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Abstract

Computer communication systems must undergo significant
changes to keep pace with the increasingly demanding and
diverse multimediaapplications that will run on the next gen-
eration of high-performance networks. To facilitate these
changes, we are developing “A Dynamically Assembled Pro-
tocol Transformation, Integration, and eValuation Environ-
ment” (ADAPTIVE). ADAPTIVE provides an integrated en-
vironment for developing and experimenting with flexible
transport system architectures that support lightweight and
adaptive communication protocols for diverse multimedia
applications running on high-performance networks. Our
approach employs a collection of reusable “building block”
protocol mechanisms that may be composed together au-
tomatically based upon functional specifications. The re-
sulting protocols execute in parallel on several target plat-
forms including shared memory and message-passing multi-
processors. ADAPTIVE provides a framework for (1) deter-
mining the functionality of customized lightweight protocol
configurations that efficiently support multimedia applica-
tions and (2) mapping this functionalityonto efficient parallel
process architectures.

1 Introduction

This paper describes a flexible environment called the ADAP-
TIVE system, “A Dynamically Assembled Protocol Trans-
formation, Integration, and eValuation Environment” [1, 2].
ADAPTIVE provides an integrated set of tools for developing
and experimenting with flexible transport system2 architec-

1This material is based upon work supported by the National Science
Foundation under Grant No. NCR-8907909. This research is also sup-
ported in part by the University of California MICRO program. Additional
support for this research was also provided by Nippon Steel Information and
Communication Systems Inc. (ENICOM), Hitachi Ltd., Hitachi America,
and Tokyo Electric Power Company.

2Transport systems combine protocol processing functionality (such as
connection management, data transmission control, remote context man-
agement, and error protection) together with operating system (OS) services
(such as memory management and process management) and hardware de-

tures that support lightweight and adaptive communication
protocols. Developing efficient transport systems and proto-
cols is becoming increasingly important to support the diverse
quality-of-service (QoS) requirements of multimedia appli-
cations running over high-performance networks. For exam-
ple, the throughput, latency, and reliability requirements of
multimedia applications such as interactive voice, video con-
ferencing, supercomputer visualization, collaborative work,
and remote process control are more stringent and varied
than those found in traditional applications such as remote
login or bulk file transfer. Likewise, the channel speed, bit-
error rates, diameter, and services (such as isochronous and
bounded-latency delivery guarantees) of high-performance
networks such as DQDB, FDDI, and ATM exceed those of-
fered by traditional networks such as Ethernet and Token
Ring.

Conventional transport systems possess several major lim-
itations and do not adequately support multimedia applica-
tions running on high-performance networks such as DQDB,
FDDI, and ATM. Among other things, these transport sys-
tem limitations involve deficiencies with (1) protocol func-
tionality, (2) protocol performance, and (3) protocol flexibil-
ity. First, existing transport systems typically provide only a
small number of conventional protocols such as TCP, UDP,
and RPC. These conventional protocols are limited by their
extraneous and obstructing functionalityand their lack of cer-
tain essential features (see Section 2 for additional details).
Second, protocol performance is limited by the selection of
inefficient protocol mechanisms that are not well-integrated
with operating system services such as memory and process
management. These performance limitations prevent mul-
timedia applications from fully exploiting the services and
channel speeds offered by the underlying high-performance
networks. Third, conventional protocol are typically de-
signed and implemented in an inflexible manner [4, 5]. This
inflexibilitygreatly increases the effort required to customize
conventional protocols to make them more suitable for par-
ticular application and high-performance network pairings.

Developing a single heavyweight protocol that efficiently
supports every class of application and network appears to
be infeasible [6]. One promising alternative is to devise mul-

vices (such as high-speed network controllers) to support applications run-
ning on local, metropolitan, and wide area networks [3].
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tiple lightweight protocols that are customized for particular
pairings of application QoS requirements and network char-
acteristics. However, the effort required to develop, deploy,
and maintain each customized protocol “by hand” makes
this approach impractical. Therefore, ADAPTIVE supports
a more flexible approach that provides automated support
for composing lightweight and adaptive protocols. ADAP-
TIVE is designed to improve protocol functionality and per-
formance via the flexible transport system development and
experimentation environment described below.

1.1 Overview of the ADAPTIVE System

We are designing and implementing the ADAPTIVE system
to address the limitations with conventional transport sys-
tems and protocols described above. ADAPTIVE provides
an integrated set of tools that enhance protocol functionality,
performance, and flexibility. These tools support the syn-
thesis of customized lightweight protocol machines that may
be configured to execute concurrently on both shared mem-
ory and message-passing multi-processor platforms. Proto-
col Machines are executable “instances” of communication
protocols that combine context information (such as round-
trip timers, local and remote addresses, sequence numbers,
and flow control window advertisements) with peer-to-peer
protocol processing tasks. To enhance functionality and per-
formance, ADAPTIVE’s lightweight protocol machines are
specially-tailored to contain only the context information and
tasks necessary to fulfill the QoS requirements of particular
applications (or classes of applications) that run in a par-
ticular network environment. This parsimonious approach
reduces the time and space overhead associated with proto-
col processing.

