
DAnCE: A QoS-enabled Component

Deployment and Configuration Engine

Gan Deng, Jaiganesh Balasubramanian, William Otte, Douglas C. Schmidt,
and Aniruddha Gokhale

Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37203, USA?

Abstract

This paper presents two contributions to the study of component deployment for
distributed real-time and embedded (DRE) systems. First, it uses an inventory
tracking systems (ITS) as a case study to elicit challenges involved in deploy-
ing DRE systems to account for their quality of service requirements. Second,
it describes how we designed and implemented the Deployment And Configu-
ration Engine (DAnCE), which is QoS-enabled middleware that addresses the
challenges that arose in the context of our ITS case study. Our experience shows
that DAnCE provides an effective platform for deploying DRE system compo-
nents using a standard runtime environment and metadata.

1 Introduction

Component middleware platforms are an effective way of achieving systematic
reuse and composition of software artifacts [1]. In these platforms, components
are units of implementation and composition that collaborate with other compo-
nents via ports, including (1) facets, which define interfaces that accept point-to-
point method invocations from other components, (2) receptacles, which indicate
dependencies on point-to-point method interfaces provided by other components,
and (3) event sources/sinks, which enable the exchange of typed messages with
one or more components. Groups of related components can be connected to-
gether via their ports to form component assemblies that can be deployed to
particular nodes in a target domain. Implementations of component assemblies
are bundled into packages that can contain (1) multiple binary executables of the
same component written in different languages and for different OS platforms
and (2) metadata that describes the package contents.

In large-scale distributed real-time and embedded (DRE) systems, such as
shipboard computing environments [2], inventory tracking systems [3], and in-
telligence, surveillance and reconnaissance systems [4], component middleware
features can help make the software more flexible by separating (1) application
functionality from (2) system lifecycle activities, such as component configura-
tion and deployment. Conventional component middleware platforms, such as
J2EE and .NET, is not well-suited for these types of DRE systems since they do

? This work is supported in part by funding from DARPA, NSF, LMCO ATC, LMCO
ATL, LMCO Eagan, Raytheon, and Siemens CT.



not provide real-time quality of service (QoS) support. QoS-enabled component
middleware, such as CIAO [5], Qedo [6], and PRiSm [7], have been developed to
address these limitations by combining the flexibility of component middleware
with the predictability of Real-time CORBA.

QoS-enabled component middleware, however, also introduces new complex-
ities that stem from the need to (1) deploy component assemblies into the ap-
propriate DRE system target nodes, (2) activate and deactivate component as-
semblies automatically, (3) initialize and configure component server resources
to enforce end-to-end QoS requirements of component assemblies, and (4) sim-
plify the configuration, deployment, and management of common services used
by applications and middleware. The lack of portable, reusable, and standard
mechanisms to address these challenges is hindering the adoption of component
middleware technologies for DRE systems.

To meet these challenges, we have developed the Deployment and Configu-
ration Engine (DAnCE), which is an open-source (www.dre.vanderbilt.edu/
CIAO) QoS-enabled middleware framework compliant with the OMG Deploy-
ment and Configuration specification [8] that enables the deployment of DRE
system component assemblies by addressing various QoS-related concerns, such
as collocation, memory constraints, and processor loading. The deployment and
configuration of components in DAnCE, therefore, involves mapping known vari-
ations in the application requirements space (such as variations in QoS require-
ments) to known variations in the software solution space (such as configuring
the underlying network, OS, middleware, and application parameters to satisfy
the end-to-end QoS requirements).

The key capabilities provided by DAnCE to support deployment and config-
uration of DRE systems include:
– One-time parsing and storing of component configuration and deployment

descriptions (which are represented as metadata in XML format) so that
runtime parsing overhead is not incurred during component deployment.

– Automatic downloading of component packages so that the implementations
can be changed seamlessly as components migrate from one node to another,
even in a heterogeneous target domains.

– Automatic configuration of object request brokers (ORBs), containers, and
component servers to (1) meet the desired QoS requirements and (2) re-
duce human operator mistakes introduced while configuring middleware and
application components.

– Automatic connection1 of component ports so that developers need not be
concerned with these low-level details.

