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Abstract

This paper describes the design and performance of an
object-oriented communication framework being developed
by the Health Imaging division of Eastman Kodak and the
Electronic Radiology Laboratory at Washington University
School of Medicine. The framework is designed to meet
the demands of next-generation electronic medical imaging
systems, which must transfer extremely large quantities of
data efficiently and flexibly in a distributed environment. A
novel aspect of this framework is its seamless integration of
flexible high-level CORBA distributed object computing mid-
dleware with efficient low-level socket network programming
mechanisms. In the paper, we outline the design goals and
software architecture of our framework, describe how we re-
solved design challenges, and illustrate the performance of
the framework over high-speed ATM networks.

1 Introduction

The demand for distributed electronic medical imaging sys-
tems (EMISs) is pushed by technological advances and pulled
by economic necessity [1]. Recent advances in high-speed
networks and hierarchical storage management provide the
technological infrastructure needed to build large-scale dis-
tributed, performance-sensitive EMISs. Consolidating inde-
pendent hospitals into integrated health care delivery systems
to control costs provides the economic incentive for such sys-
tems.

Two key requirements for the communication infrastruc-
ture in a distributed EMIS are flexibility and performance.
An EMIS must be flexible in order to transfer many types
of message-oriented and stream-oriented data (such as HL7,
DICOM, and domain-specific objects) across local and wide

1This research is supported in part by the Eastman Kodak Company
Health Imaging division and the Electronic Radiology Laboratory at Wash-
ington University, St. Louis.
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Figure 1: Topology of Distributed Objects in Project Spec-
trum

area networks. EMIS requirements for flexibility motivate
the use of distributed object computing middleware such as
CORBA [2] in the communication infrastructure. CORBA
automates common network programming tasks (such as ob-
ject selection, location, and activation, as well as parame-
ter marshalling and framing), thereby enhancing application
flexibility.

However, empirical studies [3, 4, 5, 6] reveal that for
bulk data transfer, the performance overhead of widely used
CORBA implementations on high-speed ATM networks is
25% to 70% below that achievable using lower-level trans-
port layer interfaces such as sockets or TLI. As high-speed
networks like ATM, FDDI, and 100 Mbps Fast-Ethernet be-
come ubiquitous, this performance overhead will force pro-
grammers to use lower-level mechanisms to achieve the nec-
essary transfer rates, rather than adopting distributed object



computing technologies. This is particularly problematic
for performance-intensive application domains like medical
imaging, where the use of low-level tools increases develop-
ment effort and reduces system reliability and flexibility.

To address this problem, we have developed an object-
oriented communication software framework called “Blob
Streaming.”2 The Blob Streaming framework is designed to
meet the requirements of next-generation electronic medical
imaging systems (EMISs). Figure 1 illustrates the topology
of our distributed EMIS environment [1]. In this environ-
ment, various types of modalities (such as CT, MR, and CR)
capture patient images and transfer them as Blobs to an ap-
propriate storage management system (called a Blob Store).
Radiologists use diagnostic workstations to retrieve these
images for viewing and interpretation. In addition to medi-
cal images, next-generation EMISs must support multimedia
Blobs such as video streams and audio diagnostic reports.

The Blob Streaming framework provides a uniform inter-
face that enables EMIS developers to flexibly and efficiently
operate on multiple types of Blobs located throughouta large-
scale health delivery system. This framework combines the
flexibility of high-level distributed object computing mid-
dleware (e.g., CORBA) with the efficiency of lower-level
transport mechanisms (e.g., sockets).

Developers of communication software for EMIS envi-
ronments have traditionally had to choose between (1) high-
performance, lower-level interfaces provided by sockets or
(2) less efficient, higher-level interfaces provided by com-
munication frameworks like CORBA. Blob Streaming rep-
resents a midpoint in the solution space. It improves the cor-
rectness, programming simplicity, portability, and reusabil-
ity of performance-sensitive EMIS communication software.
Blob Streaming leverages the flexibility of CORBA, while
its performance remains competitive with applications pro-
grammed at the socket level.