ADAPTIVE also provides a controlled environment for
experimenting with alternative process architectures. A
process architecture binds operating system processes with
various communication protocol entities (such as protocol
layers, messages, tasks, and connections [3]). Process ar-
chitectures significantly influence application performance
[4]. Therefore, the lightweight protocol machines synthe-
sized by ADAPTIVE tools may be configured so that cer-
tain tasks (such as checksum computation, segmentation,
(re)transmission, and end-to-end flow control) execute in par-
allel on several different types of process architectures.

In addition, ADAPTIVE supports run-time reconfigura-
tion of protocol machine functionality. This enables protocol
machines to adapt dynamically to changes in application re-
quirements (e.g., switching from unreliable to reliable data
delivery), transport system resources (e.g., buffer space and
CPU load), and network characteristics (e.g., network con-
gestion and routing). Protocol Machine adaptivity is im-
portant since applications and networks are dynamic entities
that are not necessarily served most effectively by statically
configured mechanisms.

To reduce the inflexibility associated with conventional
protocol implementations, ADAPTIVE employs a transfor-
mational methodology that automatically generates protocol

machines based upon higher-level specifications of applica-
tion QoS requirements and network characteristics. These
generated protocol machines are composed of fine-grain
“building block” protocol processing mechanisms that reside
in an object repository. This repository contains reusable im-
plementations of various mechanisms for protocol processing
such as connection establishment, retransmission, data trans-
mission control, remote context management, demultiplex-
ing, event timing, and message management. ADAPTIVE
also provides an integrated suite of performance measure-
ment tools. These tools monitor and analyze the run-time be-
havior of protocol machines in an unobtrusive and controlled
manner to precisely pinpoint performance bottlenecks.

1.2 Related Work

The ADAPTIVE system is primarily influenced by the Pro-
grammable Network Prototyping System (PNPS) [7], the
x-kernel/Avoca projects [4], the Function-based Communi-
cation SubSystem (F-CSS) [6], the Multi-Stream Protocol
(MSP) [8] and the Synthesis Kernel [9].

PNPS is an environment for prototyping and experiment-
ing with hardware implementations of MAC-layer protocols.
ADAPTIVE, on the other hand, focuses on prototyping and
experimenting with software architectures for middle-layer
(OSI reference model layers 3 and 4) and higher-layer (layers
5-7) protocols.

The x-kernel is a network protocol development and ex-
perimentation environment that is hosted in various operat-
ing systems such as UNIX and Mach. It serves as a “pro-
tocol backplane” that provides a uniform interface to sev-
eral reusable “layer-to-layer” protocol support tasks such as
message buffering, demultiplexing, and event management.
Whereas the x-kernel focuses primarily on operating system
support for layer-to-layer protocol tasks, ADAPTIVE sup-
ports end-to-end protocol functionality such as connection
handling, error protection, end-to-end transmission control,
and remote context management.

Avoca uses the x-kernel to experiment with alternative
middle-layer protocol development techniques. It empha-
sizes flexible “hand-crafted” implementations of protocols
like RPC, UDP, and TCP that support traditional data appli-
cations running in traditional network environments. ADAP-
TIVE, on the other hand, focuses on automatic generation of
flexible and adaptive protocol machines that support mul-
timedia applications in high-performance network environ-
ments.

The Function-based Communication SubSystem (F-CSS)
is a transport system architecture that dynamically configures
executing protocol stacks based on user-specified classes of
application requirements. F-CSS runs in a network of trans-
puters that communicate via message-passing [10]. ADAP-
TIVE, on the other hand, also runs on general-purpose shared
memory symmetric multi-processors.

The Multi-Stream Protocol (MSP) is a transport protocol
that executes certain mechanisms in parallel. MSP also per-
mits several mechanisms to change dynamically without loss
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of data (e.g., switching the retransmission mechanism from
go-back-n to selective repeat within an active protocol ma-
chine). Like the x-kernel, MSP focuses on mechanisms (e.g.,
how to implement the changes on-the-fly) rather than on poli-
cies that orchestrate the mechanisms (e.g., when to make the
changes and what changes should occur). ADAPTIVE, on
the other hand, focuses on both policies and mechanisms and
also addresses OS-related issues such as process architec-
tures.

The Synthesis Kernel is an operating system kernel that dy-
namically generates customized, parsimonious mechanisms
for certain operating system services. For example, it gener-
ates specially-tailored, self-tuning code at run-time that min-
imizes scheduling and context switching overhead. Whereas
the Synthesis Kernel provides adaptive mechanisms for non-
distributed operating system services, ADAPTIVE provides
adaptive mechanisms for distributed transport system proto-
col services.

