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Abstract 
 Component middleware is popular for enterprise 
distributed systems because it provides effective reuse of 
the core intellectual property (i.e., the “business logic”). 
Component-based enterprise distributed real-time and 
embedded (DRE) systems, however, incur new integra-
tion problems associated with component configuration 
and deployment. New research is therefore needed to 
minimize the gap between the development and deploy-
ment/configuration of components, so that deployment 
and configuration strategies can be evaluated well be-
fore system integration. This paper uses an industrial 
case study from the domain of shipboard computing to 
show how system execution modeling tools can provide 
software and system engineers with quantitative esti-
mates of system bottlenecks and performance character-
istics to help evaluate the performance of component-
based enterprise DRE systems and reduce time/effort in 
the integration phase. The results from our case study 
show the benefits of system execution modeling tools and 
pinpoint where more work is needed. 

1. Introduction 
 Integration challenges of component-based enter-
prise DRE systems. Enterprise DRE systems are increas-
ingly developed using applications composed of distrib-
uted components running on feature–rich middleware 
frameworks. The distributed components are designed to 
provide reusable services to a range of application do-
mains, which are then composed into domain-specific as-
semblies for application (re)use. Examples of component 
middleware platforms include Enterprise Java Beans and 
the CORBA Component Model (CCM).  
 The transition to component middleware is occurring 
in enterprise business systems to address problems of in-
flexibility and reinvention of core capabilities associated 
with prior monolithic, functionally-designed, and “stove-
piped” legacy applications. Legacy applications were 
developed with the precise capabilities required for a spe-
cific set of requirements and operating conditions. Com-
ponent-based systems, however, are designed to have a 
range of capabilities that enable their reuse in other con-
texts. Moreover, these systems are developed in layers, 
e.g., layer(s) of infrastructure middleware services (such 
as naming and discovery, event and notification, security 

and fault tolerance) and layer(s) of application compo-
nents that use these services in different compositions.  
 Certain types of component middleware, such as 
Real-time CCM [14], are also being applied to the do-
main of enterprise distributed real-time and embedded 
(DRE) systems, such as shipboard computing environ-
ments and supervisory control and data acquisition sys-
tems, to provide users with quality of service (QoS) sup-
port to process the right data in the right place at the right 
time over a grid of computers. Some QoS properties re-
quired by enterprise DRE systems include the low la-
tency and jitter as expected in conventional real-time and 
embedded systems, and high throughput, scalability, and 
reliability as expected in conventional enterprise distrib-
uted systems. Achieving this combination of QoS capa-
bilities in enterprise DRE systems developed using com-
ponent middleware is hard. 
 Component middleware can also complicate soft-
ware lifecycle processes by shifting responsibility from 
software development engineers to software configura-
tion/deployment engineers and systems engineers. Soft-
ware development engineers traditionally created entire 
applications in-house using top-down design methods 
that could be evaluated throughout the lifecycle. In con-
trast, software configuration and deployment engineers 
and system engineers today assemble enterprise DRE 
systems by composing reusable components, whose com-
bined properties are usually evaluated only during the 
integration phase. Unfortunately, problems uncovered 
during integration are much more costly to fix than if 
they were discovered earlier in the lifecycle. A key re-
search challenge is thus exposing these types of issues 
(which often have dependencies on components that are 
not available until late in development) earlier in the life-
cycle, e.g., prior to the system integration phase.  
 Component-based enterprise DRE systems use de-
sign- and run-time configuration steps to customize the 
behavior of reusable components to meet QoS require-
ments in the context where they execute. Finding the 
right configurations for components to meet application 
QoS requirements is hard. For example, tuning the con-
currency configuration of a shipboard computing system 
to support both real-time and fault-tolerant QoS involves 
tradeoffs that challenge even experienced engineers. 
Moreover, application functionality is distributed over 
many components in a DRE system and developers must 



interconnect their components correctly and efficiently. 
This process can be tedious and error-prone using con-
ventional handcrafted configuration processes.  
 The components assembled into an application must 
also be deployed on the appropriate nodes in an enter-
prise DRE system. Deployment is hard since host and 
network characteristics can vary statically (e.g., due to 
different hardware/software platforms used in a product-
line architecture) and dynamically (e.g., due to dam-
age/faults, change in computing objectives, or differ-
ences in the real vs. expected behavior of applications 
during actual operation). Evaluating the characteristics of 
system deployments is therefore tedious and error-prone 
when deployments are performed manually.  
 Another complexity of evaluating deployments of 
component-based enterprise DRE systems stems from 
applications sharing components with differing QoS re-
quirements, such as a system resource manager that 
processes requests from high-priority tactical applica-
tions and low-priority desktop applications. It is hard to 
assure that a stand-alone application can meet stringent 
QoS requirements using dedicated resources. It is harder 
to assure these requirements with components that share 
resources with other applications.  
 Solution approach → System execution modeling 
tools. Despite the flexibility offered by component mid-
dleware, there are often surprisingly few configurations 
and deployments that can satisfy the functional and QoS 
requirements of an enterprise DRE system. We have 
therefore developed a system execution modeling tool 
chain called the Component Workload Emulator (Co-
WorkEr) Utilization Test Suite (CUTS), which combines 
QoS-enabled component middleware and model-driven 
engineering (MDE) technologies. Software architects, 
developers, and systems engineers can use CUTS to ex-
plore design alternatives from multiple computational 
and valuation perspectives at multiple lifecycle phases 
using multiple quality criteria with multiple stakeholders 
and suppliers. In addition to validating design rules and 
checking for design conformance, CUTS facilitates 
“what if” analysis of alternative designs to quantify the 
costs of certain design choices on end-to-end system per-
formance. For example, CUTS can help determine the 
maximum number of components a host can handle be-
fore performance degrades, the average and worse re-
sponse time for various workloads, and the ability of al-
ternative system configurations and deployments to meet 
end-to-end QoS requirements for a particular workload. 

