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Abstract 
A distributed system is a computing system in which a number of components cooperate by communicating over a 
network.  The explosive growth of the Internet and the World Wide Web in the mid-1990's moved distributed systems 
beyond their traditional application areas, such as industrial automation, defense, and telecommunication, and into 
nearly all domains, including e-commerce, financial services, health care, government, and entertainment.  This article 
describes the key characteristics and challenges of developing distributed systems and evaluates key software 
technologies that have emerged to resolve these challenges, including distributed object computing middleware, 
component middleware, publish/subscribe and message-oriented middleware, and web services. 

1 Introduction 

Computer software traditionally ran in stand-alone systems, where the user interface, application ‘business’ 
processing, and persistent data resided in one computer, with peripherals attached to it by buses or cables. Few 
interesting systems, however, are still designed this way. Instead, most computer software today runs in distributed 
systems, where the interactive presentation, application business processing, and data resources reside in loosely-
coupled computing nodes and service tiers connected together by networks. Despite the increasing ubiquity and 
importance of distributed systems, however, developers of software for distributed systems face a number of hard 
challenges [POSA2], including: 

• Inherent complexities, which arise from fundamental domain challenges: E.g., components of a distributed system 
often reside in separate address spaces on separate nodes, so inter-node communication needs different mechanisms, 
policies, and protocols than those used for intra-node communication in a stand-alone systems. Likewise, 
synchronization and coordination is more complicated in a distributed system since components may run in parallel 
and network communication can be asynchronous and non-deterministic. The networks that connect components in 
distributed systems introduce additional forces, such as latency, jitter, transient failures, and overload, with 
corresponding impact on system efficiency, predictability, and availability [VKZ04]. 

• Accidental complexities, which arise from limitations with software tools and development techniques, such as non-
portable programming APIs and poor distributed debuggers. Ironically, many accidental complexities stem from 
deliberate choices made by developers who favor low-level languages and platforms, such as C and C-based 
operating system APIs and libraries, that scale up poorly when applied to distributed systems. As the complexity of 
application requirements increases, moreover, new layers of distributed infrastructure are conceived and released, 
not all of which are equally mature or capable, which complicates development, integration, and evolution of 
working systems.  

• Inadequate methods and techniques. Popular software analysis methods and design techniques [DWT04] [SDL05] 
have focused on constructing single-process, single-threaded applications with ‘best-effort’ quality of service (QoS) 
requirements. The development of high-quality distributed systems—particularly those with stringent performance 
requirements, such as video-conferencing or air traffic control systems—has been left to the expertise of skilled 
software architects and engineers. Moreover, it has been hard to gain experience with software techniques for 
distributed systems without spending much time wrestling with platform-specific details and fixing mistakes by 
costly trial and error. 

• Continuous re-invention and re-discovery of core concepts and techniques. The software industry has a long history 
of recreating incompatible solutions to problems that have already been solved. There are dozens of general-purpose 
and real-time operating systems that manage the same hardware resources. Similarly, there are dozens of 
incompatible operating system encapsulation libraries, virtual machines, and middleware that provide slightly 
different APIs that implement essentially the same features and services. If effort had instead been focused on 
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enhancing a smaller number of solutions, developers of distributed system software would be able to innovate more 
rapidly by reusing common tools and standard platforms and components. 

2 Technologies for Supporting Distributed Computing 

To address the challenge described above, therefore, three levels of support for distributed computing were developed: 
ad hoc network programming, structured communication, and middleware. Ad hoc network programming includes 
interprocess communication (IPC) mechanisms, such as shared memory, pipes, and sockets, that allow distributed 
components to connect and exchange information. These IPC mechanisms help address a key challenge of distributed 
computing: enabling components from different address spaces to cooperate with one another. 

