
Applying System Execution Modeling Tools to Evaluate
Enterprise Distributed Real-time and Embedded System QoS

John M. Slaby

Raytheon
Portsmouth, RI, USA

john_m_slaby@raytheon.com

Steve Baker
Raytheon

Portsmouth, RI, USA
steven_d_baker@raytheon.com

James Hill
Vanderbilt University
Nashville, TN, USA

j.hill@vanderbilt.edu

Douglas C. Schmidt
Vanderbilt University
Nashville, TN, USA

d.schmidt@vanderbilt.edu

Abstract
 Component middleware is popular for enterprise
distributed systems because it provides effective reuse of
the core intellectual property (i.e., the “business logic”).
Component-based enterprise distributed real-time and
embedded (DRE) systems, however, incur new integra-
tion problems associated with component configuration
and deployment. New research is therefore needed to
minimize the gap between the development and deploy-
ment/configuration of components, so that deployment
and configuration strategies can be evaluated well be-
fore system integration. This paper uses an industrial
case study from the domain of shipboard computing to
show how system execution modeling tools can provide
software and system engineers with quantitative esti-
mates of system bottlenecks and performance character-
istics to help evaluate the performance of component-
based enterprise DRE systems and reduce time/effort in
the integration phase. The results from our case study
show the benefits of system execution modeling tools and
pinpoint where more work is needed.

1. Introduction
 Integration challenges of component-based enter-
prise DRE systems. Enterprise DRE systems are increas-
ingly developed using applications composed of distrib-
uted components running on feature–rich middleware
frameworks. The distributed components are designed to
provide reusable services to a range of application do-
mains, which are then composed into domain-specific as-
semblies for application (re)use. Examples of component
middleware platforms include Enterprise Java Beans and
the CORBA Component Model (CCM).
 The transition to component middleware is occurring
in enterprise business systems to address problems of in-
flexibility and reinvention of core capabilities associated
with prior monolithic, functionally-designed, and “stove-
piped” legacy applications. Legacy applications were
developed with the precise capabilities required for a spe-
cific set of requirements and operating conditions. Com-
ponent-based systems, however, are designed to have a
range of capabilities that enable their reuse in other con-
texts. Moreover, these systems are developed in layers,
e.g., layer(s) of infrastructure middleware services (such
as naming and discovery, event and notification, security

and fault tolerance) and layer(s) of application compo-
nents that use these services in different compositions.
 Certain types of component middleware, such as
Real-time CCM [14], are also being applied to the do-
main of enterprise distributed real-time and embedded
(DRE) systems, such as shipboard computing environ-
ments and supervisory control and data acquisition sys-
tems, to provide users with quality of service (QoS) sup-
port to process the right data in the right place at the right
time over a grid of computers. Some QoS properties re-
quired by enterprise DRE systems include the low la-
tency and jitter as expected in conventional real-time and
embedded systems, and high throughput, scalability, and
reliability as expected in conventional enterprise distrib-
uted systems. Achieving this combination of QoS capa-
bilities in enterprise DRE systems developed using com-
ponent middleware is hard.
 Component middleware can also complicate soft-
ware lifecycle processes by shifting responsibility from
software development engineers to software configura-
tion/deployment engineers and systems engineers. Soft-
ware development engineers traditionally created entire
applications in-house using top-down design methods
that could be evaluated throughout the lifecycle. In con-
trast, software configuration and deployment engineers
and system engineers today assemble enterprise DRE
systems by composing reusable components, whose com-
bined properties are usually evaluated only during the
integration phase. Unfortunately, problems uncovered
during integration are much more costly to fix than if
they were discovered earlier in the lifecycle. A key re-
search challenge is thus exposing these types of issues
(which often have dependencies on components that are
not available until late in development) earlier in the life-
cycle, e.g., prior to the system integration phase.
 Component-based enterprise DRE systems use de-
sign- and run-time configuration steps to customize the
behavior of reusable components to meet QoS require-
ments in the context where they execute. Finding the
right configurations for components to meet application
QoS requirements is hard. For example, tuning the con-
currency configuration of a shipboard computing system
to support both real-time and fault-tolerant QoS involves
tradeoffs that challenge even experienced engineers.
Moreover, application functionality is distributed over
many components in a DRE system and developers must

interconnect their components correctly and efficiently.
This process can be tedious and error-prone using con-
ventional handcrafted configuration processes.
 The components assembled into an application must
also be deployed on the appropriate nodes in an enter-
prise DRE system. Deployment is hard since host and
network characteristics can vary statically (e.g., due to
different hardware/software platforms used in a product-
line architecture) and dynamically (e.g., due to dam-
age/faults, change in computing objectives, or differ-
ences in the real vs. expected behavior of applications
during actual operation). Evaluating the characteristics of
system deployments is therefore tedious and error-prone
when deployments are performed manually.
 Another complexity of evaluating deployments of
component-based enterprise DRE systems stems from
applications sharing components with differing QoS re-
quirements, such as a system resource manager that
processes requests from high-priority tactical applica-
tions and low-priority desktop applications. It is hard to
assure that a stand-alone application can meet stringent
QoS requirements using dedicated resources. It is harder
to assure these requirements with components that share
resources with other applications.
 Solution approach → System execution modeling
tools. Despite the flexibility offered by component mid-
dleware, there are often surprisingly few configurations
and deployments that can satisfy the functional and QoS
requirements of an enterprise DRE system. We have
therefore developed a system execution modeling tool
chain called the Component Workload Emulator (Co-
WorkEr) Utilization Test Suite (CUTS), which combines
QoS-enabled component middleware and model-driven
engineering (MDE) technologies. Software architects,
developers, and systems engineers can use CUTS to ex-
plore design alternatives from multiple computational
and valuation perspectives at multiple lifecycle phases
using multiple quality criteria with multiple stakeholders
and suppliers. In addition to validating design rules and
checking for design conformance, CUTS facilitates
“what if” analysis of alternative designs to quantify the
costs of certain design choices on end-to-end system per-
formance. For example, CUTS can help determine the
maximum number of components a host can handle be-
fore performance degrades, the average and worse re-
sponse time for various workloads, and the ability of al-
ternative system configurations and deployments to meet
end-to-end QoS requirements for a particular workload.