In the context of enterprise DRE systems, our CUTS 
system execution modeling tool helps developers dis-
cover, measure, and rectify performance problems early 
in the lifecycle (e.g., in the architecture and design 
phases), as opposed to the integration phase, when mis-
takes are much harder and more costly to fix. This paper 
shows how we used CUTS to rapidly emulate compo-

nent-based applications in an shipboard computing enter-
prise DRE system and then perform experiments that 
systematically estimated and evaluated the end-to-end 
QoS for key scenarios in this system.  
 Paper organization. This paper is organized as fol-
lows: Section 2 summaries limitations with prior work on 
QoS-enabled component middleware and MDE tools in 
the context of a shipboard computing system case study; 
Section 3 describes CUTS, shows how it overcomes limi-
tations with prior work, and explains how we resolved 
key design challenges when developing CUTS; Section 4 
shows how we applied CUTS to evaluate the QoS of 
various deployments in our case study; Section 5 com-
pares our R&D efforts with related work; and Section 6 
presents concluding remarks and lessons learned. 

2. Background and Case Study 
Our work on CUTS has evolved incrementally over 

the past three years in the context of a multi-phase pro-
gram that is developing multi-layer resource management 
(MLRM) services to support product-lines that coordi-
nate a grid of computers to manage many aspects of a 
ship's power, navigation, command and control, and tac-
tical operations [15]. The MLRM services have hundreds 
of different types and instances of infrastructure com-
ponents written in ~500,000 lines of Java and C++ code 
and ~1,000 files developed by six teams at different geo-
graphic locations. This section uses our experience to 
motivate the need for the CUTS system execution mod-
eling tools.  

Our initial approach. To address the configuration 
and deployment problems common to integrating compo-
nents in enterprise DRE systems, our initial work com-
bined QoS-enabled component middleware platforms 
with MDE tools. QoS-enabled component middleware 
supports the provisioning of key QoS properties, e.g., 
(pre)allocating CPU resources, reserving network band-
width/connections, and monitoring/enforcing the proper 
use of DRE system resources at runtime, to meet end-to-
end requirements. MDE tools combine  
• Domain-specific modeling languages (DSMLs), 

which provide programming notations that formalize 
the process of specifying application logic and QoS-
related requirements using type systems that pre-
cisely express key characteristics and constraints as-
sociated with DSMLs for particular application do-
mains and  

• Model transformations and code generation, which 
automate and ensure the consistency of software im-
plementations via analysis information associated 
with functional and QoS requirements captured by 
models of domain-specific structure and behavior.  

 In prior work with colleagues at Washington Univer-
sity, St. Louis we developed a QoS-enabled component 
middleware platform called the Component-Integrated 



ACE ORB (CIAO) [14] that combines Lightweight CCM 
[4] capabilities (such as standards for specifying, imple-
menting, packaging, assembling, and deploying compo-
nents) with Real-time CORBA [12] features (such as 
thread pools and priority preservation policies) to create a 
Real-time CCM middleware platform. Likewise, we cre-
ated an MDE tool suite called Component Synthesis using 
Model Integrated Computing (CoSMIC) [7], which is an 
integrated set of DSMLs that support the development, 
deployment, configuration, and evaluation of enterprise 
DRE systems based on Real-time CCM. CoSMIC is im-
plemented using the Generic Modeling Environment 
(GME) [9], which is an open-source MDE toolkit for 
creating and using DSMLs. These tools/platforms are 
open-source and available from www.dre.vanderbilt.edu. 
 By combining CIAO and CoSMIC, we tackled many 
integration challenges associated with configuring and 
deploying enterprise DRE systems by leveraging MDE 
tools to enforce correct-by-construction design. For ex-
ample, we used CoSMIC’s model interpreters to generate 
Real-time CCM XML configuration files [1] and CIAO’s 
Deployment And Configuration Engine (DAnCE) [5] to -
deploy the resulting component assemblies on DRE sys-
tem nodes, as shown in Figure 1. 

 
Figure 1. Integrating CIAO, DAnCE, and CoSMIC 

 
 Limitations with our initial approach and com-
mon alternatives. To evaluate the benefits of combining 
CIAO, DAnCE, and CoSMIC, we applied them in phase 
one of our MLRM project [15]. Our experience, how-
ever, indicated that CIAO, DAnCE, and CoSMIC were 
insufficient to evaluate the QoS of applications in enter-
prise DRE systems due to the following limitations: 
• Insufficient performance evaluation. In the 

MLRM environment, many different applications 
ran concurrently across networks that included both 
shared and dedicated components. CIAO, DAnCE, 
and CoSMIC, however, provided insufficient support 
for evaluating QoS-related characteristics (such as 
communication delay, temporal phasing, parallel 
execution, and synchronization).  

• Serialized phase ordering dependencies. Applica-
tion components that exercised the MLRM infra-
structure middleware services were not developed 
until later in the system lifecycle. The QoS of the in-
frastructure services therefore was not evaluated ade-
quately under realistic workloads to validate their ar-
chitecture and design. 

