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1 Introduction

This article is part of a continuingseries that describes object-
oriented techniques for developing reusable, extensible, and
efficient communication software. The topic of this article is
the Connector pattern. This design pattern enables the tasks
performed by network services to evolve independently of
the mechanisms that actively initialize the services. The
Connector pattern is a companion to the Acceptor pattern
[1], which enables network services to evolve independently
of the mechanisms that passively establish connections used
by the services.

The Connector and Acceptor patterns are commonly used
in conjunction with connection-oriented protocols (such as
TCP or SPX). These protocols reliably deliver data between
two communication endpoints. Establishing connections be-
tween two endpoints involves both a passive role and an
active role. The passive role initializes an endpoint of com-
munication at a particular address (such as an Internet IP
address and port number) and waits passively for other end-
points to connect with it. The active role initiates a connection
to the address of an endpoint playing the passive role.

The intent of the Connector and Acceptor patterns is to de-
couple the active and passive connection roles, respectively,
from the network services performed once connections are
established. Common connection-oriented network services
include remote login, file transfer, and access to World-Wide
Web resources. This article describes how separating the
connection-related processing from the service processing
yields more reusable, extensible, and efficient communica-
tion software.

This article is organized as follows: Section 2 motivates
the Connector pattern by illustrating how it can be used
to actively establish connections with a large number of
peers in a connection-oriented, multi-service, application-
level Gateway; Section 3 describes the Connector pattern
in detail and illustrates one way to implement it in C++; and
Section 4 presents concluding remarks.
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Figure 1: A Connection-oriented, Multi-service Application-
level Gateway

2 Motivation

To illustrate the Connector pattern, consider the multi-
service, application-levelGateway shown in Figure 1. This
Gateway routes several types of data (such as status in-
formation, bulk data, and commands) between network ser-
vices running on Peers that monitor and control a satellite
constellation.1 These Peers are located throughout local
area networks (LANs) and wide-area networks (WANs).

The Gateway is connected to the Peers via reliable,
connection-oriented interprocess communication (IPC) pro-
tocols such as TCP. Using a connection-oriented protocol
simplifies application error handling and enhances perfor-
mance over long-delay WANs. Each communication service

1In design patterns terminology, the Gateway is a Mediator [2] that
coordinates interactions between its connected Peers.
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in the Peers sends and receives status information, bulk
data, and commands to and from the Gateway using sepa-
rate TCP connections. The different services are connected
to unique port numbers. For example, bulk data sent from
a ground station Peer through the Gateway is connected
to a different port than status information sent by a track-
ing station peer through the Gateway to a ground station
Peer. Separating connections in this manner allows more
flexible routing policies and more robust error handling when
connections fail.

In this system, the Gateway is responsible for initiat-
ing connections to the Peers. Thus, the Gateway plays
the active connection role and the Peers play the passive
role. In a large configuration, the Gateway must connect
to dozens or hundreds of Peers. Once the connections are
established, the Gateway routes data from Peer to Peer
for each type of service it supports.

To decouple the various types of routing services from
the mechanisms that actively establish connections, the
Gateway uses the Connector pattern. This pattern resolves
the following forces for network clients that explicitly use
connection-oriented communication protocols:

� How to reuse active connection establishment code for
each new service – The Connector pattern permits key
characteristics of services (such as the concurrency strat-
egy or the data format) to evolve independently and
transparently from the mechanisms used to establish the
connections. Since service characteristics change more
frequently than connection establishment mechanisms
this separation of concerns helps reduce software cou-
pling and increases code reuse.

� How to make the connection establishment code
portable across platforms that contain different network
programming interfaces – This is particularly important
for asynchronous connection establishment, which is
hard to program portably and correctly using lower-
level network programming interfaces (such as sockets
and TLI).

� How to actively establish connections with large number
of peers efficiently – The Connector pattern can employ
asynchrony to initiate and complete multiple connec-
tions in non-blocking mode. By using asynchrony, the
Connector pattern enables applications to actively estab-
lish connections with a large number of peers efficiently
over long-delay WANs.

� How to enable flexible service concurrency policies –
Once a connection is established, peer applications use
the connection to exchange data to perform some type
of service (e.g., remote login, WWW HTML document
transfer, etc.). A service can run in a single-thread, in
multiple threads, or multiple processes, regardless of
how the connection was established.