The paper is organized as follows: Section 2 describes the
research background, Section 3 describes several alternative
process architectures supported by ADAPTIVE, Section 4
outlines ADAPTIVE’s architectural design and implementa-
tion, and Section 5 summarizes the paper and outlines our
future research.

2 Research Background

Transport systems must change significantly to keep pace
with the increasingly diverse quality-of-service (QoS) re-
quirements of multimedia applications that run in diverse
high-performance network environments. In particular, con-
ventional protocols (such as RPC, TCP, and TP4) supported
by existing transport systems may be inadequate for multime-
dia application QoS requirements due to certain performance
and functionality limitations. Moreover, these limitations
are exacerbated by inflexible designs and implementations
of conventional protocols that are difficult to modify and
extend [5].

2.1 Limitations with Protocol Performance
and Functionality

Conventional protocols incur unnecessary processing over-
head due to (1) extraneous and obstructing functionality and
(2) inefficient mechanisms. An extraneous protocol function
is one that is not required to fulfill the QoS requirements of
a particular application class. For example, protocols may
omit the “sequence control” task for applications that do not
require in-order delivery of transmitted Protocol Data Units
(PDU)s (such as a distributed logging facility that collects
and timestamps log records sent from multiple clients and
stores them in a centralized server database). Likewise, the
overhead of explicit connection management mechanisms
may not be required for request-response applications (such
as distributedfile servers in a local area network) [11]. More-
over, strict error control may not be necessary for applications

(such as full-motionvideo) that tolerate some degree of infor-
mation loss. Extraneous functionality becomes an “obstruc-
tion” when it prevents the satisfaction of application QoS
requirements. For example, the timer and buffer manage-
ment overhead associated with certain retransmission mech-
anisms impedes real-time delivery of data for loss-tolerant,
constrained latency applications such as interactive voice and
video.

Conventional protocols are also limited by inefficient
mechanisms that hinder application efficiency in high-
performance network environments. For example, using
stop-and-wait flow control (e.g., RPC) and go-back-n retrans-
mission schemes (e.g., TCP and TP4) for bandwidth-sensitive
applications under-utilizes the channel capacity available on
high-speed and congestion-prone links, respectively. Pro-
tocol error detection and correction mechanisms for high-
speed, low-error fiber optic networks may also be simplified
by optimizing them for the typical case of “error-free” trans-
mission [12].

In addition, conventional protocols often lack functional-
ity necessary to support certain QoS requirements found in
multimedia applications. For example, interactive telecon-
ferencing applications require reliable multicast services that
are not available in general-purpose protocols such as TCP
or TP4. Another example is the lack of transport system
support for isochronous delivery required by jitter-sensitive
applications.

2.2 Limitations with Protocol Flexibility

Conventional protocols supported by existing transport sys-
tems are typically characterized by inflexible designs and
implementations. This inflexibility perpetuates protocol per-
formance and functionality limitations by making it difficult
to replace inefficient mechanisms with more suitable alter-
natives (such as improved implementation techniques [13],
connection management schemes [14], flow control algo-
rithms [15], and error detection and recovery mechanisms
[11, 16]). Therefore, many applications remain in the pro-
crustean framework imposed by conventional protocols due
to the effort and expertise required to modify these protocols
without introducing subtle errors or inefficiencies [17].

The ADAPTIVE system provides tools that address the
limitationsof conventional protocols via an experimentation-
based methodology. This approach supports (1) flexible
and adaptive substitutionof alternative protocol mechanisms
(such as implicit vs. explicit connection establishment, se-
lective repeat vs. go-back-n retransmission, and/or periodic
vs. transmission-based remote context management) and (2)
controlled measurement of the performance impact result-
ing these mechanism substitutions. To evaluate and exper-
iment with alternative protocol mechanism configurations,
ADAPTIVE provides a modular development environment
that (1) systematically integrates and composes various pro-
tocol mechanisms that execute in several parallel process
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architectures and (2) unobtrusively monitors and measures
protocol performance in a controlled manner.

3 Process Architectures

To address protocol performance limitations, ADAPTIVE
provides an environment for experimenting with alternative
process architectures. A process architecture binds logical
and/or physical operating system processes to various com-
munication protocol entities (such as messages, layers, tasks,
and connections). The choice of a particular process archi-
tecture significantly affects application and transport system
performance [4]. This section compares and contrasts the ad-
vantages and disadvantages of several process architectures
supported by ADAPTIVE.

3.1 Process Architecture Models

There are two basic process architecture models: task-based
and Message-based. These two models differ in terms of their
structure and their performance. It is possible, however, to
implement the same protocol families (such as the ISO OSI
and Internet reference models) with either model.

