEST

RELIABLE MULTICAST
TOOL KIT

ADAPTER OBJECT

OBJECT
GROUP

MULTICAST
MESSAGE

Figure 1. Integration Fault Tolerance Strategy

quests into multi-cast messages of the underlying toolkit.
Theadapter objectlinked with the ORB provides the map-
ping to convert ORB requests to multi-cast messages. Or-
bix+Isis [4] and Electra [9] are examples of the integration
strategy.

2. Interception strategy: In this strategy, requests
made by client objects are capturedexternallyto the ORB,
e.g., via an OS-level interceptor [10], such as the/proc
file system in UNIX. As shown in Figure 2, the intercep-
tor can modify the client request parameters to alter the be-
havior of the application or to enhance the application with
new functionality. The modified requests are then mapped
on to a reliable group communication messaging system.
The Eternal system [11], and the AQuA framework [12] are
examples of the interception strategy.

3. Service strategy: In this strategy, a set of interfaces
and objects are defined as a CORBA service that provides
the policies and mechanisms for delivering fault tolerance
to applications. Thus, fault tolerance can be provided as a
part of the standard suite of CORBA Services, without re-
quiring extensive modifications to CORBA ORBs. Figure 3

APP.
OBJECT

 CORBA
ORB

 CORBA
ORB

SERVER
OBJECT

 CORBA
ORB

SERVER
OBJECT

CORBA
REQUEST

RELIABLE MULTICAST TOOL KIT

OBJECT
GROUP

IIOP
INTERCEPTOR

REPLICATION & LOGGING
MANAGER

MULTICAST
MESSAGE

Figure 2. Interception Fault Tolerance Strat-
egy

illustrates this strategy. Anobject groupis registered with

APP.
OBJECT

 CORBA
ORB

FAULT TOLERANCE
SERVICE

get_object_group_id ()
CORBA

REQUEST

register ()

 CORBA
ORB

SERVER
OBJECT

 CORBA
ORB

SERVER
OBJECT

OBJECT
GROUP

Figure 3. Service Fault Tolerance Strategy

the fault tolerant service. Client applications query the ser-
vice to obtain the object group and make invocations on the
object group. The service manages the replicas and the state
of their associated objects. The Distributed Object-Oriented
Reliable Service (DOORS) [13], which is our focus in this
paper, is an example of this strategy.

The interceptionand servicestrategies outlined above
have been incorporated in the OMG Fault Tolerant CORBA
(FT-CORBA) specification [14], which was adopted as a
standard in January, 2000.

Paper organization: The remainder of this paper is or-
ganized as follows: Section 2 summarizes the recently
adopted Fault Tolerant CORBA (FT-CORBA) specification,
illustrates the concepts from DOORS that were incorpo-
rated into this standard, and outlines the design of DOORS;
Section 3 presents the key ORB-level and service-level fea-
tures that an FT-CORBA implementation must support to
simultaneously achieve high reliabilityand performance;
and Section 4 presents concluding remarks.

2. Overview of Fault Tolerant CORBA

The Fault Tolerant CORBA (FT-CORBA) [14] specifi-
cation defines a standard set of interfaces, policies, and ser-
vices that provide robust support for applications requiring

CORBA ORB

SERVER
 OBJECT 1

SERVER
OBJECT 2

FAULT
DETECTOR

FAULT
DETECTOR

CORBA ORB

FAULT
DETECTOR

FAULT
NOTIFIER

CORBA ORB

is_alive ()is_alive ()

is_alive ()

fault
reports

fault notifications

create_object ()

PROPERTY
MANAGER

GROUP
 MANAGER

GENERIC FACTORY APP.
OBJECT

set
properties

CORBAORB

CORBA ORB CORBA ORB CORBA ORB

FACTORY

CORBA ORB

FACTORY

CORBA ORB

create_object () create_object ()

send IOR

PUBLISH
IOGR

IOP
PROFILE 1

IOP
PROFILE 2

MULTIPLE
COMPONENTS PROFILE

REPLICATION MANAGER

CORBA ORB

Figure 4. The Architecture of Fault Tolerant
CORBA

high reliability. The fault tolerance mechanism used to de-
tect and recover from failures is based onentity redundancy.
Naturally, in FT-CORBA the redundant entities are repli-
cated CORBA objects.