In the context of enterprise DRE systems, our CUTS
system execution modeling tool helps developers dis-
cover, measure, and rectify performance problems early
in the lifecycle (e.g., in the architecture and design
phases), as opposed to the integration phase, when mis-
takes are much harder and more costly to fix. This paper
shows how we used CUTS to rapidly emulate compo-

nent-based applications in an shipboard computing enter-
prise DRE system and then perform experiments that
systematically estimated and evaluated the end-to-end
QoS for key scenarios in this system.
 Paper organization. This paper is organized as fol-
lows: Section 2 summaries limitations with prior work on
QoS-enabled component middleware and MDE tools in
the context of a shipboard computing system case study;
Section 3 describes CUTS, shows how it overcomes limi-
tations with prior work, and explains how we resolved
key design challenges when developing CUTS; Section 4
shows how we applied CUTS to evaluate the QoS of
various deployments in our case study; Section 5 com-
pares our R&D efforts with related work; and Section 6
presents concluding remarks and lessons learned.

2. Background and Case Study
Our work on CUTS has evolved incrementally over

the past three years in the context of a multi-phase pro-
gram that is developing multi-layer resource management
(MLRM) services to support product-lines that coordi-
nate a grid of computers to manage many aspects of a
ship's power, navigation, command and control, and tac-
tical operations [15]. The MLRM services have hundreds
of different types and instances of infrastructure com-
ponents written in ~500,000 lines of Java and C++ code
and ~1,000 files developed by six teams at different geo-
graphic locations. This section uses our experience to
motivate the need for the CUTS system execution mod-
eling tools.

Our initial approach. To address the configuration
and deployment problems common to integrating compo-
nents in enterprise DRE systems, our initial work com-
bined QoS-enabled component middleware platforms
with MDE tools. QoS-enabled component middleware
supports the provisioning of key QoS properties, e.g.,
(pre)allocating CPU resources, reserving network band-
width/connections, and monitoring/enforcing the proper
use of DRE system resources at runtime, to meet end-to-
end requirements. MDE tools combine
• Domain-specific modeling languages (DSMLs),

which provide programming notations that formalize
the process of specifying application logic and QoS-
related requirements using type systems that pre-
cisely express key characteristics and constraints as-
sociated with DSMLs for particular application do-
mains and

• Model transformations and code generation, which
automate and ensure the consistency of software im-
plementations via analysis information associated
with functional and QoS requirements captured by
models of domain-specific structure and behavior.

 In prior work with colleagues at Washington Univer-
sity, St. Louis we developed a QoS-enabled component
middleware platform called the Component-Integrated

ACE ORB (CIAO) [14] that combines Lightweight CCM
[4] capabilities (such as standards for specifying, imple-
menting, packaging, assembling, and deploying compo-
nents) with Real-time CORBA [12] features (such as
thread pools and priority preservation policies) to create a
Real-time CCM middleware platform. Likewise, we cre-
ated an MDE tool suite called Component Synthesis using
Model Integrated Computing (CoSMIC) [7], which is an
integrated set of DSMLs that support the development,
deployment, configuration, and evaluation of enterprise
DRE systems based on Real-time CCM. CoSMIC is im-
plemented using the Generic Modeling Environment
(GME) [9], which is an open-source MDE toolkit for
creating and using DSMLs. These tools/platforms are
open-source and available from www.dre.vanderbilt.edu.
 By combining CIAO and CoSMIC, we tackled many
integration challenges associated with configuring and
deploying enterprise DRE systems by leveraging MDE
tools to enforce correct-by-construction design. For ex-
ample, we used CoSMIC’s model interpreters to generate
Real-time CCM XML configuration files [1] and CIAO’s
Deployment And Configuration Engine (DAnCE) [5] to -
deploy the resulting component assemblies on DRE sys-
tem nodes, as shown in Figure 1.

Figure 1. Integrating CIAO, DAnCE, and CoSMIC

 Limitations with our initial approach and com-
mon alternatives. To evaluate the benefits of combining
CIAO, DAnCE, and CoSMIC, we applied them in phase
one of our MLRM project [15]. Our experience, how-
ever, indicated that CIAO, DAnCE, and CoSMIC were
insufficient to evaluate the QoS of applications in enter-
prise DRE systems due to the following limitations:
• Insufficient performance evaluation. In the

MLRM environment, many different applications
ran concurrently across networks that included both
shared and dedicated components. CIAO, DAnCE,
and CoSMIC, however, provided insufficient support
for evaluating QoS-related characteristics (such as
communication delay, temporal phasing, parallel
execution, and synchronization).

• Serialized phase ordering dependencies. Applica-
tion components that exercised the MLRM infra-
structure middleware services were not developed
until later in the system lifecycle. The QoS of the in-
frastructure services therefore was not evaluated ade-
quately under realistic workloads to validate their ar-
chitecture and design.

 We initially considered evaluating MLRM QoS
characteristics via simulation. Due to size, interdependen-
cies, and the sheer number of variables involved it was
impractical to develop and evolve realistic models that
simulate complex scenarios. Moreover, while pure simu-
lation can provide valuable information about system
QoS behavior, it is hard to leverage simulation results di-
rectly in the production operational environment.

3. The Component Workload Emulator (Co-
WorkEr) Utilization Test Suite (CUTS)

To overcome the limitations described in Section 2,
we needed more effective technologies to evaluate the
end-to-end QOS characteristics of MLRM applications in
a production-scale environment, even before any actual
application components were developed. Our goals were
motivated by our experience in phase one of the MLRM
project and involved:
• Not obtaining 100% precision, but providing systems

engineers and architects with rapid, reasonably accu-
rate estimates of system QoS early in the lifecycle.