A process architecture is a “logical” model that may or
may not be implemented using multiple processing elements
(PEs). Several different approaches have been proposed to
map Task-based and Message-based process architectures
onto multiple PEs [18, 19, 10, 20, 21]. Figures 1 and 2
illustrate four models of process architecture parallelism:
Layer Parallelism and Task Parallelism are Task-based pro-
cess architectures; Connectional Parallelism and Message
Parallelism are Message-based process architectures. As de-
scribed in Section 4.2, the ADAPTIVE system supports all
these models. Several criteria used to evaluate the differ-
ent parallelism models include (1) the level of parallelization
supported, (2) the overhead of synchronizing the PEs, (3) the
interprocess communication overhead associated with pass-
ing messages between the PEs, and (4) whether load balanc-
ing is supported effectively.

Task-based Process Architectures: Task-based process
architectures associate OS processes with layers or protocol
tasks, rather than with messages or connections.

� Layer Parallelism: Layer Parallelism is a coarse-
grained Task-based process architecture. As shown in Fig-
ure 1 (1), a PE is associated with each protocol layer in the
protocol stack. Messages flow through the layers in a coarse-
grain “pipelined” manner. Inter-layer buffering and flow
control is typically necessary since processing at each layer
may not execute at the same rate. The primary advantage of
layer parallelism is the simplicity of its design. The primary
disadvantages are (1) its fixed amount of parallelism (limited
by the number of protocol layers), (2) potentially high syn-
chronization and communication overhead (e.g., the cost of
synchronization and moving messages between layers), and
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Figure 1: Task-based Process Architectures

(3) poor support for PE load balancing (PEs are dedicated to
specific protocol layers).

� Task Parallelism: Task Parallelism is a fine-grained
Task-based process architecture. This approach utilizes mul-
tiple PEs that perform protocol processing tasks in parallel.
These tasks include (1) connection management, (2) header
composition and decomposition (e.g., address resolution and
demultiplexing), (3) PDU-level and bit-level error protec-
tion (e.g., detecting and reporting out-of-sequence PDUs and
performing checksum computation), (4) segmentation and
reassembly, and (5) flow control. Figure 1 (2) illustrates
a Task Parallelism configuration where multiple PEs oper-
ate as a fine-grain pipeline on messages flowing through the
sender-side of a protocol machine. Designs based on Task
Parallelism often assume a “delayered” protocol stack that
relaxes the protocol layer boundaries associated with the In-
ternet and ISO OSI reference models [18]. The primary
advantage of this approach is the performance gain from us-
ing multiple PEs. However, the disadvantages are that it is
difficult to eliminate the memory contention, synchroniza-
tion, and interprocess communication overhead. Moreover,
as with Layer Parallelism, Task Parallelism does not facilitate
load balancing.

Task-based process architectures have several advantages.
For example, this approach often corresponds closely to
standard layered communication architecture specifications,
which helps to simplify protocol family designs and imple-
mentations [22]. Moreover, each protocol component per-
forms its processing within a single address space. This pro-
vides an implicit serialization point for messages destined
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for the same protocol component, thereby reducing the effort
required to implement synchronization and mutual exclusion
logic.

However, Task-based process architectures have several
disadvantages. For example, depending on the operating
system structure and underlying hardware, they may incur a
high amount of context switching, scheduling, synchroniza-
tion and data copying as messages flow through the layered
protocol components [3]. In addition, the parallelism pro-
vided by a Task-based process architecture may be limited if
only a one-to-one correspondence exists between processes
and protocol layers. In particular, most existing protocol
families (such as OSI and TCP/IP) possess relatively few
protocol layers.

Message-based Process Architectures: Message-based
process architectures associate OS processes with messages
and connections rather than with protocol layers or tasks
[4, 20].

� Connectional Parallelism: Connectional Parallelism
is a Message-based process architecture that dedicates a sepa-
rate PE for each active connection. Figure 2 (1) illustrates this
approach, where connectionsC1; C2; C3, andC4 are bound to
separate PEs that process all messages associated with their
connection. This approach is useful for servers that maintain
many open connections simultaneously. The advantages of
Connectional Parallelism are (1) the inter-layer communi-
cation overhead is reduced (since moving between protocol
layers may not require switching the process context), (2) the
synchronization and communication overhead is relatively
low within a given connection, and (3) the degree of par-
allelism is a function of the number of active connections
rather than the number of layers. One disadvantage with
Connectional Parallelism is the difficulty of PE load balanc-
ing. For example, a highly active connection may swamp its
PE with messages, leaving other PEs tied up at less active or
idle connections. In addition, it is typically necessary to use
packet filters [23] at the network interface. Packet filters al-
low higher-level protocols to instruct the network interface to
demultiplex particular types of PDUs to them. Packet filters
are necessary for Connectional Parallelism since the network
interface must demultiplex using PDU address information
(such as connection identifiers or port numbers) that is ac-
tually associated with protocols several layers above in the
protocol stack.