The following section describes the Connector pattern in
detail, using a modified form of the design pattern description
format presented in [2].
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complete()ACTIVATES

HANDLE  ASYNC

CONNECTION  COMPLETION
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peer_stream_
open()
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Figure 2: Structure of Participants in the Connector Pattern

3 The Connector Pattern

3.1 Intent

Decouples active service initialization from the tasks per-
formed once a service is initialized.

3.2 Applicability

Use the Connector pattern when connection-oriented appli-
cations have either or both of the following characteristics:

� The behavior of a network service does not depend on
the steps required to actively initialize a service;

� An application must establish a large number of con-
nections with peers connected over long-delay networks
(such as satellite WANs).

3.3 Structure and Participants

The structure of the participants in the Connector pattern is
illustrated by the Booch class diagram [3] in Figure 2 and
described below:2

� Connector

– Connects and activates a Svc Handler. The
Connector’s connect method implements
the strategy for actively connecting the Svc
Handler with its remote peer. The complete
method is used to activate Svc Handlers
whose connections were initiated and completed
asynchronously.

� Svc Handler

2In this diagram dashed clouds indicate classes; dashed boxes in the
clouds indicate template parameters; and a solid undirected edge with a
hollow circle at one end indicates a uses relation between two classes.
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Figure 3: Collaborations Among Participants for Syn-
chronous Connections

– Defines a generic interface for a service. The
Svc Handler contains a communication end-
point (peer stream ) that encapsulates an I/O
handle (also known as an “I/O descriptor”).
This endpoint is used to exchange data be-
tween the Svc Handler and its connected peer.
The Connector activates the Svc Handler’s
peer stream endpoint by calling its open
method when a connection completes successfully.

� Reactor

– Handles the completion of connections that were
initialized asynchronously. The Reactor allows
multiple Svc Handlers to have their connec-
tions initiated and completed asynchronously by a
Connector configured within a single thread of
control.

3.4 Collaborations

The collaborations among participants in the Connector
pattern are divided into the following three phases:

1. Connection initiation phase – which actively connects
one or more Svc Handlers with their peers. Con-
nections can either be initiated synchronously or asyn-
chronously. The Connector determines the strategy
for actively establishing connections.

2. Service initialization phase – which activates a Svc
Handler by calling its open method when the con-
nection associated with it completes successfully. The
openmethod of the Svc Handler performs service-
specific initialization.

Figures 3 and 4 illustrate the collaborations between
components for synchronous and asynchronous con-
nection initiation, respectively. The synchronous form
combines connection initiation and service initializa-
tion, whereas the asynchronous form splits them into
two phases. Note, however, that the steps in the service
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Figure 4: Collaborations Among Participants for Asyn-
chronous Connections

initialization and service processing phases are inde-
pendent of whether the connection was initiated syn-
chronously or asynchronously.

3. Service processing phase – Once the connection has
been established actively and the service has been ini-
tialized, the application enters into a service process-
ing phase. This phase performs application-specific
tasks that process the data exchanged between the Svc
Handler and its connected peer(s).

3.5 Consequences

The Connector pattern provides the following benefits:

� Enhances the reusability, portability, and extensibil-
ity of connection-oriented software – The application-
independent mechanisms for actively establishing con-
nections are decoupled from application-specific ser-
vices. Thus, the application-independent mechanisms
in the Connector are reusable components that know
how to establish a connection actively and activate
its associated Svc Handler. In contrast, the Svc
Handler knows how to perform application-specific
service processing.

This separation of concerns decouples connection estab-
lishment from service handling, thereby allowing each
part to evolve independently. The strategy for estab-
lishing connections actively can be written once, placed
into a class library or framework, and reused via in-
heritance, object composition, or template instantiation.
Thus, the same active connection establishment code
need not be rewritten for each application. Services, in
contrast, may vary according to different application re-
quirements. By parameterizing theConnectorwith a
Svc Handler, the impact of this variation is localized
to a single point in the software.
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� Efficiently utilize the inherent parallelism in the network
and hosts – A large distributed system may have sev-
eral hundred Peers connected to a single Gateway.
One way to connect all these Peers to the Gateway
is to use the synchronous mechanisms shown in Fig-
ure 3. However, the round trip delay for a 3-way TCP
connection handshake over a long-delay WAN, such as
a geosynchronous satellite, may take several seconds
per handshake. In this case, synchronous connection
mechanisms cause unnecessary delays since the inher-
ent parallelism of the network and computers is under-
utilized. In contrast, by using the asynchronous mech-
anisms shown in Figure 4, the Connector pattern can
actively establish connections with a large number of
peers efficiently over long-delay WANs.