Certain drawbacks arise, however, when developing distributed systems only using ad hoc network programming 
support. For instance, using sockets directly within application code tightly couples this code to the socket API. Porting 
this code to another IPC mechanism or redeploying components to different nodes in a network thus becomes a costly 
manual programming effort. Even porting this code to another version of the same operating system can require code 
changes if each platform has slightly different APIs for the IPC mechanisms [POSA2] [SH02]. Programming directly 
to an IPC mechanism can also cause a paradigm mismatch, e.g., local communication uses object-oriented classes and 
method invocations, whereas remote communication uses the function-oriented socket API and message passing.  

The next level of support for distributed computing is structured communication, which overcomes limitations with ad 
hoc network programming by not coupling application code to low-level IPC mechanisms, but instead offering higher-
level communication mechanisms to distributed systems. Structured communication encapsulates machine-level 
details, such as bits and bytes and binary reads and writes. Application developers are therefore presented with a 
programming model that embodies types and a communication style closer to their application domain. 

Historically significant examples of structured communication are remote procedure call (RPC) platforms, such as Sun 
RPC and the Distributed Computing Environment (DCE). RPC platforms allow distributed applications to cooperate 
with one another much like they would in a local environment: they invoke functions on each other, pass parameters 
along with each invocation, and receive results from the functions they called. The RPC platform shields them from 
details of specific IPC mechanisms and low-level operating system APIs. Another example of structured 
communication is ACE [SH02] [SH03], which provides reusable C++ wrapper facades and frameworks that perform 
common structured communication tasks across a range of OS platforms. 

Despite its improvements over ad hoc network programming, structured communication does not fully resolve the 
challenges described above. In particular, components in a distributed system that communicate via structured 
communication are still aware of their peers’ remoteness—and sometimes even their location in the network. While 
location awareness may suffice for certain types of distributed systems, such as statically configured embedded 
systems whose component deployment rarely changes, structured communication does not fulfill the following the 
properties needed for more complex distributed systems: 

• Location-independence of components. Ideally, clients in a distributed system should communicate with collocated 
or remote services using the same programming model. Providing this degree of location-independence requires the 
separation of code that deals with remoting or location-specific details from client and service application code. 
Even then, of course, distributed systems have failure modes that local systems do not have [WWWK96]. 

• Flexible component (re)deployment. The original deployment of an application’s services to network nodes could 
become suboptimal as hardware is upgraded, new nodes are incorporated, and/or new requirements are added. A 
redeployment of distributed system services may therefore be needed, ideally without breaking code and or shutting 
down the entire system. 

Mastering these challenges requires more than structured communication support for distributed systems. Instead it 
requires dedicated middleware [ScSc02], which is distribution infrastructure software that resides between an 
application and the operating system, network, or database underneath it. Middleware provides the properties described 
above so that application developers can focus on their primary responsibility: implementing their domain-specific 
functionality. Realizing the need for middleware has motivated companies, such as Microsoft, IBM, and Sun, and 
consortia, such as the Object Management Group (OMG) and the World Wide Web Consortium (W3C), to develop 
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technologies for distributed computing. Below, we describe a number of popular middleware technologies, including 
distributed object computing, component middleware, publish/subscribe middleware, and service-oriented architectures 
and Web Services [Vin04a]. 

2.1 Distributed Object Computing Middleware 

A key contribution to distributed system development was the emergence of distributed object computing (DOC) 
middleware in the late 1980s and early 1990s. DOC middleware represented the confluence of two major information 
technologies: RPC-based distributed computing systems and object-oriented design and programming. Techniques for 
developing RPC-based distributed systems, such as DCE, focused on integrating multiple computers to act as a unified 
scalable computational resource. Likewise, techniques for developing object-oriented systems focused on reducing 
complexity by creating reusable frameworks and components that reify successful patterns and software architectures. 
DOC middleware therefore used object-oriented techniques to distribute reusable services and applications efficiently, 
flexibly, and robustly over multiple, often heterogeneous, computing and networking elements. 