• Improving the accuracy of our estimates of system
QoS incrementally as our understanding of applica-
tion requirements, implementations, and execution
environments increased.

• Automatically transitioning select artifacts used in
our evaluations (such as models of deployment plans
that met end-to-end QoS requirements) to the com-
ponent-based application and middleware deploy-
ments and configurations we were creating.

 To meet our goals and overcome limitations with
prior work, we developed the Component Workload
Emulator (CoWorkEr) Utilization Test Suite (CUTS).
CUTS is a system execution modeling tool chain for cre-
ating component-based applications rapidly and perform-
ing experiments that systematically evaluate interactions
that are hard to simulate. In particular, CUTS provides
model-based workload generation, data reduction, and
visualization tools to construct experiments rapidly and
analyze results from alternate execution architectures.
CUTS can also import measured performance data from
faux application components running over actual infra-
structure middleware services to estimate enterprise DRE
system behavior in a realistic environment.
 When combined with our prior work on QoS-en-
abled component middleware and MDE tools, CUTS
allowed more robust and complete solutions for emulat-
ing actual application components and evaluating QoS

earlier in the enterprise DRE system lifecycle. For exam-
ple, we used CoSMIC to create models of DRE systems
composed of faux application components and actual sys-
tem infrastructure components. We then used these mod-
els with DAnCE to deploy these components into a repre-
sentative testbed (www.dre.vanderbilt.edu/ISISlab) and
conduct systematic experiments that measured how well
the system performed relative to QoS specifications from
production computing systems. This remainder of this
section presents the CUTS architecture and solutions to
design challenges we faced when developing it and ap-
plying it to the MLRM case study.

3.1 CUTS Architecture
 As outlined in Section 2, CUTS is a system execu-
tion modeling toolkit that (1) emulates portions of enter-
prise DRE systems (2) collects performance data pro-
vided by the emulation, and (3) analyzes the data to esti-
mate system QoS and pinpoint performance bottlenecks.
At the heart of CUTS is an assembly of CCM compo-
nents, called a CoWorkEr (Figure 2). A CoWorkEr is a
faux component that can be programmed rapidly to emu-
late the expected behavior and resource consumption of
its counterpart in the production application.

Figure 2. A CoWorkEr Component Assembly

CoWorkErs can be connected together via their exposed
ports to create operational strings, which are task graphs
that capture the partial ordering of a set of executing soft-
ware components. Figure 2 shows the key elements of the
CoWorkErs, which fall into two broad categories: work-
load generation and test control and analysis.
3.1.1. Workload generation is implemented in CUTS as
an assembly-based CCM component composed of the
following monolithic CCM components:
• The EventHandler can receive user-defined events. It

records the number of events received for each type
and performance metrics regarding the delay be-
tween original publication and the onset of process-
ing. The EventHandler also tracks the time required
to process each event it receives. Workloads, which
are performed by the worker components described
next, may also be associated with receiving combi-
nations and numbers of events.

• The CPUWorker performs CPU operations. As with
all workers, the quantity of work to perform is speci-
fied as a number of repetitions, which represent an
abstract unit of work.

• The MemoryWorker performs allocation and deallo-
cation of memory.

• The DatabaseWorker performs a series of insert, up-
date, and delete operations on a specified database.

• The EventProducer (which is also a worker) pub-
lishes events that carry a data payload of the desired
size. Events are time-stamped prior to transmission.

• The Trigger is provided to represent external input to
a simulated application, or regularly scheduled, time-
driven processing not resulting from the receipt of an
event. Triggers provide both periodic and pseudo-
random behavior by inducing workers to perform a
workload at a specified interval and probability of
occurrence. A Trigger can also perform startup
workload during activation.

To simplify the programming and configuration of Co-
WorkErs, we created an MDE-based DSML called the
Workload Modeling Language (WML) [15]. WML is
used to characterize the behavior of individual CoWork-
Ers by specifying their processor, memory, database, and
input/output usage profiles. XML characterization files
are then generated from a WML model, and subsequently
parsed by EventHandler and Trigger components to dic-
tate the behavior of their respective CoWorkEr.
3.1.2. Test control and analysis in CUTS includes the
following elements:
• The BenchmarkAgent completes the CoWorkEr as-

sembly shown in Figure 2. It requests test data col-
lected by EventHandlers at a user-defined interval
and transmits this data to the BenchmarkDataCol-
lector.

• The BenchmarkDataCollector (BDC) submits test
data to an in-memory BenchmarkDatabase.

• The BenchmarkManagerWeb-interface (BMW) im-
plements the test control and analysis functionality
via an ASP.NET application. This manager proc-
esses data captured in the BenchmarkDatabase and
invokes DAnCE’s ExecutionManager to start and
end the deployment of test assemblies. In addition to
the web browser interface, the BMW provides a
web-services interface that allows any programming
language that supports the Simple Object Access
Protocol (SOAP) to automate CUTS tests.

Figure 3 shows how CUTS can evaluate the QoS of en-
terprise DRE systems. Dedicated hosts, called test host,
run inside the test network and the BenchmarkDataCol-
lector and BenchmarkManagerWeb-interface exist out-
side the test network. This setup limits outside interfer-
ence on tests run using CUTS while permitting users to
analyze their results either during or after the test run.

