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Abstract

First-generation CORBA middleware was reasonably suc-
cessful at meeting the demands of applications with best-
effort quality of service (QoS) requirements. Supporting ap-
plications with more stringent QoS requirements poses new
challenges for next-generation real-time CORBA middleware,
however. This paper provides three contributions to the de-
sign and optimization of real-time CORBA middleware. First,
we outline the challenges faced by real-time Object Request
Broker (ORB) implementers, focusing on requirements for ef-
ficient, predictable, and scalable concurrency, demultiplex-
ing, and protocol processing in CORBA’s ORB Core and Ob-
ject Adapter components. Second, we describe how TAO, our
real-time CORBA implementation, addresses these challenges
by applying key ORB optimization principle patterns, which
are rules for avoiding common design and implementation
problems that can degrade the efficiency, scalability, and pre-
dictability of complex systems. Third, we present the results
of benchmarks that evaluate the impact of TAO’s patterns and
design strategies empirically.

Our results indicate that it is possible to develop highly con-
figurable, adaptable, and standard-compliant ORBs that can
meet the QoS requirements of many real-time applications. A
key contribution of our work is to demonstrate that the abil-
ity of CORBA ORBs to support real-time systems is largely an
implementation detail. In particular, relatively few changes
are required to the standard CORBA reference model and pro-
gramming API to support real-time applications.

�Work done by the author while at Washington University.
yThis work was supported in part by Boeing, NSF grant NCR-9628218,

DARPA contract 9701516, Motorola, Siemens ZT, and Sprint.

1 Introduction

1.1 Overview of CORBA

CORBA Object Request Brokers (ORBs) allow clients to in-
voke operations on distributed objects without concern for ob-
ject location, programming language, OS platform, commu-
nication protocols and interconnects, and hardware [1]. Fig-
ure 1 illustrates the key components in the CORBA reference
model [2] that collaborate to provide this degree of portabil-
ity, interoperability, and transparency.1 Each component in the
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Figure 1: Key Components in the CORBA 2.x Reference
Model

CORBA reference model is outlined below:

Client: A client is a role that obtains references to objects
and invokes operations on them to perform application tasks.
Objects can be remote or collocated relative to the client. Ide-
ally, a client can access a remote object just like a local object,
i.e., object !operation(args) . Figure 1 shows how
the underlying ORB components described below transmit re-
mote operation requests transparently from client to object.

1This overview only focuses on the CORBA components relevant to this
paper. For a complete synopsis of CORBA’s components see [2].
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Object: In CORBA, an object is an instance of an OMG
Interface Definition Language (IDL) interface. Each object
is identified by anobject reference, which associates one or
more paths through which a client can access an object on a
server. Anobject ID associates an object with its implemen-
tation, called a servant, and is unique within the scope of an
Object Adapter. Over its lifetime, an object has one or more
servants associated with it that implement its interface.

Servant: This component implements the operations de-
fined by an OMG IDL interface. In object-oriented (OO) lan-
guages, such as C++ and Java, servants are implemented us-
ing one or more class instances. In non-OO languages, such
as C, servants are typically implemented using functions and
struct s. A client never interacts with servants directly, but
always through objects identified by object references.

ORB Core: When a client invokes an operation on an ob-
ject, the ORB Core is responsible for delivering the request
to the object and returning a response, if any, to the client.
An ORB Core is implemented as a run-time library linked
into client and server applications. For objects executing re-
motely, a CORBA-compliant ORB Core communicates via a
version of the General Inter-ORB Protocol (GIOP), such as
the Internet Inter-ORB Protocol (IIOP) that runs atop the TCP
transport protocol. In addition, custom Environment-Specific
Inter-ORB protocols (ESIOPs) can also be defined.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs implement theProxypattern [3] and pro-
vide a strongly-typed,static invocation interface(SII) that
marshals application parameters into a common message-level
representation. Conversely, skeletons implement theAdapter
pattern [3] and demarshal the message-level representation
back into typed parameters that are meaningful to an appli-
cation.

IDL Compiler: An IDL compiler transforms OMG IDL
definitions into stubs and skeletons that are generated automat-
ically in an application programming language, such as C++
or Java. In addition to providing programming language trans-
parency, IDL compilers eliminate common sources of network
programming errors and provide opportunities for automated
compiler optimizations [4].

Object Adapter: An Object Adapter is a composite compo-
nent that associates servants with objects, creates object refer-
ences, demultiplexes incoming requests to servants, and col-
laborates with the IDL skeleton to dispatch the appropriate
operation upcall on a servant. Object Adapters enable ORBs
to support various types of servants that possess similar re-
quirements. This design results in a smaller and simpler ORB
that can support a wide range of object granularities, lifetimes,
policies, implementation styles, and other properties.

1.2 Challenges for Real-time CORBA

As described above, CORBA helps to improve the flexibility,
extensibility, maintainability, and reusability of distributed ap-
plications [1]. A growing class of distributed real-time ap-
plications require ORB middleware that provides stringent
quality of service (QoS) support, such as end-to-end prior-
ity preservation, hard upper bounds on latency and jitter, and
bandwidth guarantees [5]. Figure 2 depicts the layers and
components of an ORB endsystem that must be carefully de-
signed and systematically optimized to support end-to-end ap-
plication QoS requirements.
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Figure 2: Real-time Features and Optimizations Necessary to
Meet End-to-end QoS Requirements in ORB Endsystems

The first-generation of ORBs lacked many of the features
and optimizations [6, 7, 8, 9] shown in Figure 2. This situation
was not surprising, of course, since ORB developers focused
initially on refining the OMG specifications [10] and devel-
oping core infrastructure components, such as the basic ORB
communication mechanisms. In contrast, second-generation
ORBs, such as The ACE ORB (TAO) [11], have leveraged the
maturations of standards [12, 5, 13], patterns [14], and QoS-
enabled framework components [15, 16], to provide end-to-
end QoS guarantees to applications bothvertically (i.e., net-
work interface$ application layer) andhorizontally(i.e., end-
to-end) by integrating highly optimized CORBA middleware
with OS I/O subsystems, communication protocols, and net-
work interfaces.

Our previous research has examined many dimensions of
high-performance and real-time ORB endsystem design, in-
cluding static [17] and dynamic [18] scheduling, event pro-
cessing [19], I/O subsystem integration [20], ORB Core archi-
tectures [21], systematic benchmarking of multiple ORBs [6],
and design patterns for ORB extensibility [14]. This paper fo-
cuses on other previously unexplored dimensions in the high-
performance and real-time ORB endsystem design space:Ob-
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ject Adapter and ORB Core optimizations for (1) server-side
concurrency, (2) collocation, (3) memory management, (4)
ORB protocol processing, and (5) CORBA request demulti-
plexing.

The optimizations used in TAO are guided by a set ofprin-
ciple patterns[22] that we have applied in prior work to
optimize middleware [11] and lower-level networking soft-
ware [23], such as TCP/IP. Optimization principle patterns
document rules for avoiding common design and implemen-
tation mistakes that degrade the performance, scalability, and
predictability of complex systems. The optimization principle
patterns we applied to TAO are shown in Table 1. We ap-

Optimization Principle Pattern
1 Optimizing for the common case
2 Eliminating gratuitous waste
3 Shifting computation in time via precomputing
4 Passing hints between layers and components
5 Not being tied to reference models and implementations
6 Replacing inefficient general-purpose operations

with special-purpose ones
7 Leveraging system components by exploiting locality
8 Adding redundant state to minimize computations
9 Using efficient/predictable data structures

Table 1: Optimization Principle Patterns Applied in TAO

plied these optimization principle patterns in TAO to address
the following ORB design and implementation challenges:

Optimizing the server-side ORB concurrency model: The
concurrency model used to multi-thread an ORB has a sub-
stantial impact on its performance, predictability, and scala-
bility [24]. However, concurrency models supported in con-
ventional ORBs, such as thread-per-request or queue-based
worker thread pools, incur excessive context switching, syn-
chronization, and data movement overhead [21]. Therefore,
TAO employs a leader/followers thread pool model described
in Section 2.1. This concurrency model requires no heap mem-
ory allocations or locks in the critical path, which is optimal
for many types of real-time applications. This optimization
is based on the principle patterns of optimizing for the com-
mon case, eliminating gratuitous waste, and not being tied to
reference implementations.