The Connector pattern has the following drawbacks:

� Additional instructions – compared with overhead of
programming to the underlying network programming
interfaces directly. However, if parameterized types are
used, there is no significant overhead as long as the
compiler implements templates efficiently.

� Additional complexity – this pattern may add unneces-
sary complexity for simple client applications that con-
nect with a single server and perform a single service
using a single network programming interface.

3.6 Implementation

This section describes how to implement the Connector pat-
tern in C++. The implementationdescribed below is based on
the ACE OO network programming toolkit [4]. In addition
to illustrating how to implement the Connector pattern, this
section shows how the pattern interacts with other common
communication software patterns provided by ACE.

Figure 5 divides participants in the Connector pattern into
the Reactive, Connection, and Application layers.3 The Re-
active and Connection layers perform generic, application-
independent strategies for handling events and establishing
connections actively, respectively. The Application layer
instantiates these generic strategies by providing concrete
template classes that establish connections and perform ser-
vice processing. This separation of concerns increases the
reusability, portability, and extensibility of this implementa-
tion of the Connector pattern.

There is a striking similarity between the structure of
the Connector class diagram and the Acceptor class dia-
gram shown in [1]. In particular, the Reactive Layer
is identical in both and the roles of the Svc Handler
and Concrete Svc Handler are also very similar.
Moreover, the Connector and Concrete Connector
play roles equivalent to the Acceptor and Concrete

3This diagram illustrates addition Booch notation: directed edges in-
dicate inheritance relationships between classes; a dashed directed edge
indicates template instantiation; and a solid circle illustrates a composition
relationship between two classes.
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Figure 5: Layering of Participants in the Connector Pattern

Acceptor classes. In the Connector pattern,however, these
two classes play an active role in establishing a connection,
rather than a passive role.

3.6.1 Reactive Layer

The Reactive layer is responsible for handling events that oc-
cur on endpoints of communication represented by I/O han-
dles (also known as “descriptors”). The two participants at
this layer, the Reactor and Event Handler, are reused
from the Reactor pattern [5]. This pattern encapsulates OS
event demultiplexing system calls (such as select, poll
[6], and WaitForMultipleObjects [7]) with an exten-
sible and portable callback-driven object-oriented interface.
The Reactor pattern enables efficient demultiplexing of mul-
tiple types of events from multiple sources within a single
thread of control. An implementation of the Reactor pattern
is shown in [8] and the two omain roles in the Reactive layer
are describe below.

� Reactor: This class defines an interface for registering,
removing, and dispatching Event Handler objects (such
as the Connector and Svc Handler). An implementa-
tion of the Reactor interface provides a set of application-
independent mechanisms that perform event demultiplexing
and dispatching of application-specific event handlers in re-
sponse to events.

� Event Handler: This class specifies an interface that
the Reactor uses to dispatch callback methods defined by
objects that are pre-registered to handle events. These events
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signify conditions such as the completion of an asynchronous
connection or the arrival of data from a connected peer.

3.6.2 Connection Layer

The Connection layer is responsible for actively connecting
a service handler to its peer and activating the handler once
it’s connected. Since all behavior at this layer is completely
generic, these classes delegate to the concrete IPC mechanism
and concrete service handler instantiated by the Application
layer. Likewise, the Connection layer delegates to the Reac-
tor pattern in order to establish connections asynchronously
without requiring multi-threading. The two primary roles in
the Connection layer are described below.

� Svc Handler: This abstract class provides a generic in-
terface for processing services. Applications must customize
this class to perform a particular type of service.

template <class PEER_STREAM> // Concrete IPC mech.
class Svc_Handler : public Event_Handler
{
public:
// Pure virtual method (defined by a subclass).
virtual int open (void) = 0;

// Conversion operator needed by
// Acceptor and Connector.
operator PEER_STREAM &() { return peer_stream_; }

protected:
PEER_STREAM peer_stream_; // Concrete IPC mechanism.