http://www.dre.vanderbilt.edu/ISISlab

Figure 3. Example Setup of CUTS to Evaluate QoS in

an Enterprise DRE System
3.2 CUTS Design Challenges and Solutions
 We now describe solutions to key problems encoun-
tered when developing and applying CUTS.
 Challenge 1. Non-intrusive metrics collection. An
ad hoc metrics collection system might interfere with the
emulation and skew test results. Metric collection should
therefore have minimally intrusion and resource usage.
 Solution → Decouple metrics collection from
emulation, and collect metrics using a 3-phase data
acquisition process. The components described in Sec-
tion 3.1 work together to collect performance metrics in
three separate stages. In stage 1, the EventHandler main-
tains for each event type a local in-memory record of the
number received, the max/min transmission and process-
ing time, and running totals for transmission and proc-
essing time. In state 2, the BenchmarkAgent obtains the
data from the EventHandler at a user-specified interval in
a dedicated thread, and resets the EventHandler’s running
totals. The BenchmarkAgent transmits the collected data
to the BenchmarkDataCollector, which immediately
queues the data and returns. In stage 3, the Benchmark-
DataCollector dequeues the data and inserts it into a
MySQL database. Each phase of the data acquisition
process also uses a dedicated thread to minimize the im-
pact of data collection on the emulation
 All data stored and transmitted by the EventHandler
and the BenchmarkAgent is a fixed-size to ensure mem-
ory usage is bounded by a constant factor. The aspects of
metric collection that cause variable memory usage and
delays, e.g., queuing and entry of data into a database, are
placed the BenchmarkDataCollector, which is deployed
on a node not used by a CoWorkEr. Moreover, separate
networks can be used to decouple transmission of metric
data from the transmission of CoWorkEr operations.
 Challenge 2. Simplify characterization of applica-
tion workload. Some CoWorkEr users will be systems
engineers or architects, who may not be familiar with
with third-generation languages, such as C++ or Java, or
configuration languages, such as XML. It is therefore im-
portant for CUTS to offer alternatives to programmatic
interfaces and configuration files for these types of users.

 Solution → Provide graphical user interfaces for
characterizing, deploying and analyzing applications.
CUTS allows users to design simulated applications en-
tirely through visual models. In particular, the CoSMIC
and WML DSMLs allow users to create structural and
behavioral models of their applications without manually
editing configuration files or third-generation language
code. Deployment and analysis of the application is pro-
vided through an intuitive BenchmarkManagerWeb-inter-
face. More details and examples of WML appear in [15].

Challenge 3. Simplify Customization. CoWorkErs
can emulate four categories of core application work
(CPU, memory, database, and network resource utiliza-
tion), but the need for more customized behavior may
arise for particular types of enterprise DRE systems. The
design of the CoWorkErs therefore needs to support user-
defined extensions to its basic work repertoire.
 Solution → Support custom CoWorkEr compo-
nents. In the spirit of CCM, CoWorkErs employ a modu-
lar design where any monolithic components comprising
the CoWorkEr assembly shown in Figure 2 can be re-
placed with a customized component that implements the
same interface, without modification or recompilation of
other components. For example, it is straightforward to
replace the default CPUWorker with a FCPUWorker that
only performs floating-point arithmetic. In addition,
GME’s convenient inheritance support makes swapping
of components straightforward within a CoSMIC model,.
 Challenge 4. Descriptive analysis of performance.
If an emulation shows that a proposed configuration and
deployment of enterprise DRE system components will
not meet QoS expectations, CUTS users must be able to
pinpoint the source of the problem quickly to correct it.
 Solution → Present metrics in layers to support
general and detailed analysis. In addition to providing a
graphical representation of observed performance vs.
deadlines along a critical path, CUTS BenchmarkMan-
agerWeb-interface allows users to view statistics for in-
dividual CoWorkErs. A tabular display allows users to
view summary statistics for operational strings of Co-
WorkErs simultaneously, whereas detailed graphs sup-
port scrutiny of an individual CoWorkEr’s performance
over time. Statistics for processing time can also be sub-
divided to reflect the four categories of work, thereby
allowing analysts to determine whether QoS target re-
quirements are missed due to reliance upon a sluggish
database, paging due to excessive memory allocation,
saturation of network bandwidth, etc. Usage and further
discussion of these features can be found in Section 4.2.

4. Applying CUTS to Evaluate an Enterprise
DRE System
 This section describes the design and results of an
experiment that uses the CUTS systems execution mod-
eling toolchain to evaluate the QoS of a representative

enterprise DRE system from the domain of shipboard
computing. This experiment is based upon work con-
ducted in the MLRM project described in Section 2. This
project provided a representative case study for evalu-
ating CUTS since it runs on general-purpose operating
systems (such as Solaris and Linux) with real-time en-
hancements. It also uses a component-based architecture
developed using the CIAO and DAnCE Real-time CCM
middleware and CoSMIC MDE tools, has hundreds of
components types/instances and hundreds of thousands of
lines of C++ and Java code, and has been developed over
the past three years by a group of geographically distrib-
uted teams. As a result, the MLRM software base incurs
many of the same integration challenges associated with
configuration, deployment, and QoS evaluation that oc-
cur in other production enterprise DRE systems.

4.1 The MLRM SLICE Experiment using CUTS
4.1.1. Experiment motivation. One of the challenging
problems in the second phase of the MLRM project is
called the SLICE scenario, which consists of 2 sensors, 2
planners, 1 configuration, 1 error recovery, and 2 effector
components. The SLICE scenario requires the transmis-
sion of information detected by the sensors to each plan-
ner in sequence, then to the configuration component,
and lastly to both effectors to perform actions that control
devices in the physical world. Components in the SLICE
scenario are deployed across 3 computing nodes because
the workload generated by each component collectively
is more than a single node can handle. The main sensor
and effector (represented as sensor-1 and effector-1 in
Figure 4 and in following sections) are deployed on sepa-
rate nodes to reflect the placement of physical equipment
in the production shipboard system. Figure 4 shows a
model of the end-to-end layout of SLICE components,
with the critical path specified by the dashed arrows.