 We initially considered evaluating MLRM QoS 
characteristics via simulation. Due to size, interdependen-
cies, and the sheer number of variables involved it was 
impractical to develop and evolve realistic models that 
simulate complex scenarios. Moreover, while pure simu-
lation can provide valuable information about system 
QoS behavior, it is hard to leverage simulation results di-
rectly in the production operational environment.  

3. The Component Workload Emulator (Co-
WorkEr) Utilization Test Suite (CUTS) 

To overcome the limitations described in Section 2, 
we needed more effective technologies to evaluate the 
end-to-end QOS characteristics of MLRM applications in 
a production-scale environment, even before any actual 
application components were developed. Our goals were 
motivated by our experience in phase one of the MLRM 
project and involved: 
• Not obtaining 100% precision, but providing systems 

engineers and architects with rapid, reasonably accu-
rate estimates of system QoS early in the lifecycle.  

• Improving the accuracy of our estimates of system 
QoS incrementally as our understanding of applica-
tion requirements, implementations, and execution 
environments increased. 

• Automatically transitioning select artifacts used in 
our evaluations (such as models of deployment plans 
that met end-to-end QoS requirements) to the com-
ponent-based application and middleware deploy-
ments and configurations we were creating. 

 To meet our goals and overcome limitations with 
prior work, we developed the Component Workload 
Emulator (CoWorkEr) Utilization Test Suite (CUTS). 
CUTS is a system execution modeling tool chain for cre-
ating component-based applications rapidly and perform-
ing experiments that systematically evaluate interactions 
that are hard to simulate. In particular, CUTS provides 
model-based workload generation, data reduction, and 
visualization tools to construct experiments rapidly and 
analyze results from alternate execution architectures. 
CUTS can also import measured performance data from 
faux application components running over actual infra-
structure middleware services to estimate enterprise DRE 
system behavior in a realistic environment. 
 When combined with our prior work on QoS-en-
abled component middleware and MDE tools, CUTS 
allowed more robust and complete solutions for emulat-
ing actual application components and evaluating QoS 



earlier in the enterprise DRE system lifecycle. For exam-
ple, we used CoSMIC to create models of DRE systems 
composed of faux application components and actual sys-
tem infrastructure components. We then used these mod-
els with DAnCE to deploy these components into a repre-
sentative testbed (www.dre.vanderbilt.edu/ISISlab) and 
conduct systematic experiments that measured how well 
the system performed relative to QoS specifications from 
production computing systems. This remainder of this 
section presents the CUTS architecture and solutions to 
design challenges we faced when developing it and ap-
plying it to the MLRM case study. 

3.1 CUTS Architecture 
 As outlined in Section 2, CUTS is a system execu-
tion modeling toolkit that (1) emulates portions of enter-
prise DRE systems (2) collects performance data pro-
vided by the emulation, and (3) analyzes the data to esti-
mate system QoS and pinpoint performance bottlenecks. 
At the heart of CUTS is an assembly of CCM compo-
nents, called a CoWorkEr (Figure 2). A CoWorkEr is a 
faux component that can be programmed rapidly to emu-
late the expected behavior and resource consumption of 
its counterpart in the production application. 

 

Figure 2. A CoWorkEr Component Assembly 
 
CoWorkErs can be connected together via their exposed 
ports to create operational strings, which are task graphs 
that capture the partial ordering of a set of executing soft-
ware components. Figure 2 shows the key elements of the 
CoWorkErs, which fall into two broad categories: work-
load generation and test control and analysis.  
3.1.1. Workload generation is implemented in CUTS as 
an assembly-based CCM component composed of the 
following monolithic CCM components: 
• The EventHandler can receive user-defined events. It 

records the number of events received for each type 
and performance metrics regarding the delay be-
tween original publication and the onset of process-
ing. The EventHandler also tracks the time required 
to process each event it receives. Workloads, which 
are performed by the worker components described 
next, may also be associated with receiving combi-
nations and numbers of events.  

• The CPUWorker performs CPU operations. As with 
all workers, the quantity of work to perform is speci-
fied as a number of repetitions, which represent an 
abstract unit of work. 

• The MemoryWorker performs allocation and deallo-
cation of memory. 

• The DatabaseWorker performs a series of insert, up-
date, and delete operations on a specified database.  

• The EventProducer (which is also a worker) pub-
lishes events that carry a data payload of the desired 
size. Events are time-stamped prior to transmission. 

• The Trigger is provided to represent external input to 
a simulated application, or regularly scheduled, time-
driven processing not resulting from the receipt of an 
event. Triggers provide both periodic and pseudo-
random behavior by inducing workers to perform a 
workload at a specified interval and probability of 
occurrence. A Trigger can also perform startup 
workload during activation. 

To simplify the programming and configuration of Co-
WorkErs, we created an MDE-based DSML called the 
Workload Modeling Language (WML) [15]. WML is 
used to characterize the behavior of individual CoWork-
Ers by specifying their processor, memory, database, and 
input/output usage profiles. XML characterization files 
are then generated from a WML model, and subsequently 
parsed by EventHandler and Trigger components to dic-
tate the behavior of their respective CoWorkEr. 
3.1.2. Test control and analysis in CUTS includes the 
following elements: 
• The BenchmarkAgent completes the CoWorkEr as-

sembly shown in Figure 2. It requests test data col-
lected by EventHandlers at a user-defined interval 
and transmits this data to the BenchmarkDataCol-
lector. 