This paper is organized as follows: Section 2 motivates
the design of the Blob Streaming framework, outlines the
key design challenges, and describes how we resolved these
challenges; Section 3 illustrates how the Blob Streaming
framework has been used to build high-performance image
transfer applications; Section 4 compares the performance
of Blob Streaming with alternative C, C++, and CORBA
approaches over a high-speed ATM network; Section 5 dis-
cusses recommendations based on our results; and Section 6
presents concluding remarks.

2 Design of the Blob Streaming Frame-
work

2.1 Blob Streaming Architecture

The Blob Streaming framework is designed to minimize
excessive layering to improve performance, while still allow-
ing applications to be decoupled from communication details

2Blob stands for “Binary Large OBject.”
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Figure 2: Layering Architecture of the Blob Streaming
Framework

that are prone to change. This decoupling helps increase
portability and enables transparent optimizations without al-
tering public Blob Streaming interfaces. The shaded portion
of Figure 2 illustrates the architecture of the Blob Streaming
framework, which consists of the following layers:

� C++ wrapper layer: This layer uses an existing toolkit
of C++ wrappers [7] that shield applications from the details
of the lower layer C library and OS system call mechanisms.
These mechanisms include sockets and CORBA for interpro-
cess communication, memory-mapped file wrappers for op-
timized secondary storage access, and event demultiplexing.
The use of C++ wrappers provides strongly typed interfaces
that simplify the development of Blob Streaming. For exam-
ple, porting to alternative platforms requires no changes to
Blob Streaming software because the Blob Streaming library
does not directly access any OS specific interfaces. Cur-
rently, Blob Streaming is implemented on many versions of
UNIX, as well as Win32 platforms.

� Common services layer: This layer uses an existing
framework [7] of strategic design patterns [8] that enhance
framework quality by providing reusable communication
system components. For instance, Blob Streaming uses com-
ponent implementations of the Acceptor and Connector pat-
terns [9] that decouple the passive and active initialization
of services from the tasks performed once the services are
initialized. Likewise, the component implementation of the
Reactor pattern [10] simplifies event-driven applications by
associating event handler objects to the demultiplexing of
events. The use of these patterns and components in the
Blob Streaming framework leverages prior design efforts and
reduces software development risks.

� Blob Streaming layer: This layer provides application
developers with the Blob Streaming components that pro-
vide generic interfaces for high-speed Blob transfer. The



main components include Blob Proxies, Transporters, and
Factories:

� Proxies – which use the Bridge and Proxy patterns
[11] to represent location- and type-independent han-
dles to Blobs. These patterns provide a surrogate that
shields clients from knowledge of where the Blob re-
sides, thereby making it easy to vary the location without
affecting client code.

� Transporters – which use the Strategy pattern [11]
to represent location- and type-independent algorithms
that perform optimal transfer of Blobs between sources
and destinations. The Strategy pattern lets the algo-
rithms vary independently from clients that use them.

� Factories – which use the Factory pattern [11] to decou-
ple Proxy creation from Proxy use. A Factory performs
the work necessary to build a Proxy, such as using a
location service to find the Blob within the EMIS.

A key design goal of the Blob Streaming layer is to pro-
vide operations that behave uniformly irrespective of where
the Blob actually resides or what type of Blob is being trans-
ferred. For instance, Blob Store software that receives and
stores MRI images to a database remains unchanged whether
the source or destination of the MRI data is in memory, on
a local file, in memory of a remote client, or on disk of a
remote client.

2.2 Resolving Design Challenges

Developing an enterprise-wide distributed EMIS is difficult.
It requires a deep understanding of networking, databases,
distributed systems, human/computer interfaces, radiologi-
cal workflow, and hospital information systems. There are
many technical challenges related to performance, function-
ality, high availability, information integrity, and security.
Moreover, system requirements and the hardware/software
environment change frequently.