Figure 4. Model of SLICE Showing the Components

and Their Interconnections

 In phase two of the MLRM project, the multi-layer
resource manager infrastructure was re-implemented to
use Real-time CCM (via CIAO and DAnCE), and MDE
tools (via CoSMIC), instead of Real-time CORBA and
ad hoc deployment mechanisms used in phase one. Based
on the MLRM phase two development schedule, the inte-
gration of components that implemented the SLICE sce-
nario atop the new multi-layer resource management in-
frastructure was not slated to occur until 12 months into
the program to provide sufficient time to finish develop-
ing, testing, and optimizing the multi-layer resource

management infrastructure. The SLICE scenario, how-
ever, uses software components similar to product-lines
and challenge problems in phase one of the MLRM pro-
ject. We therefore already understood each component’s
behavior in SLICE, but did not know how overall per-
formance of the SLICE scenario would be affected by the
new MLRM infrastructure.
 In phase one, we waited until the integration phase
of our schedule to begin benchmarking the system, only
to learn none of the QoS requirements were met due to
improperly designed multi-layer resource management
infrastructure. As a consequence, our schedule slipped
and the process of reconfiguring and redeploying MLRM
application and middleware components to meet QoS re-
quirements required significant manual effort. To prevent
the same problems from happening in phase two of the
program, we used CUTS to evaluate the QoS challenges
of the SLICE scenario prior to the integration phase. Our
goal was to determine which configuration and deploy-
ment strategies will enable us to meet the QoS critical
path deadline and create a pool of selectable deployment
strategies that meet the performance requirements. The
underlying hypothesis driving the experiment was much
of the performance information could be collected prior
to the integration phase by emulating key properties of
the SLICE scenario components using CUTS. As a result,
less time would be spent integrating and testing the actual
SLICE components after they were completed.
4.1.2. Experiment design. For the SLICE scenario, there
is a 350 ms QoS critical path deadline, which is represen-
tative of the end-to-end execution time of a similar sce-
nario from phase one of the MLRM project. This dead-
line corresponds to receiving a command event on sen-
sor-1 up to performing an action with effector-1. Sensor-
1 and effector-1 must be deployed on separate nodes to
meet the constraints discussed in section 4.1.1. Table 1
describes the predicted behavior for two of the SLICE
components (which were defined using the Workload
Modeling Language) to illustrate the various types of
workload and actions for a CoWorkEr.

Planner -1 CoWorkEr

Workload performed
every second

publish command of size 24 bytes

Workload performed
after receipt of a track
event

alloc 30 KB; 55 dbase ops; 45 CPU ops;
publish assessment of size 132 bytes; de-
alloc 30 KB

Configuration-Optimization CoWorkEr
Workload performed at
startup time

alloc 1 KB; 25 dbase ops; 1 CPU ops; 10
dbase ops; dealloc 1 KB

Workload performed
after receipt of an as-
sessment event

alloc 5 KB; 40 dbase ops; 1 CPU op; pub-
lish command of size 128 bytes; dealloc 5
KB

Workload performed
after receipt of a status
event

1 dbase op

Table 1. Expected Behavior for 2 SLICE CoWorkErs

The workload specifications for each component listed in
Table 1 is based on the behavior of components imple-
mented in phase one. We obtained these values by esti-
mating the number and types of operations based our
understanding gained by implementing and testing the
functionality of the workload generators explained in
Section 3.1.1. For the predicted behavior for the remain-
ing components, please refer to [13].

Host Operating System Database
1 Fedora Core3 YES

2, 3, BDC Fedora Core3 NO
BMW Windows XP YES

Table 2. System Characteristics for Experiment Host

Each host in the CUTS-based experiments was an
IBM Blade Type L20, dual-CPU 2.8 GHz processor with
1 GB RAM with the characteristics listed in Table 2. The
middleware was version 0.4.7 of CIAO/DAnCE, and the
MDE tools used were version 0.4.6 of CoSMIC, which is
the target middleware and MDE tool for the SLICE sce-
nario in phase two. Each test was run for 10 minutes.

4.2 Viewing and Interpreting the Results of the
SLICE Experiment
 This section describes the results of tests that used
CUTS to evaluate various deployments of SLICE compo-
nents onto hosts to (1) test the capability of CUTS, (2)
determine which deployment strategies meet the 350 ms
critical path deadline when components Sensor-1 and
Effector-1 are deployed on separate nodes, and (3) prove
that workload generated by SLICE is too much when the
critical path components are deployed on a single node.
The first listing in Table 3 contains the legend for the Co-
WorkEr symbols used in the second listing.

SLICE CoWorkEr Legend for Test Table
Symbol CoWorkEr Symbol CoWorkEr

A Sensor-1 * E Config-Op *
B Sensor-2 F Error-Recovery
C Planner-2 * G Effector-1 *
D Planner-1 * H Effector-2

* represents CoWorkEr in the critical path

Deployment Strategy
Test Host 1 Host 2 Host 3

Critical Path Exe-
cution Time

(avg./worse) (ms)
1 C,D,E,F A,B G,H 411 / 1,028
2 A,B,C,D F E,G,H 420 / 1,094
3 A,B,C,D,E F G,H 416,/ 1,085
4 A,B,C,D,E,F,G,H 463 / 1,247
5 A,B,C,D,E,G,H F 467 / 1,219
6 A,C,D,E,G F B,H 323 / 844
7 A,G C,D,E B,F,H 363 / 887
8 D A,B,C,

F,G,H
E 405 / 975

9 A,D C,E,G B,F,H 235 / 387
10 A,D E,G B,C,F,H 251 / 395
11 A,D,E C,G B,F,H 221 / 343
Table 3: SLICE Results for Experiments using Differ-

ent Deployment Strategies in CUTS

4.2.1. Discussion of the hypothesis. Test 4 and 5 were
two tests that not only missed the 350 ms deadline, they
incurred the worst critical path execution time for all 11
tests. The main purpose of test 4 and 5 was to evaluate
our hypothesis that the 350 ms deadline could not be met
if all components were deployed on the same node. After
completing test 4 and 5, we validated this hypothesis –
the workload generated by components in the critical
path is more than a single node can handle, so they must
be deployed across multiple nodes. On the other hand,
test 6 deployed only the components in the critical path
on the same node, and had an average execution time of
323 ms. CUTS therefore enabled us to learn that we
could meet the 350 ms deadline if only the critical path
components were deployed on the same node.