};

The open method of a Svc Handler is called by the
Connector factory after a connection is established. The
behavior of this pure virtual method must be defined by a
subclass, which performs service-specific initializations. A
subclass of Svc Handler is also responsible for deter-
mining the service’s concurrency strategy. For example,
a Svc Handler may employ the Reactor [5] pattern to
process data from peers in a single-thread of control. To
enable this, Svc Handler inherits from the Reactor pat-
tern’s Event Handler, which the Reactor to dispatch
its handle eventmethod when events occur on the PEER
STREAM endpoint of communication. Conversely, a Svc
Handlermight use the Active Object pattern [9] to process
incoming data in a different thread of control than the one the
Connector object used to connect it. Section 3.7 illustrates
several different concurrency policies.

� Connector: This abstract class implements the generic
strategy for actively initializing network services. The fol-
lowing class interface illustrates the key methods in the
Connector factory:

template <class SVC_HANDLER, // Type of service
class PEER_CONNECTOR> // Active Conn. Mech.

class Connector : public Event_Handler
{
public:

enum Connect_Mode {
SYNC, // Initiate connection synchronously.
ASNYC // Initiate connection asynchronously.

};

// Initialization method stores Reactor *.
Connector (Reactor *r): reactor_ (r) {}

// Actively connecting and activate a service.
int connect (SVC_HANDLER *sh,

const PEER_CONNECTOR::PEER_ADDR &addr,
Connect_Mode mode);

// Defines the active connection strategy.
virtual int connect_svc_handler

(SVC_HANDLER *sh,
const PEER_CONNECTOR::PEER_ADDR &addr,
Connect_Mode mode);

// Register the SVC_HANDLER so that it can be
// activated when the connection completes.
int register_handler (SVC_HANDLER *sh,

Connect_Mode mode);

// Defines the handler’s concurrency strategy.
virtual int activate_svc_handler

(SVC_HANDLER *sh);

// Activate a SVC_HANDLER whose non-blocking
// connection has completed successfully.
virtual int handle_event (HANDLE sd);

protected:
// Event demultiplexor.
Reactor *reactor_;

// IPC mech. that establishes connections actively.
PEER_CONNECTOR connector_;

// Collection that maps HANDLEs to SVC_HANDLER *s.
Map_Manager<HANDLE, SVC_HANDLER *> handler_map_;

};

// Useful "short-hand" macros used below.
#define SH SVC_HANDLER
#define PC PEER_CONNECTION

Since Connector inherits from Event Handler, the
Reactor can automatically call back to theConnector’s
handle event method when a connection completes.
The Connector is parameterized by a particular type
of PEER CONNECTOR and SVC HANDLER. The PEER
CONNECTOR provides the transport mechanism used by
the Connector to actively establish the connection syn-
chronously or asynchronously. The SVC HANDLER pro-
vides the service that processes data exchanged with its con-
nected peer. Parameterized types are used to decouple the
connection establishment strategy from the type of service
handler, network programming interface, and transport layer
connection acceptance protocol.

The use of parameterized types helps improve portability
by allowing the wholesale replacement of the mechanisms
used by the Connector. This makes the connection establish-
ment code portable across platforms that contain different
network programming interfaces (such as sockets but not
TLI, or vice versa). For example, the PEER CONNECTOR
template argument can be instantiated with either a SOCK
Connector or aTLI Connector, depending on whether
the platform supports sockets or TLI. An even more dynamic
type of decoupling could be achieved via inheritance and
polymorphism by using the Factory Method and Strategy
patterns described in [2]. Parameterized types improve run-
time efficiency at the expense of additional space and time

5



overhead during program compiling and linking.
The implementation of theConnector’s methods is pre-

sented below. To save space, most of the error handling has
been omitted.

The main entry point for a Connector is connect:

template <class SH, class PC> int
Connector<SH, PC>::connect

(SVC_HANDLER *svc_handler,
const PEER_CONNECTOR::PEER_ADDR &addr,
Connect_Mode mode)

{
connect_svc_handler (svc_handler, addr, mode);

}

This method delegates to theConnector’s connection strat-
egy, connect svc handler, which initiates a connec-
tion:

template <class SH, class PC> int
Connector<SH, PC>::connect_svc_handler

(SVC_HANDLER *svc_handler,
const PEER_CONNECTOR::PEER_ADDR &remote_addr,
Connect_Mode mode)

{
// Delegate to concrete PEER_CONNECTOR
// to establish the connection.