– Automatic deployment and lifecycle management of common middleware
services, such as directory, event, security, and load balancing services, so
that developers can concentrate on component business logic, rather than
tedious and error-prone programming activities concerned with managing
these common services.

1 In the context of this paper, a connection refers to the high-level binding between an
object reference and its target component, rather than a lower-level transport (e.g.,
TCP) connection.



The remainder of this paper is organized as follows: Section 2 provides an
overview of inventory tracking system (ITS) case study that elicits many chal-
lenges of deploying large-scale DRE systems; Section 3 describes how we designed
and applied DAnCE to resolve key challenges in our ITS case study; Section 4
compares our work with related efforts; and Section 5 presents concluding re-
marks.

2 Deployment and Configuration Challenges in

Component-based DRE Systems

To illustrate the deployment and configuration challenges in DRE systems, this
section presents a case study of a representative component-based DRE system
called the inventory tracking system (ITS) [3]. An ITS is a warehouse man-
agement infrastructure that monitors and controls the flow of goods and assets
within a storage facility. Users of an ITS include couriers (such as UPS, DHL, and
Fedex), airport baggage handling systems, and retailers (such as Walmart and
Target). This section first provides an overview of the structure/functionality of
our ITS case study and then uses the case study to describe configuration and
deployment challenges.

2.1 Overview of ITS

An ITS provides mechanisms for managing the storage and movement of goods
in a timely and reliable manner. For example, an ITS should enable human op-
erators to maintain the inventory throughout a highly distributed system (which
may span organizational boundaries), and track warehouse assets using decen-
tralized operator consoles. In conjunction with colleagues at Siemens [3], we have
developed the ITS shown in Figure 1 and deployed it using DAnCE. Figure 1

Fig. 1: Key Components in the ITS Case Study

shows how our ITS consists of the following three subsystems:

– Warehouse management, whose high-level functionality and decision-
making components calculate the destination locations of goods and delegate
the remaining details to other ITS subsystems.



– Material flow control, which handles all the details (such as route cal-
culation and transportation facility reservation) needed to transport goods
to their destinations. The primary task of this subsystem is to execute the
high-level decisions calculated by the warehouse management subsystem.

– Warehouse hardware, which deals with physical devices (such as sensors)
and transportation units (such as conveyor belts, forklifts, and cranes).

After the ITS components comprising the ITS subsystems described above
are developed, they must be configured and deployed to meet warehouse oper-
ating requirements. In our ITS case study, ∼200 components must be deployed
into 26 physical nodes in the warehouse. We focus on a portion of this system
to motivate key challenges DAnCE faced when deploying and configuring the
ITS. Figure 2 shows a subset of key component interactions in the ITS case
study shown in Figure 1. As shown in this figure, the WorkflowManager com-

Fig. 2: Component Interactions in the ITS Case Study

ponent of the material flow control subsystem is connected to the conveyor belt
and crane transportation units of the warehouse hardware subsystem. We focus
on the scenario where the WorkflowManager contacts the ConveyorBelt and
Crane components using the move_item() operation to move an item from a
source (such as a loading dock) to a destination (such as a warehouse storage
location). The move_item() operation takes source and destination locations
as its input arguments. When the item is moved to its destination success-
fully, the ConveyorBelt and the Crane inform the WorkflowManager via the
finish_mov() event operation. ConveyorBelt and Crane components are also
connected to various ItemLocationSensor components, which periodically in-
form the other components of the location of moving items.

2.2 Challenges in Configuring and Deploying ITS

Using the ITS case study described in Section 2.1, we now illustrate the deploy-
ment and configuration challenges in component-based DRE systems.

Challenge 1: Efficiently storing and retrieving component implemen-

tations. Large-scale DRE systems need capabilities that enable application



developers and deployment runtime tools to (1) upload component implementa-
tions to storage sites and/or (2) fetch component implementations from storage
sites for installation. These capabilities should allow multiple implementations
of a component written in different programming languages and run on different
OS platforms. Moreover, it should be possible to pre-stage component imple-
mentations to avoid downloading selected implementations from central storage
sites during the deployment process.

As shown in Figure 2, it is conceivable that how an ITS ConveyorBelt com-
ponent could have implementations for Linux in Java and Windows in C++,
which will require that these implementations be fetched and deployed appro-
priately on a particular node in a small and bounded amount of time.