Workload Avg.
Samples

Avg./Rep
(ms)

Avg. Time
(ms)

Transmit Delay 5 6.19
Total Workload 5 169.6
CPU 2.20859 99.39
Memory 0.00727 0.51
Publication 1.40206 1.4
Table 4. Snapshot of Timing Data for Sensor-1 in Test

8 obtained from the BMW Test Results Page

CoWorkEr Transmission
Delay (ms)

Avg. Time of
Completion (ms)

Sensor-1 6.19 169.6
Planner-1 12.11 54.03
Planner-2 10.69 110.66
Config-Op 17.04 23.84
Effector-1 0.34

Table 5. Snapshot of the Critical Path Timing Data
for Test 8 from the BMW Analysis Page

4.2.2. Interpreting the CUTS benchmark data results.
Running 11 tests with various deployment strategies pro-
vided key information about the current MLRM infra-
structure. Of the 11 tests, only 3 deployed the critical
path components across multiple nodes and completed
their end-to-end execution in 350 ms. Of these 3 tests, 2
deployed the critical path across all three nodes and com-
pleted it within an average time of 350 ms, and 1 test
(test 11) completed it within a worse time of 350 ms. Al-
though we did not exhaust all possible deployment
strategies in this experiment, we learned that only 18% (2
out of 11) of the current test passed on their planned in-
frastructure while meeting the deployment requirements
and test 11 yield the best performance.
 After running test 1 through 8, only 1 test met the
350 ms end-to-end deadline, and 7 of the tests had faults
in their deployment specification, e.g., placing a Co-
WorkEr on a host with insufficient resources to handle its
workload without missing deadlines. We used CUTS

graphical analysis features to investigate why these de-
ployment strategies did not meet their QoS requirements.

Tables 4 and 5 show the results provided via the
BenchmarkManagerWeb-interface (BMW) for test 8,
which measures the behavior when two components in
the critical path handling the most workload are deployed
on their own node. Table 4 shows the time to transmit a
message between two CoWorkErs and how long it took
to complete each type of workload – CPU, database, or
memory – for Sensor-1. For the CoWorkErs in the criti-
cal path in test 8, it took 169.6 ms for Sensor-1 to process
its workload after receipt of a command event from Plan-
ner-1; 54.0 ms for Planner-1 to perform its workload af-
ter receipt of a track event from Sensor-1 or Sensor-2;
and 110.6 ms for Planner-2 to perform its workload after
receipt of a command event from Planner-1.

For test 8, Sensor-1 and Planner-2 have the longest
completion times. Based on the quantitative analysis pro-
vided by CUTS, we realized that the Sensor-1 and Plan-
ner-2 CoWorkEr components had a heavier workload
than expected, and must be deployed on separate nodes.
We then used CoSMIC and DAnCE to place the Sensor-1
and Planner-2 CoWokErs on different hosts, which cre-
ated the deployment strategies used in test 9, 10 and 11,
all of which met the 350 ms deadline. Of those 3 tests,
test 11 was the best test case and was the only test to
have a worse execution time that meets the 350 ms dead-
line. In addition, these deployment strategies meet the de-
ployment requirements of placing Sensor-1 and Effector-
1 on different nodes, as discussed in Section 4.1.4.

More detailed examples of the types of visualizations
and analysis provided by CUTS is presented in [13].

5. Related Work
 Distrubuted system emulation environments.
Various environments can be used to emulate and evalu-
ate distributed system behavior. A popular environment
is Emulab [6], which provides tools that can be used to
configure the topology of experiments, e.g., by modeling
the underlying communication links. This topology is
mapped to ~250 physical nodes that can be accessed via
the Internet. CUTS enhances the Emulab network-centric
focus via the WML and CoSMIC DSMLs that create
tests and deployment/configuration specifications at a
high-level of abstraction that is more suitable for emu-
lating component-based DRE systems than the NS scripts
provided by Emulab to provision communication links.
 ModelNet [17] is another environment for evaluating
large-scaled distributed systems. In ModelNet, devel-
opers emulate multiple clients and hosts using one host.
For example, 100 Gnutella clients each with a 1 Mbps
bottleneck bandwidth can be emulated on one dual proc-
essor-1 GHz machine. ModelNet also facilitates the emu-
lation of faux and real applications. The CUTS emulation
environment is similar to the ModelNet environment in

that both address large-scaled distributed systems. CUTS,
however, focuses on DRE systems and uses the target
architecture to facilitate emulation and performance accu-
racy. Whereas, ModelNet seeks to provide scalable and
accurate solutions using as few hosts as possible.

System execution modeling tools. KLAPER [8] is a
modeling language that specifies system behavior for
component-based systems. Similar to WML in CUTS,
KLAPER specifies workload, such as resource utiliza-
tion, but does not capture handling of events. WML ex-
tends KLAPER by allowing sequential specification of
resource utilization, transmission and receipt of events,
and workload types, e.g. event, periodic, or startup.

UPPAAL [3] is a system execution modeling tool
that verifies properties of DRE systems via a modeling-
language and environment for verifying a system’s speci-
fied behavior early in the development stage. by dynami-
cally validates all possible behaviors with its model-
checking simulator. CUTS focuses on complementary
areas, such as (1) emulating system behavior on the target
platforms, (2) benchmarking DRE systems as a whole
and as individual components, and (3) monitoring system
flows to verify QoS requirements are met.

RT-UML [11] models and evaluates the performance
of component-based systems by defining services and
QoS policies for components, though modeling system
behavior is future work. RT-UML is also designed to be
supported by external simulation tools, which are still
under development. WML enhances RT-UML by pro-
viding a working DSML tool that allows developers to
specify a component-based system behavior, which is
then emulated by CUTS.

Evaluation techniques for component architec-
tures. [16] discusses a technique called trace-based
analysis for Enterprise Java Bean (EJB) components. In
trace-based analysis, different execution traces in a com-
ponent are monitored and dumped to a trace file con-
tained on the host. After the emulation, the trace files are
parsed and combined with the deployment descriptors,
which define the structure of the system, to determine the
different paths of execution in the system. CUTS is simi-
lar to trace-based analysis since it collects traces of exe-
cution times, but these traces are logged to a central data-
base. CUTS also monitors predetermined execution paths
in real-time, whereas [16] uses methods to reconstruct
every path autonomously, but does not monitor perform-
ance in real-time over the duration of the emulation. [16]
also focuses on service calls, whereas CUTS performance
metrics use events sent between components.