Optimizing collocation: The principle pattern of avoiding
gratuitous waste enables TAO to minimize the run-time over-
head forcollocatedobjects, i.e., objects that reside in the
same address space as their client(s). After looking up the
servant in the POA, operations are directly invoked on ser-
vants in the context of the calling thread, thereby transform-
ing operation invocations into local virtual method calls. TAO
also supports direct collocated method invocations that bypass

POA for more static configuration. Section 2.2 describes how
TAO’s collocation optimizations are completely transparent to
clients,i.e., collocated objects can be used as regular CORBA
objects, with TAO handling all aspects of collocation.

Optimizing memory management: ORBs allocate buffers
to send and receive (de)marshaled data. It is important to opti-
mize these allocations since they are a significant source of
dynamic memory management and locking overhead. Sec-
tion 2.3 describes the mechanisms TAO uses to allocate and
manipulate internal parameter (de)marshaling buffers. We il-
lustrate how TAO minimizes fragmentation, data copying, and
locking for many common application use-cases. The princi-
ple patterns of exploiting locality and optimizing for the com-
mon case influence these optimizations.

Minimizing ORB protocol overhead: Real-time systems
have traditionally been developed using proprietary protocols
that are hard-coded for each application or application family.
In theory, the standard CORBA GIOP/IIOP protocols obvi-
ate the need for proprietary protocols. In practice, however,
many developers of real-time applications are justifiably con-
cerned that standard CORBA protocols incur excessive over-
head. Section 2.4 shows how TAO can be configured to re-
duce the overhead of GIOP/IIOP without affecting the stan-
dard CORBA programming APIs exposed to application de-
velopers. This optimization is based on the principle pattern of
avoiding unnecessary generality and relaxing system require-
ments.

Optimizing CORBA request demultiplexing: The time an
ORB’s Object Adapter spends demultiplexing requests to tar-
get object implementations,i.e., servants, can constitute a
significant source of ORB overhead for real-time applica-
tions [8]. Section 3 describes how Object Adapter demulti-
plexing strategies impact the scalability and predictability of
real-time ORBs. This section also illustrates how TAO’s Ob-
ject Adapter optimizations enable constant time request de-
multiplexing in the average- and worst-case,regardlessof the
number of objects or operations configured into an ORB. The
principle patterns that guide our request demultiplexing op-
timizations include precomputing, using specialized routines,
passing hints in protocol headers, adding extra state, and not
being tied to reference models.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines the ORB Core architecture of CORBA ORBs
and evaluates the design and performance of ORB Core op-
timization principle patterns used in TAO; Section 3 outlines
the Portable Object Adapter (POA) architecture of CORBA
ORBs and evaluates the design and performance of POA op-
timization principle patterns used in TAO; Section 4 describes
related work; and Section 5 provides concluding remarks.
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2 Optimizing the ORB Core for Real-
time Applications

The ORB Core is a standard component in CORBA that is re-
sponsible for connection and memory management, data trans-
fer, endpoint demultiplexing, and concurrency control [2].
An ORB Core is typically implemented as a run-time library
linked into both client and server applications. When a client
invokes an operation on an object, the ORB Core is responsi-
ble for delivering the request to the object and returning a re-
sponse, if any, to the client. For objects that reside remotely, a
CORBA-compliant ORB Core transfers requests via the Gen-
eral Inter-ORB Protocol (GIOP), which is commonly imple-
mented with the Internet Inter-ORB Protocol (IIOP) that runs
atop TCP.

Optimizing an ORB Core to support real-time applications
requires the resolution of many design challenges. This sec-
tion outlines several of the most important challenges and de-
scribes the optimization principle patterns we applied to max-
imize the efficiency, predictability, and scalability of TAO’s
ORB Core. These optimizations include minimizing context
switching, synchronization, and data movement in TAO’s con-
currency model, transparently collocating clients and servants
that are in the same address space, minimizing dynamic mem-
ory allocations and data copies, and minimizing GIOP/IIOP
protocol overhead. Additional optimizations for ORB Core
connection management are described in [21].

2.1 ORB Core Concurrency Model Optimiza-
tions

Motivation: A common concurrency model used in conven-
tional ORBs is to use aqueue-based worker thread pool[24].
As shown in Figure 3, the components in this model include a
designated I/O thread, a request queue, and a pool of worker
threads. The I/O threadselect s (1) on the socket endpoints,
(2) reads new client requests, and (3) inserts them into the
tail of the request queue. A worker thread in the pool dequeues
(4) the next request from the head of the queue and (5) dis-
patches it to a user-defined servant operation via an upcall.

The queue-based worker thread pool model is popular for
several reasons: (1) it bounds the resources dedicated to
threads, (2) it isolates the I/O thread from the concurrency
strategy ultimately used to process the request, (3) it is rela-
tively easy to implement, (4) CORBA server applications can
control thread creation and control via factory patterns [3], and
(5) other concurrency mechanisms, such as thread-per-request
or thread pools with lanes [5], can be implemented using this
basic model.

However, the queue-based worker thread pool model is in-
adequate for many types of real-time systems because it (1)
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Figure 3: Server Queue-based Worker Thread Pool Concur-
rency Model

shares dynamically allocated data buffers between threads,
which works against CPU cache affinity [25] and limits the
applicability of other optimizations, such as thread-specific
storage (TSS) memory management described in Section 2.3,
(2) increases locking overheaddue to the synchronization re-
quired to pass data between threads, and (3) can result inun-
bounded priority inversionssince a FIFO request queue will
queue up all requests at the tail of the queue, irrespective of
their priority.

TAO’s leader/followers thread pool server concurrency
model: To alleviate the drawbacks outlined above, TAO uses
the leader/followersthread pool model shown in Figure 4. In
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1: select()1: select()
3: release()3: release()
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Figure 4: Leader/Followers Thread Pool Server Concurrency
Model

this model, there is no designated I/O thread. Instead, a pool
of threads is allocated and all threads in the pool take turns
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playing the role of the I/O thread. The current leader thread in
the server processselect s (1) on all open client connections.
When a request arrives, the leader thread reads (2) it into an in-
ternal buffer. Once the request is validated, a follower thread
in the pool is released to become the new leader (3) and the
original leader thread dispatches the upcall (4). After the up-
call returns, the original leader thread becomes a follower and
returns to the thread pool. New requests are queued in socket
endpoints until a thread in the pool is available to execute the
requests.

Compared with the queue-based worker thread pool, the
leader/followers thread pool model (1)improves CPU cache
affinity and eliminates dynamic allocation and data buffer
sharing between threadsby reading the request into buffer
space allocated on the stack of the leader or by using TSS
memory allocations, (2)minimizes locking overheadby not
exchanging data between threads, thereby reducing thread
synchronization, and (3)minimizes priority inversionsince no
extra queueing is introduced by the ORB Core. When com-
bined with real-time I/O subsystems [26], the leader/follower
thread pool model can significantly reduce sources of non-
determinism in server ORB request processing.

Empirical results: Figure 5 compares the performance of
the leader/follower and queue-based worker thread pool con-
currency models. These benchmarks were conducted using
TAO version 1.0 on a quad-CPU 400 MHz Pentium II Xeon,
with 1 GByte RAM, 512 Kb cache on each CPU, running
Debian Linux release 2.2.5, and g++ version egcs-2.91.66.
Our benchmarks measure the total time required by each con-
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Figure 5: Performance of Leader/Follower vs. Queue-based
Worker Thread Pool

currency model to process 100,000 CORBA request mes-
sages. We varied the number of threads and the amount of

application-level processing performed for each request. The
results in Figure 5 illustrate the percentage improvement in
performance for the leader/followers thread pool model com-
pared with the queue-based worker thread pool model.