This section presents an overview of the FT-CORBA
standard and explains how this standard is being real-
ized with the Distributed Object-Oriented Reliable Service
(DOORS). DOORS is a prototype implementation of FT-
CORBA that implements a core subset of the functionality
defined by the standard. Through our contributions and ac-
tive participation in the OMG working group on Fault Tol-
erant CORBA, the concepts pioneered by DOORS and key
lessons learned in its development have been integrated into
the FT-CORBA standard.

2.1. Overview of the FT-CORBA Architecture

Fault tolerance for CORBA objects is achieved viarepli-
cation, fault detection, andrecovery. Replicas of a CORBA
object are created and managed as a “logical singleton” [15]
composite object. This strategy allows greater flexibility in
configuration management of the replicas.

Figure 4 illustrates the key components in the FT-
CORBA architecture. All components shown in the figure
are implemented as standard CORBA objects,i.e., they are
defined using CORBA IDL interfaces and implemented us-
ing servants that can be written in standard programming
languages, such as Java, C++, C, or Ada. The functionality
of each component is described below.

Interoperable object group references (IOGRs): FT-
CORBA standardizes the format of interoperable object ref-
erences (IOR) used for the individual replicas. An IOR is
a flexible addressing mechanism that identifies a CORBA
object uniquely [1]. In addition, it defines an IOR for
composite objects called theinteroperable object group
reference(IOGR), which is illustrated in Figure 5. The

TYPE ID NUMBER OF
PROFILES

IIOP PROFILE IIOP PROFILE
MULTIPLE COMPONENT

PROFILE

TAG_INTERNET_IOP PROFILE
BODY

IIOP
VERSION

HOST PORT OBJECT
KEY COMPONENTS

NUMBER OF
COMPONENTS

TAG PRIMARY
COMPONENT

TAG GROUP
COMPONENT

OTHER
COMPONENTS

NUMBER
OF

COMPONENTS

TAG GROUP
COMPONENTS

OTHER
COMPONENTS

TAG_FT_GROUP COMPONENT
BODY

tag_group
version

ft_domain
id

object_group
id

object_group
version

FT_TAG_PRIMARY

Figure 5. Example of an IOGR

IOGR contains multipleTAG INTERNET IOP profiles any
of which may be used to reach the server object group. The
TAG FT GROUPcomponent is contained in every profile of
the reference. TheTAG FT PRIMARY component is con-
tained in only one profile of the reference.

FT-CORBA servers can publish IOGRs to clients.
Clients use these IOGRs to invoke operations on servers.
The client ORB transmits the request to the appropriate
server object that handles the request. The client application
need not be aware of the existence of server object replicas.
If a server object fails, the client ORB cycles through the
object references contained in the IOGR until the request is
handled successfully by a replica object. The references in
the IOGR are considered invalid only if all server objects
fail, in which case an exception is propagated to the client
application.

Replication manager: This component is responsible for
managing replicas and contains the following three compo-
nents:

1. PropertyManager: This component allows proper-
ties of an object group to be selected. Common properties
include the replication style, membership style, consistency
style, and initial/minimum number of replicas. Example
replication styles include the following:

� COLD PASSIVE – In this replication style, the replica
group contains a single primary replica that responds

to client messages. If a primary fails an idle replica is
spawned on-demand to function as the new primary.

� WARM PASSIVE – In the WARM PASSIVE replication
style, the replica group contains a single primary
replica that responds to client messages. In addition,
one or more backup replicas are pre-spawned to han-
dle crash failures. If a primary fails a backup replica
is selected to function as the new primary and a new
backup is created to maintain a constant replica group
size.

� ACTIVE – In theACTIVE replication style all replicas
are primary and handle client requests independently
of each other. To ensure a single reply sent to the client
and to maintain consistent state amongst the replicas,
a special group communication protocol is necessary.

Membership of a group and data consistency of the
group members can be controlled either by the FT-CORBA
infrastructure or by applications. FT-CORBA standardizes
both application-controlled and infrastructure-controlled
membership and consistency styles.

2. GenericFactory: For the infrastructure-controlled
membership style, theReplicationManager uses the
GenericFactory to create object groups and individual
members of an object group.

3. ObjectGroupManager: For the application-
controlled membership style, applications use the
ObjectGroupManager interface to create, add, or
delete members of an object group.

Fault detector and notifier: FaultDetector s are
CORBA objects responsible for detecting faults via either a
pull-basedor apush-basedmechanism. Apull-basedmon-
itoring mechanism periodically polls applications to deter-
mine if their objects are “alive.” FT-CORBA requires ap-
plication objects to implement aPullMonitorable in-
terface that exports anis alive operation. Apush-based
monitoring mechanism can also be implemented. In this
scheme, which is also known as a “heartbeat monitor,” ap-
plications implement aPushMonitorable interface and
send periodic heartbeats to theFaultDetector .