[18] and [19] discuss vertical profiling evaluation
techniques in the context of EJB. In vertical profiling,
performance metrics based on the types of operations and
actions (e.g., cache misses and CPU cycles) are collected
in trace files across multiple executions of the same tests.
The trace files are then fused through a process called

trace-alignment using a common metric that occurs in the
source traces. After the traces are aligned, correlation
analysis is applied to the traces to help determine what
other metrics collected in the trace may influence its be-
havior. [19] also discusses how to automate this process.
CUTS provides a similar approach in the context of CCM
that allows analysis of individual actions and operations
in a component. CUTS, however, goes further and allows
the analysis to happen at real-time with the emulation.

Architectures for deployment and configuration
of components. Proactive [2] is a framework for compo-
nent deployment and configuration designed for conven-
tional Java applications running on JVMs. In contrast,
CUTS leverages DAnCE [5], which is targeted for de-
ploying and configuration components in DRE systems.

The Globus Toolkit [10], which is part of the Open
Grid Standard Architecture (OGSA), is another frame-
work that handles deployment and configuration of com-
ponents for Grid computing. Unlike DAnCE, however,
Globus does not provide DSMLs for modeling various
concerns of enterprise DRE systems and validating sys-
tems before deploying them. Lastly, the DAnCE frame-
work conforms to the OMG D&C standards, which al-
lows it to leverage other efforts based on the OMG D&C
specifications, such as OpenCCM and MICO-CCM.

6. Concluding Remarks
 This paper described the Component Workload Emu-
lator (CoWorkEr) Utilization Test Suite (CUTS). CUTS
is a system execution modeling toolchain that simplifies
the creation of – and experimentation with –emulations
of applications that help evaluate the QoS of component-
based enterprise DRE systems. We also described the
design and implementation of CUTS, along with the
challenges we encountered and solutions we applied.

Our experience applying CUTS to the SLICE sce-
nario in phase two showed how systems execution mod-
eling tools can decrease the time spent resolving integra-
tion problems. Instead of waiting until full system inte-
gration, CUTS allowed us to test deployments of the
MLRM infrastructure in the actual target environment
using emulated application components. When combined
with other QoS-enabled component middleware and
MDE tools, alternative deployment plans could be evalu-
ated rapidly earlier in the lifecycle, thereby reducing the
time and effort spent in integration. Although phase two
is still ongoing, CUTS has already saved significant
amounts of time and effort compared to phase one.

The following summarizes the benefits of applying
CUTS based on our experience thus far:
• CUTS allowed us to emulate system components us-

ing the target hardware and software infrastructure,
instead of waiting until completely implementing the
real components and trying to resolve all issues dur-

ing integration phase, as we had attempted to do
(rather unsuccessfully) in phase one.

• CUTS allowed us to rapidly create and quantitatively
evaluate a range of deployment plans to see how
they impacted end-to-end QoS behavior. Much more
time and effort would have been required if these
tests were conducted manually, i.e., without the vis-
ual MDE functionality and automation provided by
CUTS and the underlying CoSMIC MDE tools and
CIAO/DAnCE middleware.

• CUTS provided qualitative performance analysis to
assist in locating deficiencies in current deployments
so we can determine alternative deployments that
meet end-to-end QoS requirements more effectively.

• The use of MDE tools enabled CUTS to substitute
real components for the emulated ones quickly, so
we can incrementally evaluate QoS performance
with more realistic workloads as knowledge of the
application and system infrastructure evolves.

 Although using CUTS in phase two provided the
benefits outlined above, we also discovered that the fol-
lowing work is needed to improve the evaluation of QoS
in component-based enterprise DRE systems:
• There were test cases in the empirical results in Sec-

tion 4.2 where the critical path deadline was missed
significantly. After further analyzing these results,
specifically after test 8, we realized that messages
not on the critical path were handled at the same pri-
ority as arbitrary messages in the system. We there-
fore need to extend CUTS to allow QoS specifica-
tions for the various components of a CoWorkEr.

• CoWorkErs currently generate a pre-defined set of
events, which is representative of a certain class of
statically provisioned DRE systems. Enterprise DRE
systems, however, often must adapt to changes in the
environment. We therefore need to extend CUTS
and WML to permit specification and enforcement
of adaptive behavior for QoS evaluation.

• CUTS uses XML specifications to configure the be-
havior of generic CoWorkErs, whose internals and -
interfaces do not resemble the components they emu-
late. We are therefore extending WML to generate
proxy CoWorkErs that simplify the interchange of -
emulated with production application components.
This enhancement will also enable the collection of
performance metrics from actual and emulated com-
ponents to evaluate their similarities and differences.

• Enterprise DRE systems can share resources either
locally or remotely, which affects QoS performance
of the system. Further work is therefore needed to
extend CUTS to allow CoWorkErs to share re-
sources both remotely and locally for QoS perform-
ance evaluation.

• QoS does not always depend on behavior at the ap-
plication level. In many instances, QoS can depend-

ent on performance metrics at the different layers of
middleware below the application, and the machine,
e.g., CPU operations and cache misses. CUTS there-
fore needs to be extended to monitor performance
metrics at all levels in an application and apply QoS
requirements to these metrics.

• Derivation of workloads in the SLICE scenario re-
quired us to estimate each component’s workload
based on our understanding of performance charac-
teristics of similar components from phase one. This
process is labor intensive and faulty if the character-
istics are misinterpreted. Since CUTS relies on “trial
and error” methods we are developing heuristics that
will automatically derive workloads using the work-
load heuristics and performance characteristics.