As shown in the figure, the leader/followers concurrency
model outperformed the queue-based approach for all com-
binations of threads and application workload. The largest im-
provement,�2,800%, occurred for a small number of threads
and a small amount of work-per-request. As the number of
threads and the amount of work-per-request increased the per-
centage improvement decreased to�8%. These results illus-
trate that the queue-based worker thread pool model incurs a
higher amount of overhead for memory allocation, locking,
and data movement than the leader/followers model.

Note that on a lightly loaded real-time system, using a small
number of threads will generally yield better throughput than
a higher number of threads. This difference stems from the
higher context switching and locking overhead incurred by
threading. As workloads increase, however, addition threads
may help improve server throughput, particularly when the
server runs on a multi-processor.

2.2 Collocation Optimizations

Motivation: In addition to separating interface from imple-
mentation, CORBA decouples servant implementations from
how servants are configured into server processes. In practice,
CORBA is used primarily to communicate between distributed
objects. However, there are configurations where a client and
servant must becollocatedin the same address space [27]. In
this case, there is no need to incur the overhead of data mar-
shaling or transmitting requests/replies through a “loopback”
transport device. Such collocation optimizations are an appli-
cation of the principle pattern of avoiding gratuitous waste.

TAO’s collocation optimization technique: TAO opti-
mizes for collocated client/servant configurations by generat-
ing a special stub for the client, which is an application of the
principle pattern of replacing inefficient general-purpose op-
erations with optimized special-purpose ones. This stub for-
wards all requests to the servant and eliminates data marshal-
ing, thereby applying the principle pattern of avoiding gra-
tuitous waste. TAO supports the following two collocation
strategies in its stubs:

� Thru POA: TheThru POAstrategy is the default col-
location strategy in TAO. In this strategy, asafecollocated stub
is used to handle operation invocations on a collocated object.
Invoking an operation on this collocated stub ensures: (1) the
server ORB (which may or may not be the same ORB as the
clients’) has not been shut down, (2) the thread-safety of all
ORB and POA operations, (3) the POA managing the servant
still exists, (4) the POA Manager of this POA is queried to
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make sure upcalls are allowed to be performed on the POA’s
servants, (5) the servant for the collocated object is still active,
(6) thePOA::Current ’s context is initialized for this upcall,
and (7) the POA’s threading policy is respected. If it is safe to
invoke the operation, the stub uses the servant exported from
server’s POA, downcasts it to the servant, and forwards the op-
eration directly to the servant. The so-called safe stubs ensure
that thePOA::Current is restored to its previous context
before the current invocation, various locks in the POA are re-
leased, and the servant upcall counter is restored, after either a
successful or an unsuccessful operation invocation.

� Direct: In this TAO-specific extension, the collocation
class forwards all requests directly to the servant class,i.e., the
POA is not involved at all. This design applies the principle
pattern of optimizing for the common case, which ensures the
performance is the same as for a direct virtual method call.
However, this implementation does not support the following
standard POA features: (1) thePOA::Current is not ini-
tialized, (2) interceptors are bypassed, (3) POA Manager state
is ignored, (4) Servant Managers are not consulted, (5) ethe-
realized servants can cause problems, (6) location forwarding
is not supported, and (7) the POA’sThread Policy is cir-
cumvented. As shown in Figure 9, these features decrease col-
location performance somewhat. Therefore, TAO provides the
Direct strategy that is optimized for real-time applications
with very stringent latency requirements.

Supporting transparent collocation in TAO: Clients can
obtain an object reference in several ways,e.g., from
a CORBA Naming Service or from a Lifecycle Ser-
vice generic factory operation. Likewise, clients can use
string to object to convert a stringified interoperable
object reference (IOR) into an object reference. To ensure lo-
cality transparency, an ORB’s collocation optimization must
determine if an object is collocated. If it is, the ORB returns a
collocated stub; if it is not, the ORB returns a remote stub to a
distributed object.

Figure 6 shows the classes generated by TAO’s IDL com-
piler. The stub and skeleton classes are required by the POA
specification, though the collocation class is specific to TAO.
Collocation is transparent to the client since it only accesses
the abstract interface and never uses the collocation class di-
rectly. As with remote method invocations, TAO’s ORB Core
assumes the responsibility of locating servants and makes sure
the collocated stub class, rather than the remote stub class, is
used by a client when the servant resides in the same address
space.

The specific steps used by TAO’s collocation optimizations
are described below:

Step 1 – Determining collocation: To determine if an
object reference is collocated, TAO’s ORB Core maintains a

CORBA::Object

Stub

Interface

Collocated Proxy

Servant Base

Skeleton

Servant Implementation

<<forwards>>

CLIENT-SIDE
MAPPING

SERVER-SIDE
MAPPING

Figure 6: TAO’s POA Mapping and Collocation Class

collocation table, which applies the principle of maintaining
extra state. Figure 7 shows the internal structure for colloca-
tion table management in TAO. Each collocation table maps

TAO_ORB_Core

Table Collection

CORBA::ORB

1..*

1

1..*

1

Collocation Table

1
1..*

1
1..*

Addr

1..*1..*

endpoint

PortableServer::POA
0..1

0..*
0..1

0..*RootPOA

Table Entry
endpoint : Addr
poa : PortableServer::POA1..*1..*

Figure 7: Class Relationship of TAO’s Collocation Tables

an ORB’s transport endpoints to its RootPOA. In the case of
IIOP, endpoints are specified usingfhostname, port numberg
tuples.

Multiple ORBs can reside in a single server process. Each
ORB can support multiple transport protocols and accept re-
quests from multiple transport endpoints. Therefore, TAO
maintains multiple collocation tables for all transport proto-
cols used by ORBs within a single process. Since different
protocols have different addressing formats, maintaining pro-
tocol specific collocation tables allows TAO to strategize and
optimize the lookup mechanism for each protocol.
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Step 2 – Obtaining a reference to a collocated object: A
client acquires an object reference either by resolving an im-
ported IOR usingstring to object or by demarshaling
an incoming object reference. In either case, TAO examines
the corresponding collocation tables according to the profiles
carried by the object to determine if the object is collocated or
not. If the object is collocated, TAO performs the steps shown
in Figure 8 to obtain a reference to the collocated object.

: CORBA::ORB

: Clients

: TAO_
ORB_Core

RootPOA : Portable
Server::POA

New Object Reference :
CORBA::Object

Collocated Servant :
CORBA::Object

Servant Implementation :
CORBA::ServantBase

2: get_collocated_poa( )

3: find_servant( )

4: instantiates

1: resolve object reference

5: _narrow ()

8: invokes operations 6: _narrow ()

7: instantiates

Figure 8: Finding a Collocated Object in TAO

When theThru POAcollocation strategy is enabled, the
ORB checks if the imported object reference is collocated or
not only when it resolves the object reference. To determine
this, TAO examines the endpoint information in the colloca-
tion table maintained by TAO’s ORB Core. If the imported
object reference is collocated, an object reference with the
safe collocated stub is generated. This safe collocated stub
contains information about the matching Object Adapter and
server ORB.

If the ORB uses theDirect collocation strategy, the ORB
resolves an imported object reference using the steps shown in
Figure 8. To resolve an object reference(1), the ORB checks
(2) the collocation table maintained by TAO’s ORB Core to
determine if any object endpoints are collocated. If a collo-
cated endpoint is found, the RootPOA corresponding to the
endpoint is returned. Next, the matching Object Adapter is
queried for the servant, starting at its RootPOA(3). The ORB
then instantiates a genericCORBA::Object (4) and invokes
the narrow operation on it. If a servant is found, the ORB’s
narrow operation(5) invokes the servant’snarrow oper-

ation (6) and a collocated stub is instantiated and returned to
the client(7). Finally, clients invoke operations(8) on the col-

located stub, which forwards the operation to the local servant
via a direct virtual method call.