• The BenchmarkDataCollector (BDC) submits test 
data to an in-memory BenchmarkDatabase.  

• The BenchmarkManagerWeb-interface (BMW) im-
plements the test control and analysis functionality 
via an ASP.NET application. This manager proc-
esses data captured in the BenchmarkDatabase and 
invokes DAnCE’s ExecutionManager to start and 
end the deployment of test assemblies. In addition to 
the web browser interface, the BMW provides a 
web-services interface that allows any programming 
language that supports the Simple Object Access 
Protocol (SOAP) to automate CUTS tests. 

Figure 3 shows how CUTS can evaluate the QoS of en-
terprise DRE systems. Dedicated hosts, called test host, 
run inside the test network and the BenchmarkDataCol-
lector and BenchmarkManagerWeb-interface exist out-
side the test network. This setup limits outside interfer-
ence on tests run using CUTS while permitting users to 
analyze their results either during or after the test run. 

http://www.dre.vanderbilt.edu/ISISlab


 

 
Figure 3. Example Setup of CUTS to Evaluate QoS in 

an Enterprise DRE System 
3.2 CUTS Design Challenges and Solutions  
 We now describe solutions to key problems encoun-
tered when developing and applying CUTS. 
 Challenge 1. Non-intrusive metrics collection. An 
ad hoc metrics collection system might interfere with the 
emulation and skew test results. Metric collection should 
therefore have minimally intrusion and resource usage. 
 Solution → Decouple metrics collection from 
emulation, and collect metrics using a 3-phase data 
acquisition process. The components described in Sec-
tion 3.1 work together to collect performance metrics in 
three separate stages. In stage 1, the EventHandler main-
tains for each event type a local in-memory record of the 
number received, the max/min transmission and process-
ing time, and running totals for transmission and proc-
essing time. In state 2, the BenchmarkAgent obtains the 
data from the EventHandler at a user-specified interval in 
a dedicated thread, and resets the EventHandler’s running 
totals. The BenchmarkAgent transmits the collected data 
to the BenchmarkDataCollector, which immediately 
queues the data and returns. In stage 3, the Benchmark-
DataCollector dequeues the data and inserts it into a 
MySQL database. Each phase of the data acquisition 
process also uses a dedicated thread to minimize the im-
pact of data collection on the emulation  
 All data stored and transmitted by the EventHandler 
and the BenchmarkAgent is a fixed-size to ensure mem-
ory usage is bounded by a constant factor. The aspects of 
metric collection that cause variable memory usage and 
delays, e.g., queuing and entry of data into a database, are 
placed the BenchmarkDataCollector, which is deployed 
on a node not used by a CoWorkEr. Moreover, separate 
networks can be used to decouple transmission of metric 
data from the transmission of CoWorkEr operations. 
 Challenge 2. Simplify characterization of applica-
tion workload. Some CoWorkEr users will be systems 
engineers or architects, who may not be familiar with 
with third-generation languages, such as C++ or Java, or 
configuration languages, such as XML. It is therefore im-
portant for CUTS to offer alternatives to programmatic 
interfaces and configuration files for these types of users. 

 Solution → Provide graphical user interfaces for 
characterizing, deploying and analyzing applications. 
CUTS allows users to design simulated applications en-
tirely through visual models. In particular, the CoSMIC 
and WML DSMLs allow users to create structural and 
behavioral models of their applications without manually 
editing configuration files or third-generation language 
code. Deployment and analysis of the application is pro-
vided through an intuitive BenchmarkManagerWeb-inter-
face. More details and examples of WML appear in [15]. 

Challenge 3. Simplify Customization. CoWorkErs 
can emulate four categories of core application work 
(CPU, memory, database, and network resource utiliza-
tion), but the need for more customized behavior may 
arise for particular types of enterprise DRE systems. The 
design of the CoWorkErs therefore needs to support user-
defined extensions to its basic work repertoire. 
 Solution → Support custom CoWorkEr compo-
nents. In the spirit of CCM, CoWorkErs employ a modu-
lar design where any monolithic components comprising 
the CoWorkEr assembly shown in Figure 2 can be re-
placed with a customized component that implements the 
same interface, without modification or recompilation of 
other components. For example, it is straightforward to 
replace the default CPUWorker with a FCPUWorker that 
only performs floating-point arithmetic. In addition, 
GME’s convenient inheritance support makes swapping 
of components straightforward within a CoSMIC model,. 
 Challenge 4. Descriptive analysis of performance. 
If an emulation shows that a proposed configuration and 
deployment of enterprise DRE system components will 
not meet QoS expectations, CUTS users must be able to 
pinpoint the source of the problem quickly to correct it. 
 Solution → Present metrics in layers to support 
general and detailed analysis. In addition to providing a 
graphical representation of observed performance vs. 
deadlines along a critical path, CUTS BenchmarkMan-
agerWeb-interface allows users to view statistics for in-
dividual CoWorkErs. A tabular display allows users to 
view summary statistics for operational strings of Co-
WorkErs simultaneously, whereas detailed graphs sup-
port scrutiny of an individual CoWorkEr’s performance 
over time. Statistics for processing time can also be sub-
divided to reflect the four categories of work, thereby 
allowing analysts to determine whether QoS target re-
quirements are missed due to reliance upon a sluggish 
database, paging due to excessive memory allocation, 
saturation of network bandwidth, etc. Usage and further 
discussion of these features can be found in Section 4.2. 