� Message Parallelism: Figure 2 (2) depicts Message
Parallelism, where a separate PE is associated with each in-
coming or outgoing message. These messages are typically
stored in shared memory buffers. A pointer to the message is
passed to the next available PE, which performs all the pro-
tocol processing tasks on that message. The advantages of
Message Parallelism are similar to Connectional Parallelism.
Moreover, the level of parallelism may be very high since it
is a function of the number of messages exchanged, rather
than the number of layers, tasks, or connections. In addi-
tion, processing loads may be balanced more evenly between
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Figure 2: Message-based Process Architectures

PEs. The primary disadvantage of Message Parallelism is
the overhead of synchronizing messages bound for the same
higher-layer protocol machine. This overhead results from
synchronization and mutual exclusion primitives that serial-
ize access to shared resources (such as memory buffers and
protocol machine control blocks used to reassemble protocol
segments bound for the same higher-layer protocol machine).

Message-based process architectures have several advan-
tages. For example, they may effectively use a large number
of available processing elements if processes are associated
with messages [20]. This increased parallelism may improve
load balancing, leading to higher overall transport system
throughput. For example, each incoming message may be
dispatched to an available processing element on a massively
parallel multi-processor. Moreover, since all the protocol
tasks applied to a message reside in the same process address
space, synchronous intra-process subroutine calls and up-
calls [24] may be used to communicate between the protocol
layers. This may be more efficient than using asynchronous
inter-process message queues, which incur additional context
switch overhead [4] when exchanging messages between lay-
ers in different processes. In addition, Message-based pro-
cess architectures do not impose a total ordering on messages
destined for the same protocol machine. This is advantageous
for protocols that utilize application level framing [25], where
application data unit boundaries are maintained throughout
the layered protocol processing stages.

Message-based process architectures also have several dis-
advantages. For instance, performance may degrade signif-
icantly if the OS is incapable of associating a process with
each message efficiently. This problem is exacerbated when
communication loads are high and message inter-arrival and
departure times are close together. In addition, complex
interactions between messages and protocol machines may
increase synchronization complexity, mutual exclusion over-
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head, and shared memory contention at the receiver. For
example, messages bound for the same higher-layer protocol
machines must coordinate to share protocol machine state in-
formation correctly between multiple cooperating processes.

4 Design of the ADAPTIVE System

The research objectives of the ADAPTIVE project are (1) to
precisely specify and classify application QoS requirements,
(2) to determine appropriate process architecture and pro-
tocol mechanisms that support these QoS requirements in
various high-performance network environments, (3) to pre-
cisely characterize the interfaces and interrelationships be-
tween the mechanisms, (4) to develop object-oriented tech-
niques for designing, implementing, and composing these
mechanisms efficiently, correctly, and modularly, (5) to inte-
grate the mechanisms into suites of customized lightweight
protocols that support application and network diversity, and
(6) unobtrusively collect metrics that measure protocol ma-
chine behavior and precisely pinpoint performance bottle-
necks. The following section summarizes the major com-
ponents of the ADAPTIVE system developed to meet these
objectives.

4.1 ADAPTIVE Components and Transfor-
mational Phases

The two primary stages of ADAPTIVE are protocol machine
generation and protocol machine execution. In the protocol
machine generation stage, ADAPTIVE creates executable
lightweight protocol machines. These protocol machines are
customized for the QOS requirements of particular appli-
cations (or classes of applications) that run in a particular
network environment. In the protocol machine execution
stage, applications execute generated protocol machines to
perform their data transport activities efficiently. If the pre-
configured protocol machines are inadequate, applications
may also customize protocol machine functionality at run-
time using additional ADAPTIVE reconfiguration services.

The architecture of the ADAPTIVE system contains sev-
eral components used during these stages. These compo-
nents are represented via a collection of formalisms, tools,
and resources that perform various activities related to pro-
tocol machine generation, execution, and measurement. The
remainder of this subsection discusses these components, for-
malisms, tools, and activities.

4.1.1 Protocol Machine Generation Stage

To facilitate automation and reuse of various ADAPTIVE
system services and tools, the protocol machine generation
stage is organized into several distinct phases. Figure 3
illustrates the transformations between the primary system
components in each phase. The first transformation turns
specifications of application QoS requirements into platform-
independent Protocol Machine configurations. These config-

urations describe the processing tasks that will be executed
in a particular order on incoming and outgoing PDUs. The
second transformation turns the resulting configurations into
Protocol Machine instantiations that are suitable for the target
execution platform. These instantiations are derived from a
collection of reusable protocol mechanisms stored in an ob-
ject repository.

(A) Protocol Machine Specification Phase: In the speci-
fication phase, ADAPTIVE’s transformation components re-
ceive descriptions of application QoS requirements. These
components then attempt to produce executable instantia-
tions of protocols that correspond to the specified require-
ments. Specifications of QoS requirements are passed to the
ADAPTIVE system either statically (e.g., by system config-
uration utilitiesduring transport system boot-time)or dynam-
ically (e.g., by applications during their connection initiation
phase). QoS requirements may be specified via several in-
terfaces:

� Protocol Machine Specification Language: This is
a high-level, non-procedural notation that specifies quan-
titative and qualitative application QoS requirements [6].
Quantitative criteria represent “measurable” characteristics
of QoS such as “bit per-second,” “milli-seconds,” or “errors
per PDU.” Qualitative criteria represent attributes such as
“reliable,” “in-order delivery,” and “record-oriented.” As de-
scribed below in the protocol machine configuration phase,
application QoS requirements written in the Protocol Ma-
chine Specification Language are submitted to the Protocol
Machine Configurator, which converts these requests into a
lower-level platform-independent notation.