Either operation(2) or (3) will fail if the imported object
reference is not collocated. In this case, the ORB invokes the
is a operation to verify that the remote object matches the

target type. If the test succeeds, a remote stub is created and
returned to the client and all subsequent operations are dis-
tributed. Thus, the process of selecting collocated stubs or
non-collocated stubs is completely transparent to clients and
are performed only at the time of object reference creation.

Step 3 – Performing collocated object invocations: Col-
located operation invocations in TAO borrow the client’s
thread-of-control to execute the servant’s operation. There-
fore, they are executed within the client thread at its thread
priority. Although executing an operation in the client’s thread
is very efficient, it is undesirable for certain types of real-time
applications [28]. For instance, priority inversion can occur
when a client in a lower priority thread invokes operations on
a collocated object in a higher priority thread.

To provide greater access control over the scope of TAO’s
collocation optimizations, therefore, applications can asso-
ciate different access policies to endpoints so they appear col-
located only to certain priority groups. Since endpoints and
priority groups in many real-time applications are statically
configured, this access control lookup imposes no additional
overhead.

Empirical results: To measure the performance gain from
TAO’s collocation optimizations, we ran server and client
threads in the same process. Two platforms were used
to benchmark the test program: a quad-CPU 300 Mhz
UltraSparc-II running SunOS 5.7 and a dual-CPU 333 Mhz
Pentium-II running Microsoft Windows NT 4.0 with SP4. To
compare performance systematically, the test program was run
with the Thru POAcollocation strategy, theDirect collo-
cation strategy, direct invocation on servants, and as well as
with neither collocation optimization,i.e., using remote stubs
via the loopback network interface.

Figure 9 shows the performance improvement, measured
in calls-per-second, using TAO’s collocation optimizations.
Each operation cubed a variable-length sequence oflong s
that contained 4 and 1,024 elements, respectively. The
performance of operation invocations improves dramatically
when servants are collocated with clients. Depending on
the size of arguments passed to the operations, our results
show thatThru POAimproves performance from 3,000% to
6,000% compared to the loopback device. The application fo
Thru POAcollocation optimization saves the time to transmit
the invocation arguments and return values back and forth thru
the local loopback device which also involve copying data be-
tween user and kernel memories. Also shown in the figure,
we gain 130%� 180% performance improvement by skip-
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Figure 9: Results of TAO’s Collocation Optimizations

ping related POA and ORB operations when switching from
Thru POAstrategy toDirect strategy. The size of the ar-
guments does not have a significant effect on the performance
improvement in this case. Invoking the operation directly to
servant through virtual function calls represents the optimal
performance we can get in this scenario. As shown in the fig-
ure, there’s only 5% performance gain compared toDirect
collocateion strategy which is resulted from the extra virtual
function call within the collocated stub.

TAO’s Thru POA collocation strategy is completely
CORBA compliant. Although there are some overhads in-
volved in theThru POAcollocation strategy compared to
Direct collocation, there is still a significant performance
improvement over the non-optimized scheme. Moreover, the
Thru POAstrategy preserves the semantics of CORBA’s ob-
ject architecture model and maintain the uniform behavior
no matter an object is collocated or remote. For users who
have systems that are more statically configured, they can take
advantage of the TAO-specificDirect collocation strategy
which provides near optimal performance but requires more
consideration on objects lifetimes. TheDirect colloca-
tion policy optimizations are not entirely compliant with the
CORBA standard, though they provide more efficient collo-
cated operation invocations. However, both collocation strate-
gies are very efficient, compared with remote stubs that trans-
mit data via the loopback network interface.

2.3 Memory Management Optimizations

Motivation: A key source of overhead and non-determinism
in conventional ORB Core implementations stems from im-
proper management of memory buffers. Memory buffers are

used by CORBA clients to send requests containing marshaled
parameters. Likewise, CORBA servers use memory buffers to
receive requests containing marshaled parameters.

One source of memory management overhead is incurred
by dynamic memory allocation, which is problematic for real-
time ORBs. For instance, dynamic memory can fragment the
global heap, which decreases ORB predictability. Likewise,
locks used to protect a global heap from simultaneous access
by multiple threads can increase synchronization overhead and
incur priority inversion [21].

Another significant source of memory management over-
head involves excessive data copying. For instance, conven-
tional ORBs often resize their internal marshaling buffers mul-
tiple times when encoding large operation parameters. Naive
memory management implementations use a single buffer that
is resized automatically as necessary, which can cause exces-
sive data copying.

TAO’s memory management optimization techniques:
TAO’s memory management strategies leverage its concur-
rency strategies, which minimize thread context switching
overhead and priority inversions by eliminating queueing
within the ORB’s critical path. For example, on the client,
the thread that invokes a remote operation is the same thread
that completes the I/O required to send the request,i.e., no
queueing exists within the ORB. Likewise, on the server, the
thread that reads a request completes the upcall to user code,
also eliminating queueing within the ORB.2 These optimiza-
tions are based on the principle pattern of exploiting locality
and optimizing for the common case.

By avoiding thread context switches and unnecessary
queueing, TAO can benefit from memory management opti-
mizations based onthread-specific storage(TSS). TSS is a
common design pattern [14] for optimizing buffer manage-
ment in multi-threaded middleware. This pattern allows mul-
tiple threads to use one logically global access point to retrieve
thread-specific data without incurring locking overhead for
each access, which is an application of the optimization prin-
ciple pattern of avoiding waste. TAO uses this pattern to place
its memory allocators into TSS. Using a thread-specific mem-
ory pool eliminates the need for intra-thread allocator locks,
reduces fragmentation in the allocator, and helps minimize pri-
ority inversion in real-time applications.

In addition, TAO minimizes unnecessary data copying by
keeping a linked list of marshaling buffers. As shown in Fig-
ure 10, operation arguments are marshaled into TSS allocated
buffers. The buffers are linked together to minimize data copy-
ing. Gather-write I/O system calls, such aswritev , can then
write these buffers atomically without requiring multiple OS
calls, unnecessary data allocation, or copying. TAO’s mem-

2Any queueing required by the ORB endsystem is performed in the OS
I/O subsystem.
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ory management design also supports special allocators, such
as zero-copy schemes [29] that share memory pools between
user processes, the OS kernel, and network interfaces.

Empirical results: Figure 11 compares buffer allocation
time for a CORBA request using thread-specific storage
(TSS) allocators with that of using a global heap alloca-
tor. These experiments were executed on a Pentium II/450
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Figure 11: Buffer Allocation Time using TSS and Global Heap
Allocators

with 256Mb of RAM, running LynxOS 3.0, which is a real-
time OS. The test program contained a group of ORB buffer
(de)allocations intermingled with a pseudo-random sequence
of regular (de)allocations. This use-case is typical of mid-
dleware frameworks like CORBA, where application code is
called from the framework and vice-versa. Both experiments
perform the same sequence of memory allocation requests,
with one experiment using a TSS allocator for the ORB buffers
and the other using a global allocator.

In this experiment, we perform�16 ORB buffer allocations
and�1,000 regular data allocations. The exact series of allo-
cations is not important, as long as both experiments perform
the same number. If there is one series of allocations where
the global heap allocator behaves non-deterministically, it is
not suitable for hard real-time systems.

Our results in Figure 11 illustrate that TAO’s TSS allocators
isolate the ORB from variations in global memory allocation
strategies.3 In addition, this experiment shows how TSS allo-
cators are more efficient than global memory allocators since
they eliminate locking overhead. In general, reducing locking
overhead throughout an ORB is important to support real-time
applications with deterministic QoS requirements [21].