4. Applying CUTS to Evaluate an Enterprise 
DRE System 
 This section describes the design and results of an 
experiment that uses the CUTS systems execution mod-
eling toolchain to evaluate the QoS of a representative 



enterprise DRE system from the domain of shipboard 
computing. This experiment is based upon work con-
ducted in the MLRM project described in Section 2. This 
project provided a representative case study for evalu-
ating CUTS since it runs on general-purpose operating 
systems (such as Solaris and Linux) with real-time en-
hancements. It also uses a component-based architecture 
developed using the CIAO and DAnCE Real-time CCM 
middleware and CoSMIC MDE tools, has hundreds of 
components types/instances and hundreds of thousands of 
lines of C++ and Java code, and has been developed over 
the past three years by a group of geographically distrib-
uted teams. As a result, the MLRM software base incurs 
many of the same integration challenges associated with 
configuration, deployment, and QoS evaluation that oc-
cur in other production enterprise DRE systems. 

4.1 The MLRM SLICE Experiment using CUTS 
4.1.1. Experiment motivation. One of the challenging 
problems in the second phase of the MLRM project is 
called the SLICE scenario, which consists of 2 sensors, 2 
planners, 1 configuration, 1 error recovery, and 2 effector 
components. The SLICE scenario requires the transmis-
sion of information detected by the sensors to each plan-
ner in sequence, then to the configuration component, 
and lastly to both effectors to perform actions that control 
devices in the physical world. Components in the SLICE 
scenario are deployed across 3 computing nodes because 
the workload generated by each component collectively 
is more than a single node can handle. The main sensor 
and effector (represented as sensor-1 and effector-1 in 
Figure 4 and in following sections) are deployed on sepa-
rate nodes to reflect the placement of physical equipment 
in the production shipboard system. Figure 4 shows a 
model of the end-to-end layout of SLICE components, 
with the critical path specified by the dashed arrows. 

 
Figure 4. Model of SLICE Showing the Components 

and Their Interconnections 

 In phase two of the MLRM project, the multi-layer 
resource manager infrastructure was re-implemented to 
use Real-time CCM (via CIAO and DAnCE), and MDE 
tools (via CoSMIC), instead of Real-time CORBA and 
ad hoc deployment mechanisms used in phase one. Based 
on the MLRM phase two development schedule, the inte-
gration of components that implemented the SLICE sce-
nario atop the new multi-layer resource management in-
frastructure was not slated to occur until 12 months into 
the program to provide sufficient time to finish develop-
ing, testing, and optimizing the multi-layer resource 

management infrastructure. The SLICE scenario, how-
ever, uses software components similar to product-lines 
and challenge problems in phase one of the MLRM pro-
ject. We therefore already understood each component’s 
behavior in SLICE, but did not know how overall per-
formance of the SLICE scenario would be affected by the 
new MLRM infrastructure. 
 In phase one, we waited until the integration phase 
of our schedule to begin benchmarking the system, only 
to learn none of the QoS requirements were met due to 
improperly designed multi-layer resource management 
infrastructure. As a consequence, our schedule slipped 
and the process of reconfiguring and redeploying MLRM 
application and middleware components to meet QoS re-
quirements required significant manual effort. To prevent 
the same problems from happening in phase two of the 
program, we used CUTS to evaluate the QoS challenges 
of the SLICE scenario prior to the integration phase. Our 
goal was to determine which configuration and deploy-
ment strategies will enable us to meet the QoS critical 
path deadline and create a pool of selectable deployment 
strategies that meet the performance requirements. The 
underlying hypothesis driving the experiment was much 
of the performance information could be collected prior 
to the integration phase by emulating key properties of 
the SLICE scenario components using CUTS. As a result, 
less time would be spent integrating and testing the actual 
SLICE components after they were completed. 
4.1.2. Experiment design. For the SLICE scenario, there 
is a 350 ms QoS critical path deadline, which is represen-
tative of the end-to-end execution time of a similar sce-
nario from phase one of the MLRM project. This dead-
line corresponds to receiving a command event on sen-
sor-1 up to performing an action with effector-1. Sensor-
1 and effector-1 must be deployed on separate nodes to 
meet the constraints discussed in section 4.1.1. Table 1 
describes the predicted behavior for two of the SLICE 
components (which were defined using the Workload 
Modeling Language) to illustrate the various types of 
workload and actions for a CoWorkEr. 

 
Planner -1 CoWorkEr  

Workload performed 
every second 

publish command of size 24 bytes 

Workload performed 
after receipt of a track 
event 

alloc 30 KB; 55 dbase ops; 45 CPU ops; 
publish assessment of size 132 bytes; de-
alloc 30 KB 

Configuration-Optimization CoWorkEr 
Workload performed at 
startup time 

alloc 1 KB; 25 dbase ops; 1 CPU ops; 10 
dbase ops; dealloc 1 KB 

Workload performed 
after receipt of an as-
sessment event 

alloc 5 KB; 40 dbase ops; 1 CPU op; pub-
lish command of size 128 bytes; dealloc 5 
KB 

Workload performed 
after receipt of a status 
event 

1 dbase op 

Table 1. Expected Behavior for 2 SLICE CoWorkErs 



The workload specifications for each component listed in 
Table 1 is based on the behavior of components imple-
mented in phase one. We obtained these values by esti-
mating the number and types of operations based our 
understanding gained by implementing and testing the 
functionality of the workload generators explained in 
Section 3.1.1. For the predicted behavior for the remain-
ing components, please refer to [13]. 