CUTS is currently being transitioned from the MLRM
project to a production shipbuilding program to assist
system engineers and architects in evaluating QoS per-
formance metrics of DRE systems. Our future R&D ef-
forts will therefore focus on adding the capabilities listed
above to further enhance CUTS and provide system ar-
chitects and engineers with a stronger tool suite. An
open-source version of CUTS and the other MDE tools
and middleware platforms described in this paper can be
downloaded from www.dre.vanderbilt.edu/CoSMIC.

References
[1] Balasubramanian, K., Balasubramanian, J., Parsons, J.,

Gokhale, A. and Schmidt, D., “A Platform-independent
Component Modeling Language for Distributed Real-
time and Embedded Systems,” Proceedings of the 11th
IEEE Real-Time and Embedded Technology and Appli-
cations Sym. San Francisco, CA, Mar 2005.

[2] Baude, F., Caromel, D., Huet, F., Mestre, L., and Vays-
siere, J.”Interactive and Descriptor-based Deployment
of Object-Oriented Grid Applications,” Proceedings of
the 11th International Symposium on High Perform-
ance Distributed Computing, Edinburgh, UK, Jul 2002.

[3] Bengtsson, J. Larsen, K., Larsson, F., Pettersson, P., and
Yi, W., “UPPAAL: A Tool Suite for Automatic Verifi-
cation of Real-time Systems,” Proceedings of Work-
shop on Verification and Control of Hybrid Systems III,
1066, 232 – 243, Oct 1995.

[4] Object Group Management, “Light Weight CORBA
Component Model Revised Submission,” Ed. OMG
Document realtime/03-05-05, May 2003.

[5] Deng, G., Balasubramanian, J., and Otte, W., Schmidt,
D. and Gokhale, A., “DAnCE: A QoS-enabled Compo-
nent Deployment and Conguration Engine,” Proceed-
ings of the 3rd Working Conference on Component De-
ployment. Grenoble, France, Nov 2005.

[6] Ricci, R., Alfred, C., and Lepreau , J., “A Solver for the
Network Testbed Mapping Problem,” SIGCOMM Com-
puter Communications Review, 33, Apr 2003.

[7] Gokhale, A., Balasubramanian, K., Balasubramanian, J.,
Krishna, A., Edwards, G., Deng, G., Turkay, E., Par-
sons, J. , and Schmidt, D. “Model Driven Middleware:

A New Paradigm for Deploying and Provisioning Dis-
tributed Real-time and Embedded Applications,” The
Journal of Science of Computer Programming: Special
Issue on Model Driven Architecture, 2006 (to appear).

[8] Grassi, V., Mirandola, R., and Sabetta, A., “From Design
to Analysis Models: A Kernel Language for Perform-
ance and Reliability Analysis of Component-based Sys-
tems,” Fifth International Workshop on Software and
Performance, Palma de Mallorca, Spain, Jul 2005.

[9] Karsai, G., Sztipanovits, J., Ledeczi, A. and Bapty, T.
“Model-Integrated Development of Embedded Soft-
ware,” Proceedings of the IEEE, 145-164, Jan 2003.

[10] Lacour, S., Perez, C., and Priol, T., “Deploying
CORBA Components on a Computational Grid: Gen-
eral Principles and Early Experiments using the Globus
Toolkit,” Proceedings of the 2nd International Working
Conference on Component Deployment (CD 2004). Ed-
inburgh, UK, May 2004.

[11] Bertolino, A. and Mirandola, R., “Software Perform-
ance Engineering of Component-based Systems,” Pro-
ceedings of the 4th International Workshop on Software
and Performance, Jan 2004.

[12] Object Management Group, “Real-time CORBA Speci-
fication,” OMG Document formal/02-08-02, Jul 2002.

[13] Slaby J., Baker, S. Hill, J., and Schmidt, D. “Defining
Behavior and Evaluating QoS Performance of the
SLICE Scenario,” ISIS Technical Report (ISIS-05-
608), Vanderbilt University, Nashville, TN, Dec 2005.
www.dre.vanderbilt.edu/~schmidt/SLICE-TR.pdf.

[14] Wang, N. and Gill, C., “Improving Real-time System
Configuration via a QoS-aware CORBA Component
Model,” Hawaii International Conference on System
Sciences, Software Technology Track, Distributed Ob-
ject and Component-based Software Systems, Jan 2003.

[15] Paunov, S., Hill, J.,Schmidt, D., Slaby, J., and Baker,
S., “Domain-Specific Modeling Languages for Config-
uring and Evaluating Enterprise DRE System Quality
of Service,” Proceedings of the 13th IEEE International
Conference and Workshop on the Engineering of Com-
puter Based Systems, Potsdam, Germany, Mar 2006.

[16] Mania, D., Murphy, J. and McManis, J., “Developing
Performance Models from Non-intrusive Monitoring
Traces,” Proceeding of Information Technology and
Telecommunications (IT&T), Oct 2002.

[17] Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P.,
Kostic, K., Chase, J., and Becker, D., “Scalability and
Accuracy in a Large-Scale Network Emulator,” Pro-
ceedings of 5th Symposium on Operating Systems De-
sign and Implementation (OSDI), Dec 2002.

[18] Hauswirth, M., Sweeney, P., Diwan, A., and Hind, M.,
“Vertical Profiling: Understanding the Behavior of Ob-
ject-Oriented Applications,” 18th Conference of Object
Oriented Programming, Systems, Languages and Appli-
cations, Oct 2004.

[19] Hauswirth, M., Diwan, A., Sweeney, P and Mozer, M.,
“Automating Vertical Profiling,” 19th Conference of
Object Oriented Programming, Systems, Languages
and Applications, Oct 2005.

	1. Introduction
	2. Background and Case Study
	3. The Component Workload Emulator (Co WorkEr) Utili za tion Test Suite (CUTS)
	3.1 CUTS Architecture
	3.2 CUTS Design Challenges and Solutions

	4. Applying CUTS to Evaluate an Enterprise DRE System
	4.1 The MLRM SLICE Experiment using CUTS
	4.2 Viewing and Interpreting the Results of the SLICE Experiment

	5. Related Work
	6. Concluding Remarks
	References