� Named Protocol Machine Selection: Applications
may bypass the bulk of the configuration and instantiation
process via a Named Protocol Machine Selection facility that
directly invokes preconfigured Protocol Machine Instantia-
tions stored in a system library. This facility minimizes the
run-time performance overhead associated with the protocol
machine generation stage. It is used by applications whose
QoS requirements are satisfied by existing preconfigured pro-
tocol machines for standard network services (such as file
transfer, remote login, or interactive voice). The choice
of using the Protocol Machine Specification Language vs.
the Named Protocol Machine Selection involves a tradeoff
between customized functionality and reduced protocol ma-
chine generation overhead.

(B) Protocol Machine Configuration Phase: The con-
figuration phase transforms Protocol Machine Specification
Language descriptions into platform-independent Protocol
Machine Task Graph Configuration Language descriptions.
A Protocol Machine Task Graph is an abstraction that rep-
resents a “blueprint” of protocol machine functionality. It
describes the peer-to-peer tasks (such as connection manage-
ment, segmentation, or duplicate control) and ordered inter-
relations (such as “perform resequencing before reassembly”
or “compute checksum before flow control”) of various tasks
that process the PDUs. As shown in Figure 4, each node in

6



SERVICE
 SPECIFICATION SESSION

HEADER

STREAM
HEADER

STREAM
SPECIFICATION

PROTOCOL
RESOURCE

DESCRIPTORS

PRE-DEFINED
PROTOCOL
MACHINE

INSTANTIATIONS

PRE-DEFINED
PROTOCOL
MACHINE

CONFIGURATIONS

PROTOCOL
MACHINE

INSTANTIATION
(EXECUTABLE)

TYPICAL
PATH

NON-TYPICAL
PATH

INTERFACE

INSTANTIATION

PROTOCOL
MACHINE

CONFIGURATION
(NON-EXECUTABLE)

APPLICATION-
 SELECTED
PROTOCOL

MACHINE(S)

PLATFORM
DEPENDENT

COMPONENTS

PROTOCOL
DEVELOPERS

PLATFORM
INDEPENDENT
COMPONENTS

CONFIGURATION
TOOLS

SYNTHESIS
TOOLS

APPLICATIONS
SERVICE

INTERFACE

PROTOCOL
RESOURCE  POOL

Figure 3: ADAPTIVE System Components and Transformations

the graph constitutes a well-defined task such as connection
establishment and termination, retransmission, acknowledg-
ment, flow control, checksum calculation, multicast, or rout-
ing. The edges of the graph express interrelations between the
nodes and characterize (1) the flow of PDU control informa-
tion and (2) the relationships between the ordered tasks. The
configuration phase generates Protocol Machine Task Graph
Configurations via the following tools and formalisms:

� Protocol Machine Configurator: This tool trans-
forms specifications of application QoS requirements writ-
ten in the Protocol Machine Specification Language into a
Protocol Machine Task Graph Configuration. As with the
protocol machine specification phase, input to the Proto-
col Machine Configurator may be submitted either statically
(during transport system boot-time) or dynamically (at run-
time during connection initiation). The Protocol Machine
Configuration generates a “program” written in the Protocol
Machine Task Graph Configuration Language described in
the following bullet. As shown in Figure 3, applications and
system configurations utilities may bypass the Protocol Ma-
chine Configurator and specify the Protocol Machine Task
Graph Configuration directly. This “short-circuit” interface
offers a tradeoff between the convenience of programming
at a higher-level of abstraction and increased control over
protocol functionality.

� Protocol Machine Task Graph Configuration Lan-
guage: This language is a platform-independent notation
used to configure a particular set of mechanisms that will
be executed to process incoming and outgoing PDUs. As
described in the protocol machine instantiation phase below,
programs written in this language are submitted to the Proto-
col Machine Synthesizer, which produces Protocol Machine
Instantiations created from mechanisms stored in a Protocol
Machine and Protocol Mechanism Repository. The Protocol
Machine Task Graph Configuration Language represents a
lower-level of abstraction than the Protocol Machine Spec-
ification Language (similar to the difference between pro-
gramming in an assembly language vs. a fourth-generation
language).