CORBA 2.x and Java RMI are examples of DOC middleware technologies for building applications for distributed 
systems. These technologies focus on interfaces, which are contracts between clients and servers that define a location-
independent means for clients to view and access object services provided by a server. Standard DOC middleware 
technologies like CORBA also define communication protocols and object information models to enable 
interoperability between heterogeneous applications written in various languages running on various platforms.  

Despite its maturity and performance, however, DOC middleware had key limitations, including: 

• Lack of functional boundaries. The CORBA 2.x and Java RMI object models treat all interfaces as client/server 
contracts. These object models do not, however, provide standard assembly mechanisms to decouple dependencies 
among collaborating object implementations. For example, objects whose implementations depend on other objects 
need to discover and connect to those objects explicitly. To build complex distributed applications, therefore, 
application developers must explicitly program the connections among interdependent services and object 
interfaces, which is extra work that can yield brittle and non-reusable implementations. 

• Lack of software deployment and configuratoin standards. There is no standard way to distribute and start up object 
implementations remotely in DOC middleware. Application administrators must therefore resort to in-house scripts 
and procedures to deliver software implementations to target machines, configure the target machine and software 
implementations for execution, and then instantiate software implementations to make them ready for clients. 
Moreover, software implementations are often modified to accommodate such ad hoc deployment mechanisms. The 
need of most reusable software implementations to interact with other software implementations and services further 
aggravates the problem. The lack of higher-level software management standards results in systems that are harder 
to maintain and software component implementations that are much harder to reuse. 

2.2 Component Middleware  

Starting in the mid to late 1990s, component middleware emerged to address the limitations of DOC middleware 
described above. In particular, to address the lack of functional boundaries, component middleware allows a group of 
cohesive component objects to interact with each other through multiple provided and required interfaces and defines 
standard runtime mechanisms needed to execute these component objects in generic applications servers. To address 
the lack of standard deployment and configuration mechanisms, component middleware specifies the infrastructure to 
package, customize, assemble, and disseminate components throughout a distributed system.  

Enterprise JavaBeans and the CORBA Component Model (CCM) are examples of component middleware that define 
the following general roles and relationships: 

• A component is an implementation entity that exposes a set of named interfaces and connection points that 
components use to collaborate with each other. Named interfaces service method invocations that other components 
call synchronously. Connection points are joined with named interfaces provided by other components to associate 
clients with their servers. Some component models also offer event sources and event sinks, which can be joined 
together to support asynchronous message passing. 
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• A container provides the server runtime environment for component implementations. It contains various pre-
defined hooks and operations that give components access to strategies and services, such as persistence, event 
notification, transaction, replication, load balancing, and security. Each container defines a collection of runtime 
strategies and policies, such as transaction, persistence, security, and event delivery strategies, and is responsible for 
initializing and providing runtime contexts for the managed components. Component implementations often have 
associated metadata written in XML that specify the required container strategies and policies. 

In addition to the building blocks outlined above, component middleware also typically automates aspects of various 
stages in the application development lifecycle, notably component implementation, packaging, assembly, and 
deployment, where each stage of the lifecycle adds information pertaining to these aspects via declarative metadata. 
These capabilities enable component middleware to create applications more rapidly and robustly than their DOC 
middleware predecessors. 

2.3 Publish/Subscribe and Message-Oriented Middleware  

RPC platforms, DOC middleware, and component middleware are largely based on a request/response communication 
model, where requests flow from client to server and responses flow back from server to client. Certain types of 
distributed applications, particularly those that react to external stimui and events, such as control systems and online 
stock trading systems, are not well-suited certain aspects of the request/response communication model. These aspects 
include synchronous communication between the client and server, which can underutilize the parallelism available in 
the network and endsystems, designated communication, where the client must know the identity of the server, which 
tightly couples it to a particular recipient, and point-to-point communication, where a client talks with just one server at 
a time, which can limit its ability to convey its information to all interested recipients.  