2.4 Minimizing ORB Protocol Message Foot-
print

Motivation: Real-time systems have traditionally been de-
veloped using proprietary protocols that are hard-coded for
each application. In theory, CORBA’s GIOP/IIOP protocols
obviate the need for proprietary protocols. In practice, how-
ever, many developers of real-time applications are justifiably
concerned that standard CORBA protocols will cause exces-
sive overhead. For example, some applications have very strict
constraints on latency, which is affected by the total time re-
quired to transmit the message. Other applications, such as
mobile PDAs running over wireless access networks, have
limited bandwidth, which makes them more sensitive to pro-
tocol message footprint overhead.

TAO’s ORB protocol optimization techniques: A GIOP
request includes a number of fields, such as the version num-
ber, that are required for interoperability among ORBs. How-
ever, certain fields are not required in all application domains.
For instance, the magic number and version fields can be omit-
ted if a single supplier and single version is used for ORBs in
a real-time embedded system. Likewise, if the communicating
ORBs are running on systems with the same endianess,i.e.,
big-endian or little-endian, the byte order flag can be omitted
from the request.

Since embedded and real-time systems typically run the
same ORB implementation on similar hardware, we have
modified TAO to optionally remove some fields from the
GIOP header and the GIOP Request header when the
-ORBgioplite option is given to the client and server
CORBA::ORBinit operation. The fields removed by this
optimization are shown in Table 2. These optimizations are
guided by the principle patterns of relaxing system require-
ments and avoiding unnecessary generality.

3There is a very small variation in the TSS allocator performance; but the
variation is bounded and thus the strategy is completely predictable.
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Header Field Size
GIOP magic number 4 bytes
GIOP version 2 bytes
GIOP flags (byte order) 1 byte
Request Service Context � 4 bytes
Request Principal � 4 bytes
Total � 15 bytes

Table 2: Messaging Footprint Savings for TAO’s GIOPlite Op-
timization

Empirical results: We conducted an experiment to measure
the performance impact of omitting the GIOP fields in Table 2.
These experiments were executed on a Pentium II/450 with
256Mb of RAM, running LynxOS 3.0 in loopback mode. Ta-
ble 3 summarizes the results, expressed in calls-per-second:

Marshaling Enabled Marshaling Disabled
min max avg min max avg

GIOP 2,878 2,937 2,906 2,912 2,976 2,949
GIOPlite 2,883 2,978 2,943 2,911 3,003 2,967

Table 3: Performance of TAO’s GIOP and GIOPlite Protocol
Implementations

Our empirical results reveal a slight, but measurable,2%
improvement when removing the GIOP message footprint
“overhead.” More importantly though, these changes do not
affect the standard CORBA Axis used to develop applications.
Therefore, programmers can focus on the development of ap-
plications, and if necessary, TAO can be optimized to use this
lightweight version of GIOP.

To obtain more significant protocol optimizations, we are
adding apluggable protocolsframework to TAO [30]. This
framework generalizes TAO’s current-ORBgioplite op-
tion to support both pluggable ORB protocols (ESIOPs)and
pluggable transport protocols.

3 Optimizing the POA for Real-time
Applications

3.1 POA Overview

The OMG CORBA specification [2] standardizes several
server-side components in CORBA-compliant ORBs. These
components include the Portable Object Adapter (POA), stan-
dard interfaces for object implementations (i.e., servants), and
refined definitions of skeleton classes for various program-
ming languages, such as Java and C++.

These standard POA features allow application developers
to write more flexible and portable CORBA servers [31]. They
also make it possible to (1) conserve resources by activating
objects on-demand [32] and to (2) generate so-called persistent
object references [33], which remain valid after the originating
server process terminates. Server applications can configure
these new features portably usingpoliciesassociated with each
POA.

CORBA 2.2 allows server developers to createmultipleOb-
ject Adapters, each with its own set of policies. Although this
is a powerful and flexible programming model, it can incur
significant run-time overhead because it complicates the re-
quest demultiplexing path within a server ORB. This is partic-
ularly problematic for real-time applications since naive Ob-
ject Adapter implementations can substantially increase prior-
ity inversion and non-determinism [8].

Optimizing a POA to support real-time applications requires
the resolution of several design challenges. This section out-
lines these challenges and describes the optimization princi-
ple patterns we applied to maximize the predictability, perfor-
mance, and scalability of TAO’s POA. These POA optimiza-
tions include constant-time demultiplexing strategies, reduc-
ing run-time object key processing overhead during upcalls,
and generally optimizing POA predictability and reducing
memory footprint by selectively omitting non-deterministic
POA features.

3.2 Optimizing POA Demultiplexing

Scalable and predictable POA demultiplexing is important for
many applications that have stringent hard real-time timing
constraints. Below, we outline the steps involved in demul-
tiplexing a client request through a CORBA server and then
qualitatively and quantitatively evaluate alternative demulti-
plexing strategies.

3.2.1 Overview of CORBA Request Demultiplexing

A standard GIOP-compliant client request contains the iden-
tity of its object and operation. An object is identified by an
object key, which is anoctet sequence . An operation is
represented as astring . As shown in Figure 12, the ORB
endsystem must perform the following demultiplexing tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the in-
coming client request multiple times, starting from the net-
work interface, through the data link, network, and transport
layers up to the user/kernel boundary (e.g., the socket layer),
where the data is passed to the ORB Core in a server process.

Steps 3, and 4: The ORB Core uses the addressing informa-
tion in the client’s object key to locate the appropriate POA
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Figure 12: CORBA 2.2 Logical Server Architecture

and servant. POAs can be organized hierarchically. There-
fore, locating the POA that contains the designated servant can
involve a number of demultiplexing steps through the nested
POA hierarchy.

Step 5 and 6: The POA uses the operation name to find the
appropriate IDL skeleton, which demarshals the request buffer
into operation parameters and performs the upcall to code sup-
plied by servant developers to implement the object’s opera-
tion.

The conventional deeply-layered ORB endsystem demulti-
plexing implementation shown in Figure 12 is generally inap-
propriate for high-performance and real-time applications for
the following reasons [34]:

Decreased efficiency: Layered demultiplexing reduces per-
formance by increasing the number of internal tables that
must be searched as incoming client requests ascend through
the processing layers in an ORB endsystem. Demultiplexing
client requests through all these layers can be expensive, par-
ticularly when a large number of operations appear in an IDL
interface and/or a large number of servants are managed by an
Object Adapter.

Increased priority inversion and non-determinism: Lay-
ered demultiplexing can cause priority inversions because
servant-level quality of service (QoS) information is inacces-
sible to the lowest-level device drivers and protocol stacks in

the I/O subsystem of an ORB endsystem. Therefore, an Ob-
ject Adapter may demultiplex packets according to their FIFO
order of arrival. FIFO demultiplexing can cause higher prior-
ity packets to wait for a non-deterministic period of time while
lower priority packets are demultiplexed and dispatched [20].

Conventional implementations of CORBA incur significant
demultiplexing overhead. For instance, [6, 8] show that con-
ventional ORBs spend�17% of the total server time process-
ing demultiplexing requests. Unless this overhead is reduced
and demultiplexing is performed predictably, ORBs cannot
provide uniform, scalable QoS guarantees to real-time appli-
cations.

The remainder of this section focuses on demultiplexing op-
timizations performed at the ORB layer,i.e., steps 3 through 6.
Information on OS kernel layer demultiplexing optimizations
for real-time ORB endsystems is available in [35, 20].

3.2.2 Overview of Alternative Demultiplexing Strategies

As illustrated in Figure 12, demultiplexing a request to a ser-
vant and dispatching the designated servant operation involves
several steps. Below, we qualitatively outline the most com-
mon demultiplexing strategies used in CORBA ORBs. Sec-
tion 3.2.3 then quantitatively evaluates the strategies that are
appropriate for each layer in the ORB.