To cope with complexity and inevitable changes, the soft-
ware infrastructure of an EMIS must be flexible. In par-
ticular, developing large-scale distributed EMIS applications
with low-level network programming tools like sockets is
tedious, error-prone, and inflexible. Therefore, we designed
Blob Streaming to elevate the level of programming for these
applications. To accomplish this, we abstracted away from
the following tasks and mechanisms in the Blob Streaming
design:

� Common network programming tasks

� Blob location and storage mechanisms

� Blob type

� Blob transport mechanism

� Concurrency policies

� Multiple event loops

� Platform-specific OS mechanisms

interface BlobTransporter {
// Timeout value representation.
struct TimeValue { long sec; long usec; };

// Transaction notification options. These
// options allow the framework to control blob
// transfers acknowledgments.
enum NotificationSemantics {

SEND_NOTIFICATIONS,
QUEUE_NOTIFICATIONS,
IGNORE_NOTIFICATIONS

};

// A request to the server to send <length> bytes
// of Blob data starting from <absoluteOffset>.
// Since this can potentially be a long-duration
// operation, a <timeout> can also be specified.
// The <semantics> vary depending on the reliability
// required.
oneway void send (in long length,

in long absoluteOffset,
in boolean useTimeout,
in TimeValue timeout,
in NotificationSemantics semantics);

// Informs the server to receive <length> bytes of
// Blob data. This data is copied to the Blob
// starting at <absoluteOffset>. Other options
// are similar to send().
oneway void recv (in long length,

in long absoluteOffset,
in boolean useTimeout,
in TimeValue timeout,
in NotificationSemantics semantics);

// ... others omitted...

Figure 3: IDL Interface for Blob Transport

This section describes the software design challenges we
faced when developing the Blob Streaming framework for
EMIS applications. The following explains how we re-
solved these challenges using object-oriented design tech-
niques, design patterns, and C++ language features. Al-
though the discussion centers around issues that arise when
building medical imaging frameworks, the principles and pat-
terns described below are representative of a wide range of
bandwidth-intensive distributed object computing environ-
ments.

2.2.1 Abstracting Away from Common Network Pro-
gramming Tasks

Many low-level programming tasks (such as object lo-
cation and activation, parameter marshalling and framing)
performed when building distributed applications are tedious
and error-prone. The current version of Blob Streaming
uses CORBA to automate these common low-level network
programming tasks. The use of CORBA enabled us to con-
centrate on higher-level Blob Streaming issues (such as per-
formance, reliability, and interface uniformity), rather than
wrestling with low-level communication details. We used
the following CORBA mechanisms to implement the Blob
Streaming framework:

� Strongly-typed interfaces: In CORBA, all interfaces are
defined using the CORBA interface definition language (IDL)



[2]. A CORBA IDL compiler generates stubs and skeletons
that translate IDL interface definitions into C++ classes. For
instance, IDL interface definition in Figure 3 describes a
BlobTransporter that is used internally by the frame-
work to control Blob transfer from a server to a client. Client
applications use the BlobTransporter to selectively re-
quest certain sections of a Blob. The ability to randomly
access Blobs has several uses, including (1) the ability to
efficiently access header information from a Blob or (2) re-
suming an interrupted transaction without restarting from the
beginning.

The use of CORBA IDL interfaces allows the transmission
of strongly-typed data across the network. Strong typing im-
proves abstraction and eliminates errors common to socket-
level programming. For instance, if the send and recv
operations shown above were implemented over a socket
connection, we would need to manually convert the typed
information into a stream of untyped bytes. Moreover, the
sender and receiver software for parsing messages must be
tightly coupled to ensure correctness. Since this provides
many opportunities for errors, automating this process via
CORBA significantly improves system robustness.