Challenge 2: Activation, passivation, and deactivation of component

assemblies. To manage shared resources in a DRE system effectively, compo-
nents in an assembly need to be activated to become functional, passivated when
they will not be accessed for an extended period of time, and deactivated when
they are no longer needed. A key challenge is to coordinate these operations in a
complete assembly, rather than in an individual component or node. For exam-
ple, components in an assembly that collaborate by sending messages or events
must be preactivated to configure the necessary environment and resources so
that messages are exchanged in the intended fashion. In particular, all collabo-
rating components in an assembly must be preactivated before any component
is activated. Similarly, all collaborating components need to be passivated before
any component is deactivated so that no component tries to communicate after
its recipient has been deactivated.

For instance, when the ConveyorBelt component in Figure 2 is being re-
moved, the WorkflowManager component must already be passivated since oth-
erwise it could continue to make move_item() invocations on the ConveyorBelt.

Challenge 3: Configuring NodeApplication component server resources.

In large-scale DRE systems, QoS requirements (such as low latency and bounded
jitter) are often important considerations during the deployment process since
component (re)deployment may occur throughout the lifecycle of a large-scale
system. To enforce these QoS requirements, component servers and containers
must be configured in accordance with QoS properties, such as those defined
in Real-time CORBA [9]. Component deployment and configuration tools must
therefore be able to (1) specify the middleware configurations needed to config-
ure components, containers, and component servers and (2) set the QoS policy
options provided by the underlying middleware into semantically consistent con-
figurations.

For instance, in the ITS case study (Figure 2), whenever a ConveyorBelt

component’s hardware fails, it should notify the WorkflowManager in real-time
to minimize/avoid damage. Likewise, ITS ConveyorBelt and Crane components
may need to be collocated with WorkflowManager in some assemblies to minimize
latency.

Challenge 4: Configuring and deploying common middleware services.

Traditional object-oriented middleware (such as CORBA 2.x) provides DRE sys-



tems with access to common middleware services (such as Naming and Trad-
ing) through the underlying Object Request Broker (ORB) and Portable Object
Adapter (POA). Component-based middleware, such as Lightweight CORBA
Component Model (CCM) [10] enables (1) reusability of components by imple-
menting only application logic and (2) easier integration into different appli-
cations and runtime contexts. Component deployers thus need to support the
integration of common middleware services into component-based applications
for which no standard mechanisms yet exist.

For instance, Figure 2 shows how the ITS ItemLocationSensor and the
ConveyorBelt components exchange messages using event sources/sinks, which
may require the configuration of some middleware publish/subscribe services,
such as the CORBA Real-time Notification Service or the Data Distribution
Service (DDS).

Section 3.2 describes how DAnCE addresses these challenges for DRE sys-
tems and how our solutions have been applied to the ITS case study.

3 The Design of DAnCE

This section describes the Deployment And Configuration Engine (DAnCE),
which is middleware we developed based on the OMG’s Deployment and Con-
figuration (D&C) specification [8]. This specification standardizes many aspects
of configuration and deployment for component-based distributed systems, in-
cluding component configuration, component assembly, component packaging,
package configuration, package deployment, and target domain resource man-
agement. These aspects are handled via a data model and a runtime model. The
data model can be used to define/generate XML schemas for storing and inter-
changing metadata that describes component assemblies and their configuration
and deployment characteristics. The runtime model defines a set of managers
that process the metadata described in the data model during system deploy-
ment. This section shows how the design and implementation of DAnCE has
been tailored to address the D&C challenges of component-based DRE systems
described in Section 2.2.

3.1 The Structure and Functionality of DAnCE

The architecture of the Deployment and Configuration Engine (DAnCE) is
shown in Figure 3. This section describes how DAnCE provides a reusable mid-
dleware framework for deploying and configuring components in a distributed
target environment, using the ITS case study in Section 2.1 to motivate its key
capabilities. DAnCE is built atop The ACE ORB (TAO) [11] and CIAO [5],
which makes it portable to most hardware and OS platforms in use today.

As shown in Figure 3, an ITS deployer creates XML descriptors that convey
application deployment and configuration metadata, using external model driven
development (MDD) tools [12]. This metadata is compliant with the data model
defined by the OMG D&C specification. To support additional deployment and
configuration concerns not addressed by this specification, we enhanced the spec-
defined data model by describing additional deployment concerns (such as real-



Fig. 3: Overview of DAnCE

time QoS requirements and middleware service configuration and deployment)
discussed in Section 3.2.