Linear search: This strategy searches through a table se-
quentially. If the number of elements in the table is small,
or the application has no stringent QoS requirements, linear
search may be an acceptable demultiplexing strategy. For real-
time applications, however, linear search is undesirable since it
does not scale up efficiently or predictably to a large number of
servants or operations. In this paper, we evaluate linear search
only to provide an upper-bound on worst-case performance,
though some ORBs [6] still use linear search for operation de-
multiplexing.

Binary search: Binary search is a more scalable demulti-
plexing strategy than linear search since itsO(lgn) lookup
time is effectively constant for most applications. However,
insertions and deletions can be complicated since data must
be sorted for the binary search algorithm to work correctly.
Therefore, binary search is primarily applicable for ORB op-
eration demultiplexing since all insertions and sorting can be
performed off-line by an IDL compiler. In contrast, using bi-
nary search to demultiplex requests to servants is more prob-
lematic since servants can be inserted or removed dynamically
at run-time.

Dynamic hashing: Many ORBs use dynamic hashing as
their Object Adapter demultiplexing strategy. Dynamic hash-
ing providesO(1) performance for the average case and sup-
ports dynamic insertions more readily than binary search.
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However, due to the potential for collisions, its worst-case ex-
ecution time isO(n), which makes it inappropriate for hard
real-time applications that require efficient and predictable
worst-case ORB behavior. Moreover, depending on the hash
algorithm, dynamic hashing may incur a fairly high constant
overhead [8].

Perfect hashing: If the set of operations or servants is
known a priori, dynamic hashing can be improved by pre-
computing a collision-freeperfect hash function[36]. Perfect
Hashing is based on the optimization principle patterns of pre-
computing and using specialized routines. A demultiplexing
strategy based on perfect hashing executes in constant time
and space. This property makes perfect hashing well-suited
for deterministic real-time systems that can be configured stat-
ically [8], i.e., if the number of objects and operations can be
determined off-line.

Active demultiplexing: Although the number and names of
operations can be knowna priori by an IDL compiler, the
number and names of servants are generally more dynamic.
In such cases, it is possible to use the object ID and POA ID
stored in an object key to index directly into a table managed
by an Object Adapter. This so-calledactive demultiplexing[8]
strategy provides a low-overhead,O(1) lookup technique that
can be used throughout an Object Adapter. Active demulti-
plexing uses the optimization principle pattern of not being
tied to reference models and passing hints in headers. Pass-
ing hints is also an example of the Asynchronous Completion
Token (ACT) design pattern [37].

Table 4 summaries the demultiplexing strategies considered
in the implementation of TAO’s POA.

Strategy Search Time Comments

Linear O(n) Simple to implement
Search Does not scale
Binary O(lg n) Additions/deletions
Search are expensive
Dynamic O(1) average case Hashing overhead
Hashing O(n) worst case
Perfect O(1) worst case For static configurations,
Hashing generate collision-free

hashing functions
Active O(1) worst case For system generated
Demuxing keys, add direct indexing

information to keys

Table 4: Summary of POA Demultiplexing Strategies

3.2.3 The Performance of Alternative POA Demultiplex-
ing Strategies

Section 3.2.1 describes the demultiplexing steps a CORBA re-
quest goes through before it is dispatched to a user-supplied
servant method. These demultiplexing steps include finding
the Object Adapter, the servant, and the skeleton code. This
section empirically evaluates the strategies that TAO uses for
each demultiplexing step. The hardware and software config-
uration for this experiment is described in Section 2.1.

POA demultiplexing: An ORB Core must locate the POA
corresponding to an incoming client request. Figure 12 shows
that POAs can be nested arbitrarily. Although nesting pro-
vides a useful way to organize policies and namespaces hierar-
chically, the POA’s nesting semantics complicate demultiplex-
ing compared with the original CORBA Basic Object Adapter
(BOA) demultiplexing [8] specification.

To support ORB server applications that have deeply nested
POA hierarchies, we use active demultiplexing for the POA
demultiplexing phase, as follows:

1. All lookups start at theRootPOA.

2. TheRootPOA maintains aPOA table that points to
all the POAs in the hierarchy.

3. Object keys include an index into thePOA table to
identify the POA where the object was activated. TAO’s
ORB Core uses this index as the active demultiplexing
key.

4. In some cases, the POA name also may be needed,e.g.,
if the POA is activated on-demand. Therefore, the object
reference contains both the name and the index.

We conducted an experiment to measure the effect of in-
creasing the POA nesting level on the time required to lookup
the appropriate POA in which the servant is registered. We
used a range of POA depths, 1 through 25. The results are
shown in Figure 13. The experiment was conducted on POAs
whose object references remain valid across different execu-
tions of a server (persistent) and those that do not (transient).
The results show that using active demultiplexing for POA
demultiplexing provides optimal predictability and scalability
for both the cases, just as it does when used for servant demul-
tiplexing, as described next.

Servant demultiplexing: Once the ORB Core demulti-
plexes a client request to the right POA, this POA demulti-
plexes the request to the correct servant. The following discus-
sion compares the various servant demultiplexing techniques
described in Section 3.2.2. TAO uses the Service Configura-
tor [14], Bridge, and Strategy patterns [3] to defer the con-
figuration of the desired servant demultiplexing strategy until
ORB initialization, which can be performed eitherstatically
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at compile-time ordynamicallyat run-time. Figure 14 illus-
trates the class hierarchy of strategies that can be configured
into TAO’s POAs.

DemuxTable Table_Impl

Linear Search

Binary Search Dynamic Hash Perfect Hash

Active Demux

<<forwards>>

Figure 14: TAO’s Class Hierarchy for POA Active Object Map
Strategies

To evaluate the scalability of TAO, our experiments used
a range of servants, 1 to 1,000 by increments of 100, in the
server. Figure 15 shows the latency for servant demultiplex-
ing as the number of servants increases. This figure illustrates
that active demultiplexing is a highly predictable, low-latency
servant lookup strategy. In contrast, dynamic hashing incurs
higher constant overhead to compute the hash function. More-
over, its performance degrades gradually as the number of ser-
vants increases and the number of collisions in the hash table
increase. Likewise, linear search does not scale for any re-
alistic system, since its performance degrades rapidly as the
number of servants increase.

Note that we did not implement the perfect hashing strategy
for servant demultiplexing. Although it is possible to knowa
priori the set of servants in each POA for highly static systems,
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Figure 15: Servant Demultiplexing Latency with Alternative
Search Techniques

creating perfect hash functions repeatedly during application
development is tedious. We omitted binary search for similar
reasons,i.e., it requires maintaining a sorted active object map
every time an object is activated or deactivated. Moreover,
since the object key is created by a POA, active demultiplex-
ing provides equivalent, or better, performance than perfect
hashing or binary search.

Operation demultiplexing: The final step at the Object
Adapter layer involves demultiplexing a request to the appro-
priate skeleton, which demarshals the request and dispatches
the designated operation upcall in the servant. To measure
operation demultiplexing overhead, our experiments defined
a range of operations, 1 through 50, in the IDL interface.

For ORBs like TAO that target real-time embedded systems,
operation demultiplexing must be efficient, scalable, and pre-
dictable. Therefore, we generate efficient operation lookup us-
ing GPERF [36], which is a freely available perfect hash func-
tion generator we developed to automatically construct perfect
hash functions from user-supplied keyword lists.

Figure 16 illustrates the interaction between the TAO IDL
compiler and GPERF. When perfect hashing, linear search and
binary search operation demultiplexing strategies are selected,
TAO’s IDL compiler invokes GPERF as a co-process to gen-
erate an optimized lookup strategy for operation names in IDL
interfaces.