Host Operating System Database 
1 Fedora Core3 YES 

2, 3, BDC Fedora Core3 NO 
BMW Windows XP YES 

Table 2. System Characteristics for Experiment Host 

Each host in the CUTS-based experiments was an 
IBM Blade Type L20, dual-CPU 2.8 GHz processor with 
1 GB RAM with the characteristics listed in Table 2. The 
middleware was version 0.4.7 of CIAO/DAnCE, and the 
MDE tools used were version 0.4.6 of CoSMIC, which is 
the target middleware and MDE tool for the SLICE sce-
nario in phase two. Each test was run for 10 minutes. 

4.2 Viewing and Interpreting the Results of the 
SLICE Experiment 
 This section describes the results of tests that used 
CUTS to evaluate various deployments of SLICE compo-
nents onto hosts to (1) test the capability of CUTS, (2) 
determine which deployment strategies meet the 350 ms 
critical path deadline when components Sensor-1 and 
Effector-1 are deployed on separate nodes, and (3) prove 
that workload generated by SLICE is too much when the 
critical path components are deployed on a single node. 
The first listing in Table 3 contains the legend for the Co-
WorkEr symbols used in the second listing. 
 

SLICE CoWorkEr Legend for Test Table 
Symbol CoWorkEr Symbol CoWorkEr 

A Sensor-1 * E Config-Op * 
B Sensor-2 F Error-Recovery 
C  Planner-2 * G Effector-1 * 
D Planner-1 * H Effector-2 

* represents CoWorkEr in the critical path 
 

Deployment Strategy 
Test Host 1 Host 2 Host 3 

Critical Path Exe-
cution Time 

(avg./worse) (ms) 
1 C,D,E,F A,B G,H 411 / 1,028 
2 A,B,C,D F E,G,H 420 / 1,094 
3 A,B,C,D,E F G,H 416,/ 1,085 
4 A,B,C,D,E,F,G,H   463 / 1,247 
5 A,B,C,D,E,G,H F  467 / 1,219 
6 A,C,D,E,G F B,H 323 / 844 
7 A,G C,D,E B,F,H 363 / 887 
8 D A,B,C, 

F,G,H 
E 405 / 975 

9  A,D C,E,G B,F,H 235 / 387 
10 A,D E,G B,C,F,H 251 / 395 
11 A,D,E C,G B,F,H 221 / 343 
Table 3: SLICE Results for Experiments using Differ-

ent Deployment Strategies in CUTS 

4.2.1. Discussion of the hypothesis. Test 4 and 5 were 
two tests that not only missed the 350 ms deadline, they 
incurred the worst critical path execution time for all 11 
tests. The main purpose of test 4 and 5 was to evaluate 
our hypothesis that the 350 ms deadline could not be met 
if all components were deployed on the same node. After 
completing test 4 and 5, we validated this hypothesis – 
the workload generated by components in the critical 
path is more than a single node can handle, so they must 
be deployed across multiple nodes. On the other hand, 
test 6 deployed only the components in the critical path 
on the same node, and had an average execution time of 
323 ms. CUTS therefore enabled us to learn that we 
could meet the 350 ms deadline if only the critical path 
components were deployed on the same node. 

Workload Avg. 
Samples 

Avg./Rep 
(ms) 

Avg. Time 
(ms) 

Transmit Delay 5  6.19 
Total Workload 5  169.6 
CPU  2.20859 99.39 
Memory  0.00727 0.51 
Publication  1.40206 1.4 
Table 4. Snapshot of Timing Data for Sensor-1 in Test 

8 obtained from the BMW Test Results Page 
 

CoWorkEr Transmission  
Delay (ms) 

Avg. Time of  
Completion (ms) 

Sensor-1 6.19 169.6 
Planner-1 12.11 54.03 
Planner-2 10.69 110.66 
Config-Op 17.04 23.84 
Effector-1  0.34 

Table 5. Snapshot of the Critical Path Timing Data 
for Test 8 from the BMW Analysis Page 

4.2.2. Interpreting the CUTS benchmark data results. 
Running 11 tests with various deployment strategies pro-
vided key information about the current MLRM infra-
structure. Of the 11 tests, only 3 deployed the critical 
path components across multiple nodes and completed 
their end-to-end execution in 350 ms. Of these 3 tests, 2 
deployed the critical path across all three nodes and com-
pleted it within an average time of 350 ms, and 1 test 
(test 11) completed it within a worse time of 350 ms. Al-
though we did not exhaust all possible deployment 
strategies in this experiment, we learned that only 18% (2 
out of 11) of the current test passed on their planned in-
frastructure while meeting the deployment requirements 
and test 11 yield the best performance. 
 After running test 1 through 8, only 1 test met the 
350 ms end-to-end deadline, and 7 of the tests had faults 
in their deployment specification, e.g., placing a Co-
WorkEr on a host with insufficient resources to handle its 
workload without missing deadlines. We used CUTS 



graphical analysis features to investigate why these de-
ployment strategies did not meet their QoS requirements. 