All the metadata to describe these concerns is captured in an XML file called
the deployment plan, which describes (1) the DRE system component instances
to deploy, (2) what properties of these components should be initialized, (3) what
QoS policies these components must contain, (4) what middleware services the
components use, and (5) how the components are connected to form component
assemblies. The various entities of DAnCE shown in Figure 3 are implemented
as CORBA objects2 that collaborate as follows:

ExecutionManager runs as a daemon and is used to manage the deployment
process for one or more domains. In accordance with the D&C specification,
DAnCE defines a domain as a target environment composed of nodes, intercon-
nects, bridges, and resources. An ExecutionManager uses the factory and finder
design patterns to manager a set of DomainApplicationManagers.

DomainApplicationManager manages the deployment of components within
a single domain (to manage multiple domains, an ExecutionManager can coor-
dinate with multiple DomainApplicationManagers). A DomainApplication-

Manager splits a deployment plan into multiple subplans, one for each node in
a domain. In DAnCE, the ExecutionManager and DomainApplicationManager

objects reside in the same daemon process to improve deployment performance
by leveraging the collocation optimizations provided by TAO.

NodeManager runs in a daemon on each node and manages the deployment of
all components that reside on that node, irrespective of which application they
are associated with. Components are created by containers, which are hosted in
component server processes called NodeApplications. The NodeManager creates

2 The DAnCE deployment infrastructure is implemented as CORBA objects to avoid
the circular dependencies that would ensue if it was implemented as components,
which would have to be deployed by DAnCE itself!



the NodeApplicationManager, which in turn creates the NodeApplication pro-
cesses that host containers, thereby enhancing the reuse of components shared
between applications on a node.

NodeApplicationManager is collocated with a NodeManager to manage the
deployment of all components within a NodeApplication which is a server pro-
cess that hosts a group of related components in a particular application. To
differentiate deployments in a node, DAnCE’s DomainApplicationManager uses
the node’s NodeManager to create a NodeApplicationManager for each deploy-
ment and sends it the metadata it needs to deploy components.

NodeApplication plays the role of a component server process that provisions
the computing resources (e.g., CPU, memory and network bandwidth) for the
components it hosts. Based on metadata provided by other DAnCE managers in
the deployment process, the NodeApplication creates the initial containers that
provide an environment for creating and instantiating application components.
Components in a node are thus deployed in one or more NodeApplications in
accordance with a deployment plan.

RepositoryManager runs as a daemon dedicated to a domain and is used
by (1) deployer agents to store component implementations and (2) DAnCE’s
NodeApplicationManager to fetch necessary component implementations on de-
mand. Each NodeApplicationManager uses its RepositoryManager to search
component implementation binaries (stored in the form of dynamic linking li-
braries) and fetches them into the local node’s storage cache.

3.2 Applying DAnCE to Address DRE Systems D&C Challenges

The remainder of this section describes how (1) the DAnCE managers in Figure 3
address key DRE systems D&C challenges described in Section 2.2 and (2) our
solutions are applied to the ITS case study presented in Section 2.1.

Resolving Challenge 1: Storing and Retrieving Component Implemen-

tations via a Repository Manager. DAnCE’s RepositoryManager provides
efficient mechanisms where applications can (1) store component implementa-
tions at any time during the system lifecycle and (2) retrieve different versions of
implementations as components are (re)deployed on various types of nodes. As
shown in Figure 4, the RepositoryManager can also act as an HTTP client and
download component implementations specified as URLs in a deployment plan.
It caches these implementations in the local host where the RepositoryManager
runs so they can be retrieved by NodeApplicationManagers.

Over a system’s lifetime, a component could be migrated and redeployed
on a node whose type is different than its earlier host(s), in which case a dif-
ferent component implementation must be provided. To support efficient de-
ployment, DAnCE’s NodeApplicationManagers periodically contact the Repo-

sitoryManager to download the latest implementations of designated compo-
nents. When a component is redeployed, therefore, all its implementations can
be cached locally on the target nodes, so downloading overhead need not be
incurred during the deployment process.