The lookup key for this phase is the operation name, which
is astring defined by developers in an IDL file. However,
it is not permissible to modify the operationstring name
to include active demultiplexing information. Active demulti-
plexing cannot be used without modifying the GIOP protocol.4

4We are investigating modifications to the GIOP protocol for hard real-
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Therefore, TAO uses perfect hashing for operation demulti-
plexing. Perfect hashing is well-suited for this purpose since
all operations names are known at compile time.

Figure 17 plots operation demultiplexing latency as a func-
tion of the number of operations. This figure illustrates that
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Figure 17: Operation Demultiplexing Latency with Alterna-
tive Search Techniques

perfect hashing is extremely predictable and efficient, outper-
forming dynamic hashing and binary search. As expected, lin-
ear search depends on the number and ordering of operations,
which is not only inefficient, but also complicates worst-case
schedulability analysis for real-time applications.

Optimizing servant-based lookups: When a CORBA re-
quest is dispatched by the POA to the servant, the POA uses
the object ID in the request header to find the servant in its
active object map. Section 3.2.3 describes how TAO’s lookup
strategies provide efficient, predictable, and scalable mecha-

time systems that possess stringent latency and message-footprint require-
ments.

nisms to dispatch requests to servants based on object IDs. In
particular, TAO’s active demultiplexing strategy enables con-
stantO(1) lookup in the average- and worst-case, regardless
of the number of servants in a POA’s active object map.

However, certain POA operations and policies require
lookups on active object map to be based on theser-
vant pointer rather than the object ID. For instance, the
this method on the servant can be used with theIM -

PLICIT ACTIVATION POA policy outside the context of re-
quest invocation. This operation allows a servant to be ac-
tivated implicitly if the servant is not already active. If the
servant is already active, it will return the object reference cor-
responding to the servant.

Unfortunately, naive POA’s active object map implementa-
tions incur worst-case performance for servant-based lookups.
Since the primary key is the object ID, servant-based lookups
degenerate into a linear search, even when active demultiplex-
ing is used for the object ID-based lookups. As shown in Fig-
ure 15, linear search becomes prohibitively expensive as the
number of servants in the active object map increase. This
overhead is particularly problematic for real-time applications,
such as avionics mission computing systems [19], that (1) cre-
ate a large number of objects usingthis during their initial-
ization phase and (2) must reinitialize rapidly to recover from
transient power failures.

To alleviate servant-based lookup bottlenecks, we apply the
principle pattern of adding extra state to the POA in the form of
a reverse-lookupmap that associates each servant with its ob-
ject ID inO(1) average-case time. In TAO, this reverse-lookup
map is used in conjunction with the Active Demultiplexing
map that associates each object ID to its servant. Figure 18
shows the time required to find a servant, with and without
the reverse-lookup map, as the number of servants in a POA
increases.

Servants are allocated from arbitrary memory locations.
Since we have no control over the pointer value format, TAO
uses a hash map for the reverse-lookup map. The value of the
servant pointer is used as the hash key. Although hash maps
do not guaranteeO(1) worst-case behavior, they do provide a
significant average-case performance improvement over linear
search.

A reverse-lookupmap can be used only with theUNIQUE ID

POA policy since with theMULTIPLE ID POA policy, a servant
may support many object IDs. This constraint is not a short-
coming since servant-based lookups are only required with the
UNIQUE ID policy. One downside of adding a reverse-lookup
map to the POA, however, is the increased overhead of main-
taining an additional table in the POA. For every object acti-
vation and deactivation, two updates are required in the active
object map: (1) to the reverse-lookup map and the (2) to the
active demultiplexing map used for object ID lookups. How-
ever, this additional processing does not affect the critical path

14



100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40

50

60

70

80

Time 
(usec)

Number of Servants

With Reverse Lookup
Without Reverse Lookup

Figure 18: Benefits of Adding a Reverse-Lookup Map to the
POA

of object ID lookups during run-time.

Summary of TAO’s POA demultiplexing strategies:
Based on the results of our benchmarks described above,
Figure 19 summarizes the demultiplexing strategies that we
have determined to be most appropriate for real-time appli-
cations [19]. Figure 19 shows the use of active demultiplex-
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Figure 19: TAO’s Default Demultiplexing Strategies

ing for the POA names, active demultiplexing for the servants,
and perfect hashing for the operation names. Table 5 depicts
the time in microseconds (�s) spent in each activity as a TAO
server processes a request on the quad-CPU 400 MHz Pentium
II Xeon used for the benchmarks described in Section 2.1.

All of TAO’s optimized demultiplexing strategies described
above are entirely compliant with the CORBA specification.

Demultiplexing Stage Absolute Time (�s)

1. Parsing object key 2
2. POA demux 2
3. Servant demux 3
4. Operation demux 3
5. Parameter demarshal operation dependent
6. User upcall servant dependent
7. Return value marshal operation dependent

Table 5: Time Spent in Each Demultiplexing Step

Thus, no changes are required to the standard POA interfaces
specified in CORBA specification [2].

3.3 Optimizing Object Key Processing in POA
Upcalls

Motivation: Since the POA is in the critical path of request
processing in a server ORB, it is important to optimize its pro-
cessing. Figure 20 shows a naive way to parse an object key.
In this approach, the object key is parsed and the individual

P353bccdb00094ae8

firstPOA

POA Name

Time Stamp

Object Key

P353bccdb00094ae8/firstPOA/myservant

myservant

Object Id

Figure 20: Naive Parsing of Object Keys

fields of the key are stored in separate components. Unfor-
tunately, this approach (1) allocates memory dynamically for
each individual object key field and (2) copies data to move
the object key fields into individual objects.

TAO’s object key upcall optimizations: TAO provides the
following object key optimizations based on the principle pat-
terns of avoiding gratuitous waste and avoiding unnecessary
generality. TAO leverages the fact that the object key is avail-
able through the entire upcall and is not modified. Thus,
the individual components in the object key can be optimized
to point directly to their correct locations, as shown in Fig-
ure 21. This eliminates wasteful memory allocations and data
copies. This optimization is entirely compliant with the stan-
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Figure 21: TAO’s Optimized Parsing of Object Keys

dard CORBA specification.

3.4 Optimizing POA Predictability and Mini-
mizing Footprint

Motivation: To adequately support real-time applications,
an ORB’s Object Adapter must bepredictableandminimal.
For instance, it must omit non-deterministic operations to im-
prove end-to-end predictability. Likewise, it must provide a
minimal memory footprint to support embedded systems [11].

TAO’s predictability optimizations: Based on the princi-
ple patterns of avoiding unnecessary generality and relaxing
system requirements, we enhanced TAO’s POA to selectively
disable the following features in order to improve end-to-end
predictability of request processing:

� Servant Managers are not required: There is no need
to locate servants in a real-time environment since all servants
must be registered with POAsa priori.

� Adapter Activators are not required: Real-time ap-
plications create all their POAs at the beginning of execution.
Therefore, they need not use or provide an adapter activator.
The alternative is to create POAs during request processing, in
which case end-to-end predictability is hard to achieve.

� POA Managers are not required: The POA must not
introduce extra levels of queueing in the ORB. Queueing can
cause priority inversion and excessive locking. Therefore, the
POA Manager in TAO can be disabled.