An alternative approach to structuring communication in certain types of distributed systems is therefore to use 
message-oriented middleware, which is supported by IBM’s MQ Series, BEA’s MessageQ, and TIBCO’s Rendezvous, 
or publish/subscribe middleware, which is supported by the Java Messaging Service (JMS), the Data Distribution 
Service (DDS), and WS-NOTIFICATION. The main benefits of message-oriented middleware include its support for 
asynchronous communication, where senders transmit data to receivers without blocking to wait for a response. Many 
message-oriented middleware platforms provide transactional properties, where messages are reliably queued and/or 
persisted until consumers can retrieve them. Publish/subscribe middleware augments this capability with anonymous 
communication, where publishers and subscribers are loosely coupled and thus do not know about each other existence 
since the address of the receiver is not conveyed along with the event data, and group communication, where multiple 
subscribers can receive events sent by a publisher.  

The elements of publish/subscribe middleware are separated into the following roles: 

• Publishers are sources of events, that is, they produce events on certain topics that are then propagated through the 
system. Depending on architecture implementation, publishers may need to describe the type of events they generate 
a priori. 

• Subscribers are the event sinks of the system, that is, they consume data on topics of interest to them. Some 
architecture implementations require subscribers to declare filtering information for the events they require. 

• Event channels are components in the system that propagate events from publishers to subscribers. These channels 
can propagate events across distribution domains to remote subscribers. Event channels can perform various 
services, such as filtering and routing, QoS enforcement, and fault management. 

The events passed from publishers to consumers can be represented in various ways, ranging from simple text 
messages to richly-typed data structures. Likewise, the interfaces used to publish and subscribe the events can be 
generic, such as send and recv methods that exchange arbitrary dynamically typed XML messages in WS-
NOTIFICATION, or specialized, such as a data writer and data readers that exchange statically typed event data in 
DDS. 

2.4 Service-Oriented Architectures and Web Services 

Service-Oriented Architecture (SOA) is a style of organizing and utilizing distributed capabilities that may be 
controlled by different organizations or owners. It therefore provides a uniform means to offer, discover, interact with 
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and use capabilities of loosely coupled and interoperable software services to support the requirements of the business 
processes and application users. The ubiquity of the World Wide Web (WWW) and the lessons learned from earlier 
forms of middleware were leveraged to create SOAP, which is a protocol for exchanging XML-based messages over a 
computer network, normally using HTTP.  

The introduction of SOAP spawned a popular new variant of SOA called Web Services that is being standardized by 
the World Wide Web Consortium (W3C). Web Services allow developers to package application logic into services 
whose interfaces are described with the Web Service Description Language (WSDL). WSDL-based services are often 
accessed using standard higher-level Internet protocols, such as SOAP over HTTP. Web Services can be used to build 
an Enterprise Service Bus (ESB), which is a distributed computing architecture that simplifies interworking between 
disparate systems. Mule and Celtix are open-source examples of the ESB approach to melding groups of heterogeneous 
systems into a unified distributed application.  

Despite some highly publicized drawbacks [Bell06] [Vin04b], Web Services have established themselves as the 
technology of choice for most enterprise business applications. This does not mean, however, that Web Services will 
completely displace earlier middleware technologies, such as EJB and CORBA. Rather, Web Services complements 
these earlier successful middleware technologies and provides standard mechanisms for interoperability. For example, 
the Microsoft Windows Communication Foundation (WCF) platform and the Service Component Architecture (SCA) 
being defined by IBM, BEA, IONA, and others combine aspects of component-based development and Web 
technologies. Like components, WCF and SCA platforms provide black-box functionality that can be described and 
reused without concern for how a service is implemented. Unlike traditional component technologies, however, WCF 
and SCA are not accessed using the object model-specific protocols defined by DCOM, Java RMI, or CORBA. 
Instead, Web services are accessed using Web protocols and data formats, such as HTTP and XML, respectively.  