(C) Protocol Machine Instantiation Phase: The instanti-
ation phase transforms platform-independent configurations
written in the Protocol Machine Task Graph Configuration
Language into Protocol Machine Instantiations that are exe-
cutable on a particular target platform such as a shared mem-
ory multi-processor or a network of message-passing trans-
puters. The instantiation phase utilizes the following tools
and resources:

� Protocol Mechanism Repository: This repository
contains reusable implementations of various schemes for
connection establishment, retransmission, data transmission
control, remote context management, demultiplexing, event
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Figure 4: A Sample Protocol Machine Task Graph

timing, and message management. Repository mechanisms
are written in C++ using object-oriented design and imple-
mentation techniques such as data abstraction, inheritance,
and dynamic binding. These techniques reduce the effort
required to develop modular, flexible, extensible, and effi-
cient transport system software. For example, to enhance the
modularity of protocol mechanisms, C++’s data abstraction
features are used to integrate protocol machine context in-
formation together with the associated protocol mechanisms.
Moreover, C++ inheritance feature supports flexible protocol
machine composition by sharing and reusing existing pro-
tocol mechanisms. In addition, dynamic binding enhances
extensibility and efficiency by deferring certain representa-
tion decisions until run-time, when addition information is
available to guide the selection of more efficient protocol
mechanisms.

� Protocol Machine Synthesizer: This tool transforms
the Protocol Machine Task Graph Configuration into a Proto-
col Machine Instantiation. This instantiation is produced by
linking together certain C++ objects in the Protocol Mech-
anism Repository to produce an executable representation
that optimized for a particular target platform. The activi-
ties performed by the Protocol Machine Synthesizer (such as
syntactic and semantic analysis, optimization, and code gen-
eration) are similar to those used for compiling high-level
programming languages into object code. The Protocol Ma-
chine Synthesizer is designed to work either in conjunction
with the Protocol Machine Configurator or as a stand-alone

tool.

� Protocol Machine Instantiations and Data Streams:
Protocol Machine Instantiations orchestrate the interaction
of one or more Data Streams. Data Streams are executable
representations possessing protocol mechanisms that support
a particular set of QoS requirements during a specified time
period. As illustrated in Figure 5,Data Streams are composed
of protocol mechanisms that are customized for particular ap-
plication QoS requirements and network capabilities. More-
over, since applications may have different QoS requirements
for their sender and receiver sides, each Data Stream is uni-
directional. For example, a file transfer application may be
implemented via a Protocol Machine Instantiationpossessing
two uni-directional Data Streams with different QoS charac-
teristics for sending and receiving control and data PDUs.
Protocol Machine Instantiations also provide a synchroniza-
tion point for multimedia applications that exchange multi-
ple types of related Data Streams (such as separate voice,
video, and text channels in a multimedia tele-conference). In
ADAPTIVE, Data Stream functionality may be specified via
the Protocol Machine Task Graph Configuration Language
and automatically synthesized from C++ objects residing in
the Protocol Mechanism Repository described above.

4.1.2 Protocol Machine Execution Stage

During the protocol machine execution stage, applications
transfer data using Protocol Machine Instantiations created
in the protocol machine generation stage. The Protocol Ma-
chine Task Engine is the primary tool used during the protocol
machine execution stage:

� Protocol Machine Task Engine: When an application
“opens” a Protocol Machine Instantiation, the Protocol Ma-
chine Task Engine dynamically loads and invokes the appro-
priate Protocol Machine Instantiation(s) in the ADAPTIVE
run-time environment. This invocation sequence allocates
and initializes the necessary protocol machine control blocks
and system data structures, links protocol mechanisms to-
gether, and associates these mechanisms with one or more
operating system processes (note that these processes may
be mapped onto logical and/or physical hardware processing
elements).

ADAPTIVE optionally collects application and protocol
machine performance metrics during the execution stage.
These metrics quantify the performance tradeoffs that result
from selecting different Protocol Machine Instantiations to
support application QoS requirements. This, in turn, enables
meaningful analysis and evaluation of alternative design and
implementation strategies and helps tune transport system
components and parameters to improve performance.

A variety of metrics are required to characterize the per-
formance of protocols that support multimedia applications.
ADAPTIVE metrics are divided into two classes: blackbox
and whitebox. These classes differ depending on whether
the metric collection mechanisms instrument the internals
of Protocol Machine Instantiations. Blackbox metrics (such
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as throughput and average end-to-end delay) may be col-
lected without instrumenting the Protocol Machine Instan-
tiations, whereas Whitebox metrics typically require some
form of instrumentation. Whitebox metrics include connec-
tion establishment and termination latency, number of PDU
(re)transmissions, the number of instructions required to exe-
cute a particular protocol task, interrupt and scheduling over-
head, the degree of jitter, and PDU loss. Note that without a
development and testing environment such as ADAPTIVE,
it is difficult to collect white-box metrics and perform fine-
grained experimentation in an unobtrusive and controlled
manner.