A FaultDetector report the faults it identifies to a
FaultNotifier . In turn, aFaultNotifier prop-
agates these notifications to aReplicationManager ,
which performs recovery actions. In addition, other appli-
cations in the system that are interested in monitoring fault
activity can register with theFaultNotifier s to receive
their events.

Complex applications can provideFaultAnalyzer s
to expand, correlate, condense, and analyze fault reports.
The functionality provided byFaultAnalyzer s is usu-
ally platform- and application-specific. For example, a se-

quence of fault reports can be correlated to identify a single
failure condition.

Logging and recovery: For the application-controlled
consistency style, applications are responsible for their own
failure recovery. For the infrastructure-controlled consis-
tency style, however, FT-CORBA defines a logging and re-
covery mechanism. This mechanism is responsible for in-
tercepting and logging CORBA GIOP messages from client
objects to servers. Figure 6 illustrates how the logging

TAO ORB

SERVER
 OBJECT 1

TAO ORB

SERVER
 OBJECT 2

CLIENT

TAO ORB

LOGGING &
RECOVERY

MECHANISM

LOGGING &
RECOVERY

MECHANISM

PRIMARY BACKUP

LOGGING PROCESS IN WARM_PASSIVE STATE

Figure 6. Operation of the Logging Mecha-
nism

mechanism operates during normal operation. Once a fault
occurs, as a part of the recovery action, the messages that
are recorded are played back to the new primary. This will
get the new primary in a state consistent with the old pri-
mary before failure. Figure 7 illustrates how the recovery

TAO ORB

SERVER
 OBJECT 1

TAO ORB

SERVER
 OBJECT 2

CLIENT

TAO ORB

LOGGING &
RECOVERY

MECHANISM

LOGGING &
RECOVERY

MECHANISM

PRIMARY BACKUP

RECOVERY PROCESS IN WARM_PASSIVE
STATE

Figure 7. Operation of the Recovery Mecha-
nism

mechanism applies messages from the log on to the replica
to get it to the current state. The backup member in a object
group withWARM PASSIVEreplication style should receive
state updates at constant intervals of time during normal op-
eration. During recovery, when a backup member is pro-
moted to a primary, the recovery mechanism applies to the
backup member only the recent state updates after the last
complete update. For an object group configured with the

COLD PASSIVE replication style, a new backup is created
and the recovery mechanism applies the complete log to the
backup.

After all replicas are consistent, the recovery mechanism
then re-invokes the operations that were made by the client,
but which did not execute due to the primary replica’s fail-
ure. In addition, it retrieves a consistent state for the new
replica. The logging and recovery mechanism ensures that
failovers are transparent to applications.

Fault Tolerance Domains: To manage very large and
complex applications, the FT-CORBA standard defines a
feature calledfault tolerance domains. The purpose of fault
tolerance domains is to allow applications to scale to arbi-
trary sizes. A single fault tolerance domain consists of one
or more hosts and one or more object groups, as illustrated
in Figure 8. In addition, hosts can be part of several domains

B1

A3 B2

Host3

A2

B3 D1

Host5

A1

Host4

Host6

D2
Host2

GW

C

Host1 New York FT DomainLos Angeles FT
Domain

ORB Without
FT Support

Wide Area Domain

IIOP

Figure 8. Fault Tolerant CORBA Domains

simultaneously. Complex, large-scale applications consist
of several object groups that often span one or more fault
tolerance domains. All object groups within a single fault
tolerance domain are managed by a single logical domain-
specificReplicationManager . The FT-CORBA stan-
dard allows both intra- and inter-domain invocations of re-
quests on object groups.

2.2. Requirements of the FT-CORBA Standard

The FT-CORBA standard imposes the following require-
ments on CORBA middleware:

Preserving the CORBA object model: For the
infrastructure-controlled consistency style, the behav-
ior of a replicated object should appear as though it is a
single non-replicated CORBA object.

Enhancements to the CORBA object reference model:
The standard defines three newtagged componentsinto the
object reference model. These tagged components are used
to denote multiple components in a replicated object refer-
ence. The standard mandates that ORBs not supporting FT-
CORBA should be able to handle such object references. In
addition, objects hosted by such ORBs should be able to in-
voke operations on these multiple profile object references.