TAO’s footprint optimizations: In addition to increasing
the predictability of POA request processing, omitting these
features also decreases TAO’s memory footprint. These omis-
sions were done in accordance with the Minimum CORBA
specification [12], which removes the following features from
the CORBA specification [2]:

� Dynamic Skeleton Interface

� Dynamic Invocation Interface

� Dynamic Any

� Interceptors

� Interface Repository

� Advanced POA features

� CORBA/COM interworking

Table 6 shows the footprint reduction achieved when the
features listed above are excluded from TAO5. The measure-
ments were taken for code compiled by the egcs compiler (ver-
sion 2.91.60) on Solaris operating system (version 5.7). The
options used for the compiler were (1) no debugging, (2) op-
timization was set to -O2, and (3) TAO was compiled into a
static library. The 25.8% reduction in memory footprint for

Component CORBA Minimum Percentage
CORBA Reduction

POA 281.9 207.2 26.5
ORB Core 347.1 330.304 4.8
Dynamic Any 131.3 0.0 100
CDR Interpreter 68.7 68.7 0
IDL Compiler 10.5 10.5 0
Pluggable Protocols 14.6 14.6 0
Default Resources 7.9 7.9 0

Total 862.0 639.5 25.8

Table 6: Comparison of CORBA with Minimum CORBA
Memory Footprint (in Kbytes)

Minimum CORBA is fairly significant. However, we plan
to reduce the footprint of TAO even further by streamlining
its CDR Interpreter [11]. In Minimum CORBA, TAO’s CDR
Interpreter only needs to support the static skeleton interface
(SSI) and static invocation interface (SII). Thus, support for
the dynamic skeleton interface (DSI) and dynamic invocation
interface (DII) can be omitted.

4 Related Work

Real-time middleware is an emerging field of study. An in-
creasing number of research efforts are focusing on designing
and optimizing CORBA middleware to meet the requirements
of real-time applications. This section outlines related work
on concurrency and demultiplexing and compares it with the
techniques applied in TAO.

There is a striking similarity between the TAO concurrency
model and that recommended by Ousterhout [38]. To avoid
the difficulties of threading at the application level, Ousterhout
recommends an event-driven model for most applications. But
for performance-critical kernel code, Ousterhout recommends

5The IDL Compiler row refers to the code required to collaborate between
the IDL compiler and the ORB, and not to the code for the IDL compiler itself.
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that threads be used in the kernel. If the TAO ORB Core and
Object Adapter are viewed as the “kernel” then, because ser-
vants are application code, the TAO model corresponds with
Ousterhout’s recommendation.

Demultiplexing is an operation that routes messages
through the layers of an ORB endsystem. Most protocol stack
models, such as the Internet model or the ISO/OSI reference
model, require some form of multiplexing to support inter-
operability with existing operating systems and peer protocol
stacks. Likewise, conventional CORBA ORBs utilize several
extra levels of demultiplexing at the application layer to asso-
ciate incoming client requests with the appropriate servant and
operation (as shown in Figure 12).

Related work on demultiplexing focuses largely on the
lower layers of the protocol stack,i.e., the transport layer
and below, as opposed to the CORBA middleware. For in-
stance, [34, 39, 35, 40] study demultiplexing issues in com-
munication systems and show how layered demultiplexing is
not suitable for applications that require real-time quality of
service guarantees.

Packet filters are a mechanism for efficiently demultiplex-
ing incoming packets to application endpoints [41]. A number
of schemes to implement fast and efficient packet filters are
available. These include the BSD Packet Filter (BPF) [42],
the Mach Packet Filter (MPF) [43], PathFinder [44], demul-
tiplexing based on automatic parsing [45], and the Dynamic
Packet Filter (DPF) [40].

As mentioned before, most existing demultiplexing strate-
gies are implemented within the OS kernel. However, to op-
timally reduce ORB endsystem demultiplexing overhead re-
quires a vertically integrated architecture that extends from the
OS kernel to the application servants. Since our ORB is cur-
rently implemented in user-space, however, our work focuses
on minimizing the demultiplexing overhead in steps 3, 4, 5,
and 6 (which are shaded in Figure 12).

4.1 Related Work on Optimization Principle
Patterns

This section describes results from existing work on protocol
optimization based on one or more of the principle patterns in
Table 1.

4.1.1 Optimizing for the expected case

[46] describes a technique calledheader predictionthat pre-
dicts the message header of incoming TCP packets. This tech-
nique is based on the observation that many members in the
header remain constant between consecutive packets. This ob-
servation led to the creation of a template for the expected
packet header. The optimizations reported in [46] are based

on Principle Pattern 1, whichoptimizes for the common case
and Principle Pattern 3, which isprecompute, if possible.

4.1.2 Eliminating gratuitous waste

[47, 48, 49] describe the application of an optimization mech-
anism calledIntegrated Layer Processing(ILP). ILP is based
on the observation that data manipulation loops that operate
on the same protocol data are wasteful and expensive. The
ILP mechanism integrates these loops into a smaller number
of loops that perform all the protocol processing. The ILP op-
timization scheme is based on Principle Pattern 2, whichgets
rid of gratuitous waste. [49] cautions against improper use of
ILP since this may increase processor cache misses.

4.1.3 Passing information between layers

Packet filters [42, 44, 40] are a classic example of Principle
Pattern 6, which recommendspassing information between
layers. A packet filter demultiplexes incoming packets to the
appropriate target application(s). Rather than having demul-
tiplexing occur at every layer, each protocol layer passes cer-
tain information to the packet filter, which allows it to identify
which packets are destined for which protocol layer.

4.1.4 Moving from generic to specialized functionality

[50] describes a facility called fast buffers (FBUFS). FBUFS
combines virtual page remapping with shared virtual memory
to reduce unnecessary data copying and achieve high through-
put. This optimization is based on Principle Pattern 2, which
focuses oneliminating gratuitous wasteand Principle Pattern
3, whichreplaces generic schemes with efficient, special pur-
pose ones.

4.1.5 Improving cache-affinity

[51] describes a scheme called “outlining” that when used im-
proves processor cache effectiveness, thereby improving per-
formance.

4.1.6 Efficient demultiplexing

Demultiplexing routes messages between different levels of
functionality in layered communication protocol stacks. Most
conventional communication models, such as the Internet
model or the ISO/OSI reference model, require some form
of multiplexing to support interoperability with existing op-
erating systems and protocol stacks. In addition, conventional
CORBA ORBs utilize several extra levels of demultiplexing
at the application layer to associate incoming client requests
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with the appropriate servant and operation. Layered multi-
plexing and demultiplexing is generally disparaged for high-
performance communication systems [34] due to the addi-
tional overhead incurred at each layer. [40] describes a fast and
flexible message demultiplexing strategy based on dynamic
code generation.

5 Concluding Remarks

Developers of real-time systems are increasingly using off-
the-shelf middleware components to lower software lifecy-
cle costs and decrease time-to-market. In contemporary busi-
ness environments, the flexibility offered by CORBA makes
it an attractive middleware architecture. Since CORBA is not
tightly coupled to a particular OS or programming language,
it can be adapted readily to “niche” markets, such as real-time
embedded systems, which are not well covered by other mid-
dleware. In this sense, CORBA has an advantage over other
middleware, such as DCOM [52] or Java RMI [53], since it can
be integrated into a wider range of platforms and languages.

The POA and ORB Core optimizations and performance re-
sults presented in this paper support our contention that the
next-generation of standard CORBA ORBs will be well-suited
for distributed real-time systems that require efficient, scal-
able, and predictable performance. Table 7 summarizes which
TAO optimizations are associated with which principle pat-
terns, as well as which optimizations conform to the CORBA
standard and which are non-standard.

Our primary focus on the TAO project has been to research,
develop, and optimize policies and mechanisms that allow
CORBA to support applications with hard real-time require-
ments. In hard real-time systems, the ORB must meet de-
terministic QoS requirements to ensure proper overall sys-
tem functioning. These requirements motivate many of the
optimizations and design strategies presented in this paper.
However, the architectural design and performance optimiza-
tions in TAO’s ORB endsystem are equally applicable to many
other types of real-time applications, such as telecommunica-
tions, network management, and distributed multimedia sys-
tems, which have less stringent QoS requirements.

The C++ source code for TAO and ACE is freely available
at www.cs.wustl.edu/ �schmidt/TAO.html . This
release also contains the ORB benchmarking test suites de-
scribed in this paper.
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