ADAPTIVE provides flexible and extensible tools that cal-
culate standard metrics and incorporate new metrics. Exist-
ing research has explored various data collection techniques
such as software vs. hardware monitoring, time-driven vs.
event-driven monitoring, and code profiling. ADAPTIVE
integrates these approaches to extract their benefits and min-
imize their run-time overhead. The collected metric data
is analyzed using techniques such as critical path analysis
and may be displayed on a per-protocol machine, per-host,
per-subnetwork basis. The following tools and interfaces are
used to measure and analyze protocol machine performance:

�Metric Transceiver Daemon: The Metric Transceiver
Daemon receives metric samples generated by instrumented
Protocol Machine Instantiations executing in the ADAPTIVE
system. The Transceiver optionally performs certain prepro-
cessing operations (such as generating new samples with
information aggregated from smaller samples, filtering out
unneeded samples, etc.) and forwards these samples to the
Metric Collector Daemon.

�Metric Collector Daemon: The Metric Collector Dae-
mon receives metric samples from the Metric Transceiver
Daemon. It computes metric values in a periodic or event-
driven manner and displays them via a textual or graphical
interface. In addition, the Metric Collector Daemon employs
a promiscuous network packet filter [23] to examine all pack-
ets in the network and unobtrusively collect the appropriate
metric samples.

� Metric Collection Interface: This interface enables
protocol developers to instrument their code with “software
markers.” These markers generate time-stamped metric sam-
ples that report information such as the size and sequence
number of transmitted and received PDUs. These samples
are forwarded automatically to the Metric Transceiver Dae-
mon.

4.2 Process Architecture Support

The existing ADAPTIVE prototype is written in user-
space. It provides Connectional Parallelism via the multi-
processing capabilities of a 4-CPU SPARC Server 690MP
multi-processor running SunOS 4.1.2. Each connection runs
on its own processor as long as the number of connections is
less than the number of CPUs. To experiment with several
other process architecture environments, we are porting the
prototype to the x-kernel [4] and System V STREAMS [26].
This section briefly outlines these systems and describes how
ADAPTIVE is integrated into the various process architec-
tures.

The x-kernel employs a “process-per-message” Message-
based process architecture that may be configured to run
inside the host OS kernel and/or in user-space. When a
message arrives at a network interface, a separate process is
dispatched from a pool of lightweight threads to escort the
message upwards through the appropriate chain of protocol
and protocol machine objects. In general, only one context
switch is required to shepard a message through the protocol
stack, regardless of the number of intervening protocol layers.

System V STREAMS provides services for supporting
several process architectures including Layer Parallelism,
Task Parallelism, and Connectional Parallelism. In the
STREAMS approach, PDUs flows through a bi-directional
stack of STREAM modules that are located between an ap-
plication process and a network interface. STREAM mod-
ules perform protocol processing operations on the data they
receive and then forward the data to an adjacent module.
Each module contains a read queue and a write queue that

9



implement the module’s processing operations and regulate
layer-to-layer message flow between adjacent queues. In
many STREAMS implementations (such as OSF and So-
laris), separate lightweight processes may be associated with
the STREAM module’s read and write queues. These pro-
cesses may be configured to work in a “pipeline fashion,”
performing various protocol tasks on incoming and outgoing
PDUs in parallel.

The Protocol Machine Instantiation and Data Stream com-
ponents of ADAPTIVE are implemented to be relatively in-
dependent of the process architecture provided by the host
operating system. By leveraging off several C++ mecha-
nisms (such as inheritance and dynamic binding, transparent
free store management, member function inlining, and con-
ditional compilation), the ADAPTIVE subsystems possess
a small set of well-defined dependencies on the underlying
process architecture. This facilitates controlled experimenta-
tion with different process/protocol decomposition schemes
and provides additional transparency to protocol developers.
For example, objects that are accessed via several processes
are allocated in shared memory segments. This allows mul-
tiple threads of control (executing in distinct address spaces)
to inspect and/or modify the shared data structures. Objects
that are shared between multiple processes are conditionally
compiled to include the necessary mutual exclusion code to
synchronize the multiple threads of control.

5 Summary

ADAPTIVE is a flexible transport system development and
experimentation environment designed to address the in-
creasingly diverse quality-of-service requirements of mul-
timedia applications running on high-performance networks.
ADAPTIVE supports diverse applications and networks via
(1) its customized lightweight and adaptive protocol ma-
chines and (2) its alternative process architectures that help
improve protocol performance and reduce transport system
overhead. In addition, ADAPTIVE’s architecture facilitates
an “experimentation-based” protocol development method-
ology based on feedback-guided monitoring and measure-
ment. This enables ADAPTIVE to precisely measure the
performance effects resulting from selective modification of
certain process architecture and protocol mechanisms.

We are currently designing and implementing a prototype
implementation of ADAPTIVE written in C++. To exper-
iment with alternative process architectures, this prototype
is being ported to the x-kernel’s Message-based process ar-
chitecture, as well as to System V STREAMS, which sup-
ports both Message-based and Task-based process architec-
tures. We are using the prototype to experiment with al-
ternative process architectures and communication protocols
that support multimedia applications (such as network voice
and video) running on several different networks (such as
Ethernet, DQDB, and FDDI).
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