No single point of failure: FT-CORBA is designed to
prevent single points of failure within a distributed object
computing system. As a result, each component described
above must itself be replicated and a mechanism provided
to deal with potential failures and recovery, as described in
Section 2.4.

Bounded fault detection and notification: The FT-
CORBA standard mandates a timely detection and notifi-
cation of faults to theReplicationManager and sub-
sequent recovery from failures.

Transparent failovers: Recovery from failure and man-
aging the size of the replica object group is transparent to
clients making requests to that object group. Moreover, as
mentioned earlier, client applications should not need to dis-
tinguish between making requests to a replicated object or
a non-replicated object.

Transparent client redirection and reinvocation: As
explained earlier, the standard defines an IOGR which the
client ORB uses to send requests to the replica object group.
If a failure occurs when a client communicates with an IOR
within the IOGR, the client ORB redirects the request to
other IORs within the IOGR. The client ORB systemati-
cally reinvokes the request until the request succeeds. This
redirection and reinvocation of requests is transparent to the
client application.

To maintain theat-most-oncesemantics of the CORBA
object model, the FT-CORBA standard defines aREQUEST

service context that the client ORB includes in requests.
The REQUESTservice context includes a uniqueclient ID
for the client, aretention ID, and anexpiration timefor the
request. The client ID and retention ID together uniquely
identify a request. This mechanism is used by the server
ORB to identify duplicate requests. For any duplicate re-
quest that has already been successfully serviced before, the
server ORB sends identical replies as before from the log of
requests and corresponding replies it maintains. The expi-
ration time is used to determine the amount of time that a
server ORB should maintain the log for a request and its
corresponding reply, if any.

FT-CORBA also defines theGROUP VERSION service
context that the client ORB sends in a request. This service
context includes the group version number of the replica
group to which it sends a request. The server ORB uses this
information to determine if the client ORB has an obsolete
IOGR for the server object group. If the IOGR is obsolete
the server ORB sends aLOCATE FORWARD PERMmessage
to the client ORB with the new IOGR.

2.3. Limitations of the FT-CORBA Standard

Due to the diverse set of fault-tolerance requirements and
the large variety of distributed applications requiring fault-

tolerance, the current version of the FT-CORBA standard
compromises on the number of interfaces, policies, and fea-
tures it provides. As a result, FT-CORBA vendors are free
to provide proprietary extensions. The objective in specify-
ing the standard is to gain insight into the types of exten-
sions required to satisfy additional demands imposed by a
range of applications. These insights are intended to drive
subsequent revisions of the standard.

The limitations imposed by the current FT-CORBA stan-
dard include the following:

Legacy ORBs: A client hosted by a legacy ORB not sup-
porting the FT-CORBA standard can continue to invoke op-
erations on the replicated server. However, it will not benefit
from the fault-tolerant properties offered by the replicated
server.

Vendor dependences: All hosts belonging to a single
fault tolerance domain must use ORBs from the same ven-
dor to ensure interoperability and a higher degree of fault
tolerance beyond what is specified by the FT-CORBA stan-
dard. This limitation stems from the fact that the vendors
are free to provide proprietary extensions to overcome lack
of provision of certain domain-specific interfaces or policies
in the FT-CORBA standard.

Deterministic behavior: For the infrastructure-
controlled consistency style, deterministic behavior is
required of application objects, as well as ORBs, to ensure
strong replica consistency.

Inability to handle certain types of faults: The FT-
CORBA standard provides no mechanism to handle faults
due to network partitioning. In addition, it cannot handle (1)
commission faults, where incorrect results are produced by
the hosts or objects and (2)correlated faults, where errors
are caused due to design or programming faults.

2.4. Impact of DOORS on the FT-CORBA Standard

DOORS was developed prior to the FT-CORBA stan-
dard as an experimental fault tolerant CORBA middleware.
Through our contributions and active participation in the
OMG working group on Fault Tolerant CORBA, the con-
cepts pioneered by DOORS and the lessons learned imple-
menting fault tolerant CORBA middleware have been inte-
grated into the FT-CORBA standard. The current version
of DOORS implements a subset of the functionality of the
FT-CORBA standard. Below, we describe the FT-CORBA
functionality offered by DOORS and present the interaction
protocol among the DOORS components. This description
also outlines how the DOORS model has influenced the FT-
CORBA standard.