if (connector_.connect (*svc_handler,
remote_addr,
mode) == -1) {

if (mode == ASYNC && errno == EWOULDBLOCK)
// If the connection hasn’t completed and
// we are using non-blocking semantics then
// register ourselves with the Reactor so
// that it will callback when the
// connection is complete.
reactor_->register_handler (this, WRITE_MASK);

// Store the SVC_HANDLER in the map of
// pending connections.
handler_map_.bind
(connector_.get_handle (), svc_handler);

}
else
// Activate if we connect synchronously.
activate_svc_handler (svc_handler);

}

If the value of the Connect Mode parameter is SYNC the
SVC HANDLER will be activated after the connection com-
pletes synchronously, as illustrated in Figure 6.

To connect with multiplePeers efficiently, however, the
Connector must be able to actively establish connections
asynchronously, i.e., without blocking the caller. Asyn-
chronous behavior is specified by passing the ASYNC con-
nection mode to Connector::connect, as illustrated in
Figure 7.

The concrete PEER CONNECTOR class provides the low-
level mechanism for initiating connections asynchronously.
The implementation of the Connector pattern shown here
uses asynchronous I/O mechanisms provided by the operating
system and communication protocol stack (e.g., by setting
sockets into non-blocking mode).

The Connector maintains a map of Svc Handlers
whose asynchronous connections are pending completion.
Once an asynchronous connection completes successfully the
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Figure 6: Collaborations Among Participants for Syn-
chronous Connections
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Reactor calls back to theConnector’shandle event
method:

// Activate a SVC_HANDLER whose non-blocking
// connection has completed successfully.

template <class SH, class PC> int
Connector<SH, PC>::handle_event (HANDLE handle)
{
SVC_HANDLE *svc_handler = 0;

// Locate the SVC_HANDLER corresponding
// to the HANDLE.
handler_map_.find (handle, svc_handler);

// Transfer I/O handle to SVC_HANDLE *.
svc_handler->set_handle (handle);

// Remove sd from Reactor.
reactor_->remove_handler (handle, WRITE_MASK);

// Remove sd from the map.
handler_map_.unbind (handle);

// Connection is complete, so activate handler.
activate_svc_handler (svc_handler);

}

The handle events method finds and removes the con-
nected svc handler from its internal map, transfers
the I/O HANDLE to the svc handler, and initializes
it by calling activate svc handler. This method
delegates the concurrency strategy designated by the SVC
HANDLER::open method:

template <class SH, class PC> int
Connector<SH, PC>::activate_svc_handler
(SVC_HANDLER *svc_handler)

{
svc_handler->open ();

}

Note that active svc handler is called when a connec-
tion is established successfully, regardless of whether con-
nections are established synchronously or asynchronously.
This uniformity of behavior makes it possible to write ser-
vices whose behavior does not depend on the manner by
which it is connected.

3.6.3 Application Layer

The Application layer is responsible for supplying a concrete
interprocess communication (IPC) mechanism and a con-
crete service handler. The IPC mechanisms are encapsulated
in C++ classes to simplify programming, enhance reuse, and
to enable wholesale replacement of IPC mechanisms. For
example, the SOCK Acceptor, SOCK Connector, and
SOCK Stream classes used in Section 3.7 are part of the
SOCK SAPC++ wrapper library for sockets [10]. Likewise,
the corresponding TLI * classes are part of the TLI SAP
C++ wrapper library for the Transport Layer Interface [6].
SOCK SAP and TLI SAP encapsulate the stream-oriented
semantics of connection-oriented protocols like TCP and
SPX with a efficient, portable, and type-safe C++ wrappers.

The two main roles in the Application layer are described
below.

� Concrete Svc Handler: This class implements the con-
crete application-specific service activated by a Concrete
Connector. A Concrete Svc Handler is instanti-
ated with a specific type of C++ IPC wrapper that exchanges
data with its connected peer. The sample code examples
in Section 3.7 use a SOCK Stream as the underlying data
transport delivery mechanism. It easy to vary the data trans-
fer mechanism, however, by parameterizing the Concrete
Svc Handler with a different PEER STREAM (such as a
TLI Stream).

� Concrete Connector: This class instantiates the generic
Connector factory with concrete parameterized type ar-
guments for SVC HANDLER and PEER CONNECTOR. In
the sample code in Section 3.7, SOCK Connector is the
underlying transport programming interface used to estab-
lish a connection actively. However, parameterizing the
Connector with a different PEER CONNECTOR (such as
aTLI Connector) is straightforward since the IPC mech-
anisms are encapsulated in C++ wrapper classes. Therefore,
the Connector’s generic strategy for passively initializing
services can be reused, while permitting specific details (such
as the underlying network programming interface or the cre-
ation strategy) to change flexibly. In particular, note that
no Connector components must change when the concur-
rency strategy is modified.

The following section illustrates sample code that im-
plements the Concrete Svc Handler and Concrete
Connector.

3.7 Sample Code

The sample code below illustrates how the Gateway de-
scribed in Section 2 uses the Connector pattern to simplify
the task of actively initializing services by connecting with
a large number of Peers. The Gateway plays the active
role in establishing connections with Peers (an implemen-
tation of a Peer using the Acceptor pattern appears in [1]).
Figure 8 illustrates how participants in the Connector pattern
are structured in the Gateway.

3.7.1 Svc Handlers for Routing

The classes shown below, Status Router, Bulk Data
Router, and Command Router, route data they receive
from a sourcePeer to one or more destinationPeers. Since
theseConcrete Svc Handler classes inherit fromSvc
Handler they can be actively connected and initialized by
a Connector. To save space, these examples have been
simplified by omitting most of the error handling code.

To illustrate the flexibility of the Connector pattern, each
open routine in a Svc Handler implements a differ-
ent concurrency strategy. In particular, when the Status
Router is activated it runs in a separate thread, the
Bulk Data Router runs as a separate process, and
the Command Router runs in the same thread as the
Reactor that demultiplexes connection completion events
for the Connector factory. Note how changes to these
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Figure 8: Structure of Participants in the Gateway Connec-
tor Pattern

concurrency strategies do not affect the architecture of the
Acceptor, which is generic and thus highly flexible and
reusable.

We’ll start by defining aSvc Handler that is specialized
for socket-based data transfer:

typedef Svc_Handler <SOCK_Stream> PEER_ROUTER;

This class forms the basis for all the subsequent routing ser-
vices. For instance, theStatus Router class routes status
data from/to Peers:

class Status_Router : public PEER_ROUTER
{
public:
// Activate router in separate thread.
virtual int open (void) {
// Thread::spawn requires a pointer to a static
// method as the entry point for the thread).
Thread::spawn (&Status_Router::svc_run, this);

}

// Static entry point into the thread, which blocks
// on the handle_event() call in its own thread.
static void *svc_run (Status_Router *this_) {
// This method can block since it
// runs in its own thread.
while (this_->handle_event () != -1)
continue;

}

// Receive and route status data from/to Peers.
virtual int handle_event (void) {

char buf[MAX_STATUS_DATA];
peer_stream_.recv (buf, sizeof buf);
// Routing takes place here...

}

// ...
};

The Bulk Data Router routes bulk data from/to
Peers:

class Bulk_Data_Router : public PEER_ROUTER
{
public:
// Activates router in separate process.
virtual int open (void) {

if (fork () > 0) // In parent process.
return 0;

else // In child process.

// This method can block since it
// runs in its own process.
while (handle_event () != -1)

continue;
}

// Receive and route bulk data from/to Peers.
virtual int handle_event (void) {

char buf[MAX_BULK_DATA];
peer_stream_.recv (buf, sizeof buf);
// Routing takes place here...

}

};

The Command Router class routes Command data
from/to Peers:

// Singleton Reactor object.
extern Reactor reactor;

class Command_Router : public PEER_ROUTER
{
public:
// Activates router in same thread as Connector.
virtual int open (void) {

reactor.register_Router (this, READ_MASK);
}

// Receive and route command data from/to Peers.
virtual int handle_event (void) {

char buf[MAX_COMMAND_DATA];
// This method cannot block since it borrows
// the thread of control from the Reactor.
peer_stream_.recv (buf, sizeof buf);
// Routing takes place here...

}
};

3.7.2 The main() Function

The main program for the Gateway is shown below. The
get peer addrs function creates the Status, Bulk
Data, andCommandRouters that route messages through
the Gateway. This function (whose implementation is not
shown) reads a list of Peer addresses from a configura-
tion file. Each Peer address consists of an IP address
and a port number. Once the Routers are initialized, the
Connector factories defined above initiate all the connec-
tions asynchronously (indicated by passing the ASYNC flag
to the connect method).