Tables 4 and 5 show the results provided via the 
BenchmarkManagerWeb-interface (BMW) for test 8, 
which measures the behavior when two components in 
the critical path handling the most workload are deployed 
on their own node. Table 4 shows the time to transmit a 
message between two CoWorkErs and how long it took 
to complete each type of workload – CPU, database, or 
memory – for Sensor-1. For the CoWorkErs in the criti-
cal path in test 8, it took 169.6 ms for Sensor-1 to process 
its workload after receipt of a command event from Plan-
ner-1; 54.0 ms for Planner-1 to perform its workload af-
ter receipt of a track event from Sensor-1 or Sensor-2; 
and 110.6 ms for Planner-2 to perform its workload after 
receipt of a command event from Planner-1. 

For test 8, Sensor-1 and Planner-2 have the longest 
completion times. Based on the quantitative analysis pro-
vided by CUTS, we realized that the Sensor-1 and Plan-
ner-2 CoWorkEr components had a heavier workload 
than expected, and must be deployed on separate nodes. 
We then used CoSMIC and DAnCE to place the Sensor-1 
and Planner-2 CoWokErs on different hosts, which cre-
ated the deployment strategies used in test 9, 10 and 11, 
all of which met the 350 ms deadline. Of those 3 tests, 
test 11 was the best test case and was the only test to 
have a worse execution time that meets the 350 ms dead-
line. In addition, these deployment strategies meet the de-
ployment requirements of placing Sensor-1 and Effector-
1 on different nodes, as discussed in Section 4.1.4. 

More detailed examples of the types of visualizations 
and analysis provided by CUTS is presented in [13]. 

5. Related Work 
 Distrubuted system emulation environments. 
Various environments can be used to emulate and evalu-
ate distributed system behavior. A popular environment 
is Emulab [6], which provides tools that can be used to 
configure the topology of experiments, e.g., by modeling 
the underlying communication links. This topology is 
mapped to ~250 physical nodes that can be accessed via 
the Internet. CUTS enhances the Emulab network-centric 
focus via the WML and CoSMIC DSMLs that create 
tests and deployment/configuration specifications at a 
high-level of abstraction that is more suitable for emu-
lating component-based DRE systems than the NS scripts 
provided by Emulab to provision communication links. 
 ModelNet [17] is another environment for evaluating 
large-scaled distributed systems. In ModelNet, devel-
opers emulate multiple clients and hosts using one host. 
For example, 100 Gnutella clients each with a 1 Mbps 
bottleneck bandwidth can be emulated on one dual proc-
essor-1 GHz machine. ModelNet also facilitates the emu-
lation of faux and real applications. The CUTS emulation 
environment is similar to the ModelNet environment in 

that both address large-scaled distributed systems. CUTS, 
however, focuses on DRE systems and uses the target 
architecture to facilitate emulation and performance accu-
racy. Whereas, ModelNet seeks to provide scalable and 
accurate solutions using as few hosts as possible. 

System execution modeling tools. KLAPER [8] is a 
modeling language that specifies system behavior for 
component-based systems. Similar to WML in CUTS, 
KLAPER specifies workload, such as resource utiliza-
tion, but does not capture handling of events. WML ex-
tends KLAPER by allowing sequential specification of 
resource utilization, transmission and receipt of events, 
and workload types, e.g. event, periodic, or startup.  

UPPAAL [3] is a system execution modeling tool 
that verifies properties of DRE systems via a modeling-
language and environment for verifying a system’s speci-
fied behavior early in the development stage. by dynami-
cally validates all possible behaviors with its model-
checking simulator. CUTS focuses on complementary 
areas, such as (1) emulating system behavior on the target 
platforms, (2) benchmarking DRE systems as a whole 
and as individual components, and (3) monitoring system 
flows to verify QoS requirements are met. 

RT-UML [11] models and evaluates the performance 
of component-based systems by defining services and 
QoS policies for components, though modeling system 
behavior is future work. RT-UML is also designed to be 
supported by external simulation tools, which are still 
under development. WML enhances RT-UML by pro-
viding a working DSML tool that allows developers to 
specify a component-based system behavior, which is 
then emulated by CUTS.  

Evaluation techniques for component architec-
tures. [16] discusses a technique called trace-based 
analysis for Enterprise Java Bean (EJB) components. In 
trace-based analysis, different execution traces in a com-
ponent are monitored and dumped to a trace file con-
tained on the host. After the emulation, the trace files are 
parsed and combined with the deployment descriptors, 
which define the structure of the system, to determine the 
different paths of execution in the system. CUTS is simi-
lar to trace-based analysis since it collects traces of exe-
cution times, but these traces are logged to a central data-
base. CUTS also monitors predetermined execution paths 
in real-time, whereas [16] uses methods to reconstruct 
every path autonomously, but does not monitor perform-
ance in real-time over the duration of the emulation. [16] 
also focuses on service calls, whereas CUTS performance 
metrics use events sent between components. 

[18] and [19] discuss vertical profiling evaluation 
techniques in the context of EJB. In vertical profiling, 
performance metrics based on the types of operations and 
actions (e.g., cache misses and CPU cycles) are collected 
in trace files across multiple executions of the same tests. 
The trace files are then fused through a process called 



trace-alignment using a common metric that occurs in the 
source traces. After the traces are aligned, correlation 
analysis is applied to the traces to help determine what 
other metrics collected in the trace may influence its be-
havior. [19] also discusses how to automate this process. 
CUTS provides a similar approach in the context of CCM 
that allows analysis of individual actions and operations 
in a component. CUTS, however, goes further and allows 
the analysis to happen at real-time with the emulation.  

Architectures for deployment and configuration 
of components. Proactive [2] is a framework for compo-
nent deployment and configuration designed for conven-
tional Java applications running on JVMs. In contrast, 
CUTS leverages DAnCE [5], which is targeted for de-
ploying and configuration components in DRE systems. 