Figure 9 illustrates the interaction of key components
in the DOORS framework. As shown in the figure,
DOORS has aReplicationManager component that

CORBA ORB

SERVER
 OBJECT 1

SERVER
OBJECT 2

FAULT
DETECTOR

FAULT
DETECTOR

is_alive ()is_alive ()

fault notifications

create_object ()

APP.
OBJECT

set
properties

CORBA ORB

REPLICATION
MANAGER

CORBA ORB

CORBA ORB CORBA ORB CORBA ORBcreate
object ()

create
object ()

SUPER
FAULT

DETECTOR

SUPER
FAULT

DETECTOR

CORBA ORB CORBA ORBPRIMARY SECONDARY

heartbeat

heartbeat

create _group ()

heartbeat

Figure 9. Components in the DOORS Fault
Tolerance Architecture

encapsulates most of the property management and group
management functionality defined in FT-CORBA. The
FaultDetector and the Super FaultDetector
components support hierarchical fault detection and notifi-
cation. TheFaultDetectors perform object-level fault
detection andSuper FaultDetectors perform host-
level fault detection. By making theFaultDetector and
Super FaultDetector CORBA objects, they can de-
tect the liveness of CORBA objects and perform the same
functions as process-level monitors.

In addition, FaultDetectors and Super
FaultDetectors act as FaultNotifier s and
propagate fault reports to theReplicationManager .
FaultDetectors support both push-based (heartbeats)
and pull-based (polling) object monitoring. All FT-CORBA
infrastructure components,i.e., theFaultDetector and
ReplicationManager , are monitored by aSuper
FaultDetector via heartbeats. Thus, DOORS uses
replication and monitoring of infrastructure components to
ensure there is no single point of failure in the system.

DOORS uses a service strategy to provide fault toler-
ance to CORBA applications. This strategy has been in-
corporated into the FT-CORBA standard. The service-
level management components of FT-CORBA are de-
rived directly from DOORS’ service-level management
components, such as itsReplicationManager s and
FaultDetectors .

2.5. Overview of the FT-CORBA/DOORS Fault Tol-
erance Protocol

Figure 10 illustrates the protocol interactions between
the components of the DOORS framework when an appli-

CLIENT

 TAO ORB

NAMING
SERVICE

 TAO ORB

APP.
OBJECT

 TAO ORB

APP.
OBJECT

 TAO ORB

FAULT
DETECTOR

 TAO ORB

FAULT
DETECTOR

 TAO ORB

SUPER
FAULT

DETECTOR

 TAO ORB

REPLICATION
MANAGER

 TAO ORB

CHECK POINT
SERVER

 TAO ORB

MANAGER
OBJECT

 TAO ORB

1
7 6

heartbeat

heartbeat

PRIMARY

4

3
poll poll

3

10

8

9

SECONDARY

2

1. rep_register
2. register with fault detector
3. create and poll
4. create IOGR
5. register IOGR with NS
6. checkpoint IOGR
7. bind with naming service
8. resolve service
9. send request to primary

SUPER
FAULT

DETECTOR

 TAO ORB

5

Figure 10. FT-CORBA Component Interaction
Protocol in DOORS

cation uses aWARM PASSIVEscheme. As shown in the fig-
ure, establishing a replica group using this scheme involves
the following steps:

1. An application manager can request the
ReplicationManager to create a replica
group using thecreate object operation of the
FT-CORBA’s GenericFactory interface and
passing it a set of fault tolerance properties for the
replica group.

2. The ReplicationManager , as mandated by the
FT-CORBA standard, delegates the task of creating in-
dividual replicas to local factory objects based on the
ObjectLocation property. The local factories re-
turn individual object references of created objects to
theReplicationManager .

3. At this point, theReplicationManager informs
FaultDetector s to start monitoring the replicas.

4. TheReplicationManager collects all the IORs
of the individual replicas, creates an IOGR for the
group, and designates one of the replicas as a primary.

For anactive replication style, all replicas will be
designated as primaries.

5. The ReplicationManager then registers the
IOGR with the Naming Service, which publishes it to
other CORBA applications and services.