Rather than trying to replace older approaches, today’s Web Services technologies are instead focusing on middleware 
integration, thereby adding value to existing middleware platforms. WSDL allows developers to abstractly describe 
Web Service interfaces while also defining concrete bindings, such as the protocols and transports required at runtime 
to access the services. By providing these common communication mechanisms between diverse middleware 
platforms, Web Services allow component reuse across an organization’s entire application set, regardless of their 
implementation technologies. For example, projects such as the Apache Web Services Invocation Framework (WSIF) 
[Apache06], Mule, and CeltiXfire, aim to allow applications to access Web Services transparently via EJB, JMS, or the 
SCA. This move towards integration allows services implemented in these different technologies to be integrated into 
an ESB and made available to a variety of client applications. Middleware integration is thus a key focus of Web 
Services applications for the foreseeable future [Vin03]. By focusing on integration, Web Services increases reuse and 
reduces middleware lock-in, so developers can use the right middleware to meet their needs without precluding 
interoperability with existing systems. 

3 Understanding Distributed Systems Software Technologies via Patterns  

Although the various middleware technologies described in Section 2 differ widely in their programming interfaces and 
language mappings they share many of the same patterns [VKZ04]. Design-focused patterns provide a vocabulary for 
expressing architectural visions, as well as examples of representative designs and detailed implementations that are 
clear and concise. Presenting pieces of software in terms of their constituent patterns also allows developers to 
communicate more effectively, with greater conciseness and less ambiguity. 

Distributed computing has been a popular focus for pattern authors for many years. For example, [POSA2] and 
[VKZ04] present collections of patterns for developing distributed object computing middleware. Likewise, 
[HOHPE03] and [FOW02] present collections of patterns for enterprise message-oriented middleware and service-
oriented architectures. Most recently, [POSA4] has captured an extensive pattern language for building distributed 
software systems that connects over 250 patterns addressing topics ranging from defining and selecting an appropriate 
baseline architecture and communication infrastructure, to specifying component interfaces, their implementations, and 
their interactions. Together, the patterns covered in these books address key technical aspects of distributed computing, 
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such as adaptation and extension, concurrency, database access, event handling, synchronization, and resource 
management. 

As software is integrated into mission-critical systems there is an increasing need for robust techniques to meet user 
dependability requirements. Patterns on fault tolerance and fault management have therefore been an active focus over 
the past decade. Several recent books [UTAS05] [HAN07] contain patterns and pattern languages that address fault 
tolerance and fault management for systems with stringent operational requirements. Likewise, developing high-quality 
distributed real-time and embedded (DRE) systems that provide predictable behavior in networked environments is 
also increasingly crucial to support mission-critical systems. Patterns that guide the development of resource 
management algorithms and architectures for DRE software appear in [DIP07] and [POSA3].  

4 Concluding Remarks 

Software for distributed systems has historically been developed largely from scratch. This development process has 
been applied many times in many companies, by many projects in parallel.  Even worse, it has been applied by the 
same teams in a series of projects. Regrettably, this continuous rediscovery and reinvention of core concepts and code 
has kept costs unnecessarily high throughout the software development life cycle.  This problem is exacerbated by the 
diversity of today’s hardware, operating systems, compilers, and communication platforms, which keep shifting the 
foundations of software development for distributed systems. 

In today’s competitive, time-to-market-driven environments, it is increasingly infeasible to develop custom solutions 
manually from scratch. Such solutions are hard to customize and tune, because so much effort is spent just trying to 
make the software operational. Moreover, as requirements change over time, evolving custom software solutions 
becomes prohibitively expensive. End-users expect–or at least desire–software to be affordable, robust, efficient, and 
agile, which is hard to achieve without the solid architectural underpinnings achievable via systematic reuse of the 
middleware technologies described in this article. The past decade has yielded significant progress in the reuse of 
software for distributed systems stemming from the systematic documentation of patterns and pattern languages that 
help simplify the development and use of middleware. 
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