The Globus Toolkit [10], which is part of the Open 
Grid Standard Architecture (OGSA), is another frame-
work that handles deployment and configuration of com-
ponents for Grid computing. Unlike DAnCE, however, 
Globus does not provide DSMLs for modeling various 
concerns of enterprise DRE systems and validating sys-
tems before deploying them. Lastly, the DAnCE frame-
work conforms to the OMG D&C standards, which al-
lows it to leverage other efforts based on the OMG D&C 
specifications, such as OpenCCM and MICO-CCM. 

6. Concluding Remarks 
 This paper described the Component Workload Emu-
lator (CoWorkEr) Utilization Test Suite (CUTS). CUTS 
is a system execution modeling toolchain that simplifies 
the creation of – and experimentation with –emulations 
of applications that help evaluate the QoS of component-
based enterprise DRE systems. We also described the 
design and implementation of CUTS, along with the 
challenges we encountered and solutions we applied.  

Our experience applying CUTS to the SLICE sce-
nario in phase two showed how systems execution mod-
eling tools can decrease the time spent resolving integra-
tion problems. Instead of waiting until full system inte-
gration, CUTS allowed us to test deployments of the 
MLRM infrastructure in the actual target environment 
using emulated application components. When combined 
with other QoS-enabled component middleware and 
MDE tools, alternative deployment plans could be evalu-
ated rapidly earlier in the lifecycle, thereby reducing the 
time and effort spent in integration. Although phase two 
is still ongoing, CUTS has already saved significant 
amounts of time and effort compared to phase one. 

The following summarizes the benefits of applying 
CUTS based on our experience thus far:  
• CUTS allowed us to emulate system components us-

ing the target hardware and software infrastructure, 
instead of waiting until completely implementing the 
real components and trying to resolve all issues dur-

ing integration phase, as we had attempted to do 
(rather unsuccessfully) in phase one. 

• CUTS allowed us to rapidly create and quantitatively 
evaluate a range of deployment plans to see how 
they impacted end-to-end QoS behavior. Much more 
time and effort would have been required if these 
tests were conducted manually, i.e., without the vis-
ual MDE functionality and automation provided by 
CUTS and the underlying CoSMIC MDE tools and 
CIAO/DAnCE middleware. 

• CUTS provided qualitative performance analysis to 
assist in locating deficiencies in current deployments 
so we can determine alternative deployments that 
meet end-to-end QoS requirements more effectively. 

• The use of MDE tools enabled CUTS to substitute 
real components for the emulated ones quickly, so 
we can incrementally evaluate QoS performance 
with more realistic workloads as knowledge of the 
application and system infrastructure evolves.  

 Although using CUTS in phase two provided the 
benefits outlined above, we also discovered that the fol-
lowing work is needed to improve the evaluation of QoS 
in component-based enterprise DRE systems: 
• There were test cases in the empirical results in Sec-

tion 4.2 where the critical path deadline was missed 
significantly. After further analyzing these results, 
specifically after test 8, we realized that messages 
not on the critical path were handled at the same pri-
ority as arbitrary messages in the system. We there-
fore need to extend CUTS to allow QoS specifica-
tions for the various components of a CoWorkEr.  

• CoWorkErs currently generate a pre-defined set of 
events, which is representative of a certain class of 
statically provisioned DRE systems. Enterprise DRE 
systems, however, often must adapt to changes in the 
environment. We therefore need to extend CUTS 
and WML to permit specification and enforcement 
of adaptive behavior for QoS evaluation.  

• CUTS uses XML specifications to configure the be-
havior of generic CoWorkErs, whose internals and -
interfaces do not resemble the components they emu-
late. We are therefore extending WML to generate 
proxy CoWorkErs that simplify the interchange of -
emulated with production application components. 
This enhancement will also enable the collection of 
performance metrics from actual and emulated com-
ponents to evaluate their similarities and differences. 

• Enterprise DRE systems can share resources either 
locally or remotely, which affects QoS performance 
of the system. Further work is therefore needed to 
extend CUTS to allow CoWorkErs to share re-
sources both remotely and locally for QoS perform-
ance evaluation. 

• QoS does not always depend on behavior at the ap-
plication level. In many instances, QoS can depend-



ent on performance metrics at the different layers of 
middleware below the application, and the machine, 
e.g., CPU operations and cache misses. CUTS there-
fore needs to be extended to monitor performance 
metrics at all levels in an application and apply QoS 
requirements to these metrics. 

• Derivation of workloads in the SLICE scenario re-
quired us to estimate each component’s workload 
based on our understanding of performance charac-
teristics of similar components from phase one. This 
process is labor intensive and faulty if the character-
istics are misinterpreted. Since CUTS relies on “trial 
and error” methods we are developing heuristics that 
will automatically derive workloads using the work-
load heuristics and performance characteristics. 

CUTS is currently being transitioned from the MLRM 
project to a production shipbuilding program to assist 
system engineers and architects in evaluating QoS per-
formance metrics of DRE systems. Our future R&D ef-
forts will therefore focus on adding the capabilities listed 
above to further enhance CUTS and provide system ar-
chitects and engineers with a stronger tool suite. An 
open-source version of CUTS and the other MDE tools 
and middleware platforms described in this paper can be 
downloaded from www.dre.vanderbilt.edu/CoSMIC. 
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