6. TheReplicationManager checkpoints the IOGR
and other state.

7. A client interested in the service contacts the Naming
Service.

8. The Naming Service responds with the IOGR.

9. Finally, the client makes a request and the client ORB
ensures that the request is sent to the primary replica.

Depending on the monitoring style chosen,e.g., heart-
beat vs. polling, theFaultDetector will con-
tinue monitoring the replicas at periodic intervals after
a replica group is established.FaultDetectors and
ReplicationManager send heartbeats to a primary
“Super ” FaultDetector at periodic intervals. Since
FT-CORBA does not allow single points of failures the
Super FaultDetector itself is replicated. These repli-
cas send heartbeats to each other at periodic intervals. One
suchSuper FaultDetector is designated as a primary
and others are backups. If the primary fails, the other back-
ups elect a new primary.

2.6. Unimplemented FT-CORBA features of
DOORS

This section describes features of the FT-CORBA stan-
dard not implemented in the current version of DOORS.

Active replication style: Although the DOORS’
ReplicationManager is programmed to handle
object group creation and recovery that uses theACTIVE

replication style, there is no provision in the current
version to use a group communication protocol. We are
working on an implementation that uses TAO’s pluggable
protocols framework [16], which will enable DOORS to
be configured with any group communication protocol that
can be configured into the framework.

Infrastructure-controlled logging and recovery: The
current version of DOORS just supports application-
controlled logging and recovery mechanisms. We are inte-
grating a solution based onportable interceptorsto support
infrastructure-controlled logging and recovery.

Fault notifier: The current DOORS implementation does
not provide aFaultNotifier . Instead, the fault de-
tection and notification functionality is combined in the
FaultDetector s.

2.7. DOORS Extensions to the FT-CORBA stan-
dard

This section describes the extensions DOORS provides
to address several limitations of the FT-CORBA standard or
lack of features from certain ORB.

Enhanced IOGR: For each group ofn replicas in
DOORS, the ReplicationManager creates an in-
teroperable object group reference (IOGR) withn + 1

profiles. The last profile contains a reference to the
ReplicationManager , with the object group’s identi-
fier encapsulated inside the profile.

When an IOGR is published to the client, the client
can invoke operations via the IOGR. When an object
fails to respond to polling from theFaultDetectors ,
or if the FaultDetectors fail to receive heart-
beats from the replicas, theFaultDetectors sig-
nal a failure to theReplicationManager . The
ReplicationManager starts a new backup as a correc-
tive action. At that instant, the IOGR held by the client be-
comes a “stale” object reference since the constituents of the
groups have changed. The client continues to use the same
IOGR, however, since the other constituents in the IOGR
are still valid.

After all replicas in the IOGR have been tried,
the client ORB uses the last reference to make
a call on the ReplicationManager . The
ReplicationManager which is aware of the
new IOGR for the object group uses the GIOPLO-
CATE FORWARD mechanism to forward the new IOGR
to the client ORB. The client ORB thereafter uses the
new IOGR to invoke requests on the object group. This
scheme is useful when the underlying ORB does not
provide support for theGROUP VERSION service context
that detects stale IOGRs.

Fault notification: The DOORS FaultDetector s
use proprietary interfaces to notify faults to the
ReplicationManager . The DOORS fault notifi-
cation interfaces enable theReplicationManager
to locate the failed object group in its internal tables. In
contrast, the interfaces provided by FT-CORBA are less
efficient because they are based on the interfaces defined
by the CORBANotification service, which use CORBA
Anys to pass information.

Additional properties: DOORS defines additional prop-
erties to identify the replica type,e.g., PRIMARY, BACKUP,
or IDLE. In addition, DOORS defines a property that deter-
mines how many missed heartbeats to allow before declar-
ing a replica object dead. This property is important to pre-
vent unnecessary fault detection and recovery, which is ex-
pensive and degrades system availability until recovery is
completed.

3. Requirements for High-performance, Fault
Tolerant CORBA

Our experience implementing the FT-CORBA specifi-
cation and the TAO ORB [3] has provided many insights
on the requirements for implementing high-performance
and fault tolerant middleware. Below, we describe these
requirements, which we categorize into (1) ORB Core-
specific and (2) FT-CORBA service-specific.

3.1. ORB Core Requirements for High-
performance FT-CORBA

This section describes the requirements that must be ad-
dressed to implement a high-performanceORB Core to sup-
port FT-CORBA.

IOGR parsing and connection establishment: To
send a request, the FT-CORBA standard recom-
mends that the client ORB first establish a connection
to the TAG FT PRIMARY replica component of the
TAG INTERNET IOP profile. Since the FT-CORBA stan-
dard does not mandate the location of theTAG FT PRIMARY

component, the ORB core must provide an efficient strategy
of parsing the IOGR to extract the desired component.

Implementing efficient IOGR component parsing is
complicated for the passive replication style when the pri-
mary replica has failed and an alternate replica is promoted
to the primary. In this case, the client ORB has a stale
IOGR. Thus, any request made to the primary replica com-
ponent in the stale IOGR will fail and the client ORB must
reissue the request on alternate replicas belonging to the
server object group.

If the alternate replica to which a connection is estab-
lished and request is reissued is not a primary, the client
ORB will receive one or moreLOCATION FORWARD mes-
sages, thereby degrading response time. Thus, the ORB
Core should provide efficient and predictable IOGR pars-
ing and handling ofLOCATION FORWARD messages.

As explained in Section 2.2, the server ORB is required
to parse both incoming client requests and service their con-
texts. If it receives aGROUP VERSION service context,
the server ORB must determine based on the group ver-
sion number if the IOGR in the client request is stale. In
this event, the server ORB must first respond with anLO-
CATE FORWARD PERM exception to the client and pass it
the latest IOGR. The server ORB should implement these
steps efficiently to improve response time and increase
availability.

2. Reliable handling of messages: As mentioned in Sec-
tion 2.2, in the event of failure, the client ORB must retry
the request to other components of the IOGR. Below, we
outline three scenarios that make this task challenging to
implement efficiently.

� Client receives no reply: Several factors can cause
a client not to receive a reply. For example, a server object
may have failed, a tw-way request may execute for an ex-
tended time, or network congestion may delay a reply. Nor-
mally, the client ORB or communication protocol associates
a timeout with every invocation to the server. If the delay in
receiving a reply is longer than the timeout, the client ORB
does not propagate an exception to the application. Instead,
it pings the server to determine liveness.

If the server does not respond to the ping, the client ORB
attempts to contact the server over alternative network paths
specified in the IOGR. If that fails too, then the client ORB
tries to establish a connection with an alternate replica. A
poor implementation of this scheme could result in jitter
and reduce predictability, which is unacceptable for certain
mission-critical applications.

� Failure of server object processing: In an
infrastructure-controlled consistency style, the server ORB
is required to track the CORBA requests relative to the tar-
get object group. When a client request arrives at the server
ORB, it can be in two different states if the target object
crashes:

1. The target object could have failed just before an upcall
is made to the servant.

2. The target object could have failed after an upcall to
the servant is made.

The information logged by the server ORB’s logging mech-
anism should cater to these different failure conditions. To
guarantee predictable response time, therefore, efficient im-
plementations of the logging and recovery mechanism must
be provided.

� Duplicate client messages: To handle duplicate
client messages and preserve CORBA’s “at-most-once” se-
mantics, the server ORB must parse the incoming client re-
quest to extract theREQUESTservice context. This infor-
mation identifies the request that the server ORB must use
to consult the log and determine if it is a duplicate. Efficient
implementations of request parsing for the service contexts
and log lookups are essential to guarantee bounded and pre-
dictable response time to clients.

3.2 Service-level requirements for Fault Tolerant
CORBA

For FT-CORBA to be widely used, it is imperative that
the FT-CORBA service layer incur negligible impact on
performance. This section describes the FT-CORBA ser-
vice requirements that must be addressed to provide high
performance.

Support for dynamic system configuration: The FT-
CORBA standard provides the interfaces to dynamically set
fault tolerance properties, such as the fault monitoring inter-
val or minimum number of replicas. Dynamic configuration
is essential for fine tuning the system for high performance,
e.g., for thePULL-based monitoring style the average fail-
ure detection time is half the polling interval. Thus, for a
large polling interval, the failure detection time will be large
and unacceptable for systems requiring high availability. In
contrast, decreasing the polling interval to a small value in-
creases the overhead of end-to-end messages, thereby de-
grading performance.

Bounded recovery time: Applications using passive
replication styles will incur a transient period during failure
recovery when the system is unavailable. Thus, for appli-
cations requiring high availability, the time to recover from
failures should bounded. This in turn can help improve per-
formance since response time is more predictable, thereby
reducing the number of unnecessary retransmissions. For
active replication styles, the overhead to maintain replica
consistency should be negligible.

Minimal overhead of the FT-CORBA components:
Since the FT-CORBA standard does not allow single
points of failure, fault-tolerance must be provided for the
components of the FT-CORBA service, such asFault
Detector s and theReplication Manager . Fault
detection and recovery of these components should add neg-
ligible overhead to the system.