DAnCE’s RepositoryManager uses ZIP compression and file archiving mech-
anisms (debin.org/zzip) to provide an efficient representation of the contents of
a ZIP archive and (de)compress all the implementations in a packaged format. It
uses CORBA operation invocations to transfer the ZIP-encoded component as-
sembly packages to the node(s) in a domain that run NodeApplicationManagers.
In the ITS case study, an initial deployment might write the ConveyorBelt

Fig. 4: Downloading implementations us-
ing the Repository Manager

Fig. 5: Different States of a Component

component in Java and host the component on an Embedded Linux node. As
the system runs, ITS developers could create a C++-based Win32 implementa-
tion of ConveyorBelt and submit it to DAnCE’s RepositoryManager. At some
point during the ITS lifecycle, the ConveyorBelt could be stopped at the current
Linux node and moved to a Windows node. To execute that deployment request,
DAnCE’s NodeApplicationManager running on the Windows node could con-
tact the RepositoryManager to retrieve the Windows implementation of the
ConveyorBelt component and deploy it. The RepositoryManager thus helps
decouple when and how ITS component implementations are developed from
when they are deployed.

Resolving Challenge 2: Using the DomainApplicationManager to Co-

ordinate the Component Assembly Lifecycle. During the lifecycle of the
component assembly, DAnCE’s DomainApplicationManager maintains preac-

tive, active, passive, and deactivated runtime state information on each
component in the component assembly, as shown in Figure 5. The preactive

state indicates that the component has been created and has been provided its
environment settings. The active state indicates that the component has been
activated with the underlying middleware. The passive state indicates that the
component is idle and all its resources can be used by other components. The de-

activated state means that the component has been deactivated and removed
from the system.

During the deployment process, DAnCE’s DomainApplicationManager en-
sures that components are not connected and activated until all the components



are in the preactive state. Similarly, during assembly deactivation, DAnCE’s
DomainApplicationManager ensures that components in an assembly are deac-
tivated only when all the components are in the passive state.

To ensure that a component’s ongoing invocations are processed completely
before it is passivated, all operation invocations on a component in CIAO are
dispatched by the standard Lightweight CCM Portable Object Adapter (POA),
which maintains a dispatching table that tracks how many requests are being
processed by each component in a thread. CIAO uses standard POA reference
counting and deactivation mechanisms to keep track of the number of clients
making invocations on a component. After a server thread finishes processing
the invocation, it decrements the reference count in the dispatching table. Only
when the count is zero, is the component passivated. CIAO therefore ensures
that the system is always in a consistent state to ensure that no invocations
are lost. To prevent new invocations from arriving at the component while it is
being passivated, the container blocks new invocations for this component in the
server ORB using standard CORBA portable interceptors.

In the ITS case study, DAnCE’s DomainApplicationManager ensures that
the ItemLocationSensor components does not make operation invocations on
the ConveyorBelt components unless both are active. Similarly, during the de-
activation of the ConveyorBelt component, the DomainApplicationManager

ensures that WorkflowManager components are passivated, which ensures that
all move_item() requests are handled properly. Finally, the ConveyorBelt com-
ponent’s POA ensures that all requests being processed by the component are
dispatched before deactivating the component.

Resolving Challenge 3: Configuring NodeApplication Component Ser-

ver Resources. To enforce QoS requirements, DAnCE extends the OMG D&C [8]
specification to define NodeApplication server resource configurations, which
heavily influence end-to-end QoS behavior. Figure 6 shows the different cate-

Fig. 6: Specifying RT-QoS requirements Fig. 7: Example Server Resources Specifi-
cation

gories of server configurations that can be specified using the DAnCE server re-
sources XML schema, which are related to system end-to-end QoS enforcement.



In particular, each server resources specification can set the following options:
(1) ORB command-line options, which control TAO’s connection management
models, protocol selection, and optimized request processing, (2) ORB service
configuration option, which specify ORB resource factories that control server
concurrency and demultiplexing models. Using this XML schema, a system de-
ployer can specify the designated ORB configurations.