� Parameter marshalling and framing: CORBA IDL
compilers automatically generate client-side stubs and server-
side skeletons. These stubs and skeletons ensure cor-
rect byte ordering and linearization of all parameters sent
via operation calls on CORBA interfaces over a network.
For instance, the send and recv operations in the IDL
BlobTransporter interface shown above pass various
types of binary parameters. The IDL compiler maps these
parameters into C++ data types such as char for the IDL
boolean type and a C++ struct containing two long
fields for the TimeValue parameter.

Marshalling the BlobTransfer parameters manually
and then using sockets would require copying the parameter
values into a transfer buffer and performing a send. We
would also have to convert the representation of the longs
from host-byte order to network-byte order. In addition,
if the bytestream-oriented TCP/IP was used, we would be
responsible for framing the data correctly at the receiver.
Marshalling and framing are two tedious and error-prone
aspects of network programming. By using CORBA, we did
not need to implement these low-level operations.

� Object location and object activation: CORBA sup-
ports location transparency, i.e., services can be located any-
where in a distributed system. Therefore, objects accessed
by clients can be remote, local (on the same host) or co-
located (in the same address space). We used this feature of
CORBA in the Blob Streaming framework to shield applica-
tions from the location of Blob Stores where a Blob of interest
resides. Since CORBA interfaces are location independent,
the framework invokes operations on Blob Stores without
knowledge of where the server resides. As a result, applica-
tions that use Blob Streaming also have no dependencies on
Blob Store locations.
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Figure 4: Blob Proxy and the Slot Hierarchy

Blob Streaming also takes advantage of CORBA’s activa-
tion services. Orbix can be configured such that if a request is
received for a non-active server, the a server can be launched
to process the request. This allows Blob Stores to be started
by Orbix only when they’re needed, thus conserving system
resources.

2.2.2 Abstracting Away from Blob Location and Storage

The location of Blobs can vary significantly. Blobs may exist
in the memory of a modality (such as an Ultrasound scanner),
on the local disk of a radiologist’s workstation, or in a remote
Blob Store. To provide adequate reliability, availability, and
performance a large-scale EMIS must support a range of Blob
Stores. As shown in Figure 1, these include the following:

� Central Stores – which provide hierarchical storage
management and support long-term archiving of Blobs;

� Cluster Stores – which cache Blobs within a cluster of
diagnostic workstations in a local area network in order
to increase system fault tolerance and decrease load on
Central Blob Stores;

� Local Store – which cache Blobs on the local disk of a
diagnostic (DX) workstation;

� Memory Stores – which cache Blobs in workstation
memory.

In addition to the Blob Stores listed above, new imple-
mentations of Blob Stores can be created for more advanced
data storage. For example, a Database Store might be de-
signed to manage Blobs in a database (e.g., Oracle, Sybase,
or ObjectStore) and an Archival Store can be implemented to
maintain legacy data to comply with legal statutes on image
persistence.



To enhance the system usability, images must be presented
to the radiologist quickly. For instance, consider the case
of presenting MR images to a radiologist on a diagnostic
workstation. The Blob Streaming framework is responsible
for selecting the optimal transfer technique for this task. If
images are stored in files on the local WorkstationBlob Store,
Blob Streaming memory maps the files, thereby avoiding
excessive mode switches and read/write buffering. If Blobs
do not reside locally, they must be found using name servers
and locators [12]. Once found, they must be transported to
the radiologist’s workstation for display and interpretation.

Before being displayed, however, Blobs may need to be
processed (e.g., magnified, rotated, and edge-enhanced) for
optimal presentation. Due to the wide range of stores that
Blobs can reside, BlobStreaming allows application software
that operates on Blobs to be developed independently of the
Blob’s location.

The component in Blob Streaming that facilitates location
abstraction is the Blob Proxy. The Blob Proxy defines the
interface visible to clients. All requests to the Blob Proxy are
forwarded to the Slot object, which is the abstract class that
defines the interface for implementation classes. Figure 4