4. Concluding Remarks

A growing number of CORBA applications with strin-
gent performance requirements also require fault tolerance
support. The most flexible strategy for providing fault tol-
erance to CORBA applications is via higher-level CORBA
services integrated with an enhanced ORB Core. To ad-
dress these necessary enhancements in a standard manner,
the OMG recently adopted the Fault Tolerant CORBA (FT-
CORBA) specification [14].

To make FT-CORBA usable by performance-sensitive
applications it must incur negligible overhead. To address
these requirements, therefore, an FT-CORBA implementa-
tion should possess the following characteristics:

1. The fault detection and failovers incurred by servers
should be transparent to clients.

2. Response time to the client should be efficient and pre-
dictable, irrespective of server failovers.

3. The overhead incurred by the FT-CORBA implemen-
tation should maintain application performance re-
quirements, such as efficiency and scalability, within
designated bounds end-to-end.

To achieve these goals, implementations of FT-CORBA
must address the ORB Core and the service layer require-
ments described in this paper. We are currently applying a
variety of architectural, design, and optimization principle
patterns [17] to improve the performance of the DOORS
implementation of FT-CORBA.

References

[1] Object Management Group,The Common Object Request Broker:
Architecture and Specification, 2.3 edition, June 1999.

[2] Steve Vinoski, “CORBA: Integrating Diverse Applications Within
Distributed Heterogeneous Environments,”IEEE Communications
Magazine, vol. 14, no. 2, February 1997.

[3] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, “The
Design and Performance of Real-Time Object Request Brokers,”
Computer Communications, vol. 21, no. 4, pp. 294–324, Apr. 1998.

[4] Kenneth Birman and Robbert van Renesse,Reliable Distributed
Computing with the Isis Toolkit, IEEE Computer Society Press, Los
Alamitos, 1994.

[5] Veritas, “Veritas FirstWatch,”
www.veritas.com/us/products/firstwatch, 2000.

[6] Yennun Huang and Chandra Kintala, “Software Implemented Fault
Tolerance: Technologies and Experience,” in23rd International
Symposium on Fault-tolerance Computing (FTCS), Toulouse,
France, June 1993, pp. 2–10.

[7] MSCS, “Microsoft NT Server Edition,” www.microsoft.com, 1998.

[8] Priya Narasimhan,Transparent Fault Tolerance for CORBA, Ph.D.
thesis, University of California, Dept. Of Electrical and Computer
Engineering, Santa Barbara, CA, Dec. 1999, Available as Technical
Report UCSB 99-18.

[9] Silvano Maffeis, “Adding Group Communication and
Fault-Tolerance to CORBA,” inProceedings of the Conference on
Object-Oriented Technologies, Monterey, CA, June 1995, USENIX.

[10] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann,Pattern-Oriented Software Architecture: Patterns for
Concurrency and Distributed Objects, Volume 2, Wiley & Sons,
New York, NY, 2000.

[11] Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith,
“Using Interceptors to Enhance CORBA,”IEEE Computer, vol. 32,
no. 7, pp. 64–68, July 1999.

[12] M. Cukier, J. Ren, C. Sabnis, W.H. Sanders, D.E. Bakken, M.E.
Berman, D.A. Karr, and R.E. Schantz, “AQuA: An Adaptive
Architecture that provides Dependable Distributed Objects,” in
IEEE Symposium on Reliable and Distributed Systems (SRDS),
West Lafayette, IN, Oct. 1998, pp. 245–253.

[13] P.Y. Chung, Y. Huang, S. Yajnik, D. Liang, and C.Y. Shih,
“Providing Fault Tolerance to CORBA Applications,” inPoster at
Middleware ’98, Lake District, England, Sept. 1998.

[14] Object Management Group,Fault Tolerant CORBA Specification,
OMG Document orbos/99-12-08 edition, December 1999.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, Reading, MA, 1995.

[16] Carlos O’Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama Othman,
and Jeff Parsons, “The Design and Performance of a Pluggable
Protocols Framework for Real-time Distributed Object Computing
Middleware,” inProceedings of the Middleware 2000 Conference.
ACM/IFIP, Apr. 2000.

[17] Balachandran Natarajan, Aniruddha Gokhale, Douglas C. Schmidt,
and Shalini Yajnik, “Applying Patterns to Improve the Performance
of Fault-Tolerant CORBA,” inProceedings of the 7th International
Conference on High Performance Computing (HiPC 2000),
Bangalore, India, Dec. 2000, ACM/IEEE.