As described in Section 3.1, components are hosted in containers created
by the NodeApplication process, which provides the run-time environment and
resources for components to execute and communicate with other components
in a component assembly. The ORB configurations defined by the server re-
sources XML schema are used to configure NodeApplication processes that host
components, thereby providing the necessary resources for the components to
operate. Since the deployment plan describes the components and the artifacts
required to deploy the components, DAnCE extends the standard OMG D&C
deployment plan to specify the server resource configuration options.

As shown in Figure 3, XMLConfigurationHandler parses the deployment
plan and stores the information as IDL data structures that can transfer infor-
mation between processes efficiently and enables the rest of DAnCE to avoid
the runtime overhead of parsing XML files repeatedly. The IDL data structure
output of the XMLConfigurationHandler is input to the ExecutionManager,
which propagates the information to the DomainApplicationManager and Node-

ApplicationManager. The NodeApplicationManager uses the server resource-
related options in the deployment plan to customize the containers in the Node-

Application it creates. These containers then use other options in the deploy-
ment plan to configure TAO’s Real-time CORBA support, including thread
pool configurations, priority propagation models, and priority-banded connec-
tion models.

ITS components, such as ItemLocationSensor and WorkflowManager, have
stringent QoS requirements since they handle real-time item delivery activities.
The server resource configurations for all nodes hosting these components are
specified via an MDD tool. Figure 7 shows an example XML document that
specifies the server resource configurations defined by a system deployer. The
XMLConfigurationHandler parses the descriptors produced the MDD tool to
notify the NodeApplicationManager. To honor all the specified configurations,
the component servers hosting these components are configured with server-
declared priority model with the highest CORBA priority, thread pools with
preset static threads, as well as priority-banded connections.

Resolving Challenge 4: Configuring Common Middleware Services

During the Deployment Process. To support the integration of common
middleware services into component-based applications, DAnCE provides a meta-
programmable service integration framework shown in Figure 8. This figure
shows how DAnCE uses the service integration framework to integrate various
middleware services into a DRE system. At the heart of this service integra-
tion framework is the DAnCE Service Configurator, which is hosted in each
NodeApplication. Common middleware services (such as the Naming Service,



Fig. 8: Configuring Common Middleware Services

Event Service, and TAO Real-time Event Service) are configured using standard
CORBA interfaces and hence the usage patterns of such middleware services can
be formulated easily. For example, when an application uses TAO’s Real-time
Event Service, it needs to (1) initialize and configure the QoS properties of the
event channel, (2) define the semantic behaviors of event publishers and event
consumers, and (3) register the event publishers and event consumers through
the event channel interfaces.

To configure and deploy middleware services via DAnCE, CIAO encapsulates
these common usage patterns and provides a set of reusable service libraries, one
for each type of middleware service, e.g., we designed CIAO Real-time Event Ser-
vice library for the Real-time Event Service provided by TAO. Each library is a
wrapper facade of the middleware service provided by the underlying ORB that
shields component developers from tedious and error-prone programming tasks
associated with initializing and configuring QoS-enabled common middleware
services. These libraries also expose interfaces to the DAnCE Service Configu-
rator to manage the services. For example, the Real-time Event Service Config
shown in the Figure 8 captures the various usage and configuration options
(such as event dispatching threading model, event dispatching priority model
and event filtering model) for the CIAO Real-time Event Service library. Our
DAnCE Service Configurator is designed to support any CORBA service, even
those developed to use the earlier CORBA 2.x object model.

During the deployment process, DAnCE uses the deployment plan to express
service configuration properties associated with components and assemblies that
inform the NodeApplicationManager how to initialize the middleware services
with desired configuration settings. The NodeApplicationManager then conveys
to the NodeApplication which components to create and which middleware
services they require. In response, the NodeApplication triggers the DAnCE
Service Configurator to load and configure the corresponding CIAO middleware
service libraries automatically.

ITS deployment engineers can use MDD tools [13, 14] to model the inter-
actions between the ItemLocationSensor and ConveyorBelt components and



could indicate whether a direct connection or an event channel is needed for com-
munication. Moreover, stringent QoS requirements such as timing constraints
and event delivery latency could also be specified in the communication between
the two components. If a direct connection is specified, then at deployment time
DAnCE makes the ItemLocationSensor component with an event source port
cache the object reference of the event sink port of the ConveyorBelt compo-
nent. After the deployment is complete, these two components can communicate
directly through a CORBA remote invocation call. If the DRE system deployer
specifies the use of CIAO Real-time Event Service, then DAnCE service configu-
rator and its metadata-based configuration mechanisms configures and manages
the service and its QoS settings to provide the desired QoS.