// Main program for the Gateway.

// Singleton Reactor object.
Reactor reactor;

// Define a Connector factory specialized for
// PEER_ROUTERS.

typedef Connector<PEER_ROUTERS, SOCK_Connector>
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PEER_CONNECTOR;

// Obtain lists of Status_Routers,
// Bulk_Data_Routers, and Command_Routers
// from a config file.

void get_peer_addrs (Set<PEER_ROUTERS> &peers);

int main (void)
{

// Connection factory for PEER_ROUTERS.
PEER_CONNECTOR peer_connector (&reactor);

// A set of PEER_ROUTERs that perform
// the Gateway’s routing services.
Set<PEER_ROUTER> peers;
PEER_ROUTER *peer;

// Get set of Peers to connect with.
get_peer_addrs (peers);

// Iterate through all the Routers and
// initiate connections asynchronously.

for (Set_Iter<PEER_ROUTER> set_iter (peers);
set_iter.next (peer) != 0;
set_iter++)

peer_connector.connect (peer,
peer->address (),
PEER_CONNECTOR::ASYNC);

// Loop forever handling connection completion
// events and routing data from Peers.

for (;;)
reactor.handle_events ();

/* NOTREACHED */
return 0;

}

All connections are invoked asynchronously. They complete
concurrently viaConnector::handle event callbacks
within the Reactor’s event loop, which also demulti-
plexes and dispatches routing events for Command Router
objects. The Status Routers and Bulk Data
Routers execute in separate threads and processes, respec-
tively.

Figure 9 illustrates the relationship between objects in
theGateway after four connections have been established.4

Four other connections that have not yet completed are owned
by the Connector. When all Peer connections are com-
pletely established, theGateway can route and forward mes-
sages sent to it by Peers.

3.8 Known Uses

The Reactor, Svc Handler, and Connector classes
described in this article are all provided as reusable C++
components in the ACE toolkit [4]. The Connector pattern
has been used in the following systems:

� The Ericsson EOS Call Center Management system [11]
uses the Connector pattern to allow application-level
Call Center Manager Gateways to actively establish
connections with passive Peer hosts in a distributed
system.

� The high-speed medical image transfer subsystem of
project Spectrum [12] uses the Connector pattern to ac-
tively establish connections and initialize application
services for storing large medical images. Once con-
nections are established, applications then send and re-
ceive multi-megabyte medical images to and from these
image stores.

3.9 Related Patterns

The Connector pattern utilizes several other patterns [2]. It
is a Factory that implements a generic Strategy for actively
connecting to peers and activating a service handler when
the connection is established. The connected service handler
then performs its tasks using data exchanged on the connec-
tion. Thus, the service is decoupled from the protocol used
to establish the connection.

The Connector pattern has an intent similar to the
Client/Dispatcher/Server pattern described in [13]. They
both are concerned with separating active connection estab-
lishment from the subsequent service. The primary differ-
ence is that the Connector pattern addresses both synchronous
and asynchronous connection establishment.

The Connector pattern is also closely related to the Ac-
ceptor pattern, which enables network services to evolve in-
dependently of the mechanisms that passively establish con-
nections used by the services. These two patterns are duals
of each other, in that the Connector handles the “active”
side of connection establishment and the Acceptor handles
the “passive” side. Thus, the intent, applicability, structure,
collaborations, and consequences are very similar.

4This diagram uses additional Booch notation, where solid clouds indi-
cate objects and undirected edges indicate some type of link exists between
two objects.
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4 Concluding Remarks

This paper describes the Connector pattern and gives an ex-
ample of how this pattern decouples connection initiation
from service initialization and service processing. When
used in conjunction with other patterns like the Reactor
and Acceptor, this pattern enables the creation of flex-
ible and efficient communication software. UNIX ver-
sions of the Connector, Acceptor, and Reactor patterns
are freely available via the World Wide Web at URL
http://www.cs.wustl.edu/˜schmidt/. This dis-
tribution contains complete source code, documentation, and
example test drivers for the C++ components developed as
part of the ACE object-oriented network programming toolkit
[4] developed at the University of California, Irvine and
Washington University. ACE is currently being used in com-
munication software at many companies including Bellcore,
Siemens, Motorola, Ericsson, and Kodak.

Thanks to Tim Harrison for comments on this paper.
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