4 Related Work
As component middleware becomes more pervasive, there has been an increase
in research on technologies, platforms, and tools for deploying components effec-
tively within distributed systems. This section compares our work on DAnCE
with other related efforts.

The OpenCCM (corbaweb.lifl.fr/OpenCCM/) Distributed Computing In-
frastructure (DCI) federates a set of distributed services to form a unified dis-
tributed deployment domain for CCM applications. DCI, however, implements
the Packaging and Deployment (P&D) model defined in the original CCM speci-
fication, which omits key aspects in the component configuration and deployment
cycle, including package repository management, server real-time QoS configu-
ration, and middleware service configuration and deployment. We are currently
working with the OpenCCM team to enhance their DCI so that it is compliant
with the OMG D&C specification and DAnCE.

[15] proposes using an architecture descriptive language (ADL) that allows
assembly-level activation of components and describes assembly hierarchically.
Although DAnCE is similar, it uses the XML descriptors synthesized by MDD
tools to characterize the metadata regarding components to deploy. Likewise,
DAnCE descriptors can specify QoS requirements and/or server resource config-
urations, so its deployment mechanisms are better suited to deploy applications
with desired real-time QoS properties.

[16] proposes the use of the Globus Toolkit to deploy CCM components on
a computational grid. Unlike DAnCE, this approach does not provide model-
driven development (MDD) tools that enable developers to capture various con-
cerns, such as deployment planning and server configuration, visually. Moreover,
DAnCE is targeted at DRE systems with stringent real-time QoS requirements,
rather than grid applications, which do not provide real-time support.

Proactive [17] is a distributed programming model for deploying object-
oriented grid applications. Proactive defines applications as virtual structures
and removes references to the physical machines from the functional code writ-
ten for the applications. The functional code is mapped to the physical machines
using XML descriptors. DAnCE is similar since it also separately describes the
target environment using XML descriptors, but it goes further to specify com-
ponent interdependencies and ensure system consistency at deployment time.



Moreover, Proactive work focuses on deploying Java applications on Java vir-
tual machines, whereas DAnCE implements the OMG D&C specification, which
focuses on deploying DRE systems using language- and platform-independent
component middleware written in different languages and running on different
operating systems.

5 Concluding Remarks

Component middleware is intended to enhance the quality and productivity of
software and software developers by elevating the level of abstraction used to
develop distributed systems. Conventional middleware, however, generally lacks
mechanisms to handle deployment concerns for distributed real-time and embed-
ded (DRE) systems. This paper describes how we addressed these concerns in
the Deployment And Configuration Engine (DAnCE), which is an open-source
implementation of the OMG’s Deployment and Configuration (D&C) specifica-
tion targeted for deploying and configuring DRE systems based on Lightweight
CORBA Component Model (CCM). DAnCE leverages model-driven develop-
ment (MDD) tools and QoS-enabled component middleware features to sup-
port (1) the efficient storage and retrieval of component implementations, (2)
component activation, passivation, and removal semantics within component as-
semblies, (3) configuring QoS-related client/server resources, and (4) integrating
common middleware services into applications.

Our future work on DAnCE will focus on (1) integrating reliable multicast
mechanisms in TAO to the various *Manager objects described in Section 3.1
to improve the scalability and reliability of the deployment process, (2) extend-
ing DAnCE to support dynamic component assembly reconfiguration, redeploy-
ments, and migrations, (3) enhancing DAnCE to provide state synchronization
and component redeployment or recovery support for a fault-tolerant middleware
infrastructure, such as MEAD [18], and (4) applying specialization techniques
(such as partial evaluation and generative programming) to optimize DRE sys-
tems using metadata contained in component assemblies.

References

1. Heineman, G.T., Councill, B.T.: Component-Based Software Engineering: Putting
the Pieces Together. Addison-Wesley, Reading, Massachusetts (2001)

2. Schmidt, D.C., Schantz, R., Masters, M., Cross, J., Sharp, D., DiPalma, L.: To-
wards Adaptive and Reflective Middleware for Network-Centric Combat Systems.
CrossTalk (2001)

3. Nechypurenko, A., Schmidt, D.C., Lu, T., Deng, G., Gokhale, A.: Applying MDA
and Component Middleware to Large-scale Distributed Systems: a Case Study.
In: Proceedings of the 1st European Workshop on Model Driven Architecture with
Emphasis on Industrial Application, Enschede, Netherlands, IST (2004)

4. Sharma, P., Loyall, J., Heineman, G., Schantz, R., Shapiro, R., Duzan, G.:
Component-Based Dynamic QoS Adaptations in Distributed Real-Time and Em-
bedded Systems. In: Proc. of the Intl. Symp. on Dist. Objects and Applications
(DOA’04), Agia Napa, Cyprus (2004)



5. Wang, N., Gill, C., Schmidt, D.C., Subramonian, V.: Configuring Real-time As-
pects in Component Middleware. In: Proc. of the International Symposium on
Distributed Objects and Applications (DOA’04), Agia Napa, Cyprus (2004)

6. Ritter, T., Born, M., Unterschütz, T., Weis, T.: A QoS Metamodel and its Realiza-
tion in a CORBA Component Infrastructure. In: Proceedings of the 36th Hawaii
International Conference on System Sciences, Software Technology Track, Dis-
tributed Object and Component-based Software Systems Minitrack, HICSS 2003,
Honolulu, HW, HICSS (2003)

7. Sharp, D.C., Roll, W.C.: Model-Based Integration of Reusable Component-Based
Avionics System. In: Proc. of the Workshop on Model-Driven Embedded Systems
in RTAS 2003. (2003)

8. Object Management Group: Deployment and Configuration Adopted Submission.
OMG Document ptc/03-07-08 edn. (2003)

9. Object Management Group: Real-time CORBA Specification. OMG Document
formal/02-08-02 edn. (2002)

10. Object Management Group: Light Weight CORBA Component Model Revised
Submission. OMG Document realtime/03-05-05 edn. (2003)

11. Schmidt, D.C., Levine, D.L., Mungee, S.: The Design and Performance of Real-
Time Object Request Brokers. Computer Communications 21 (1998) 294–324

12. Balasubramanian, K., Krishna, A.S., Turkay, E., Balasubramanian, J., Parsons, J.,
Gokhale, A., Schmidt, D.C.: Applying Model-Driven Development to Distributed
Real-time and Embedded Avionics Systems. International Journal of Embedded
Systems special issue on Design and Verification of Real-Time Embedded Software
(2005)

13. Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt,
D.C.: A Platform-Independent Component Modeling Language for Distributed
Real-time and Embedded Systems. In: Proc. of the 11th IEEE Real-Time and
Embedded Technology and Applications Sym., San Francisco, CA (2005)

14. Edwards, G., Deng, G., Schmidt, D.C., Gokhale, A., Natarajan, B.: Model-driven
Configuration and Deployment of Component Middleware Publisher/Subscriber
Services. In: Proceedings of the Third International Conference on Generative
Programming and Component Engineering (GPCE), Vancouver, CA, ACM (2004)

15. Quema, V., Balter, R., Bellissard, L., Feliot, D., Freyssinet, A., Lacourte, S.:
Asynchronous, Hierarchical and Scalable Deployment of Component-Based Ap-
plications. In: Proc. of the 2nd International Working Conference on Component
Deployment (CD 2004), Edinburgh, UK (2004)

16. Lacour, S., Perez, C., Priol, T.: Deploying CORBA Components on a Computa-
tional Grid: General Principles and Early Experiments Using the Globus Toolkit.
In: Proc. of the 2nd International Working Conference on Component Deployment
(CD 2004), Edinburgh, UK (2004)

17. Baude, F., Caromel, D., Huet, F., Mestre, L., Vayssiere, J.: Interactive and
Descriptor-based Deployment of Object-Oriented Grid Applications. In: Proc. of
the 11th International Symposium on High Performance Distributed Computing
(HPDC’02), Edinburgh, UK (2002)

18. Narasimhan, P., Dumitras, T., Paulos, A., Pertet, S., Reverte, C., Slember, J., Sri-
vastava, D.: MEAD: Support for Real-Time Fault-Tolerant CORBA. Concurrency
and Computation: Practice and Experience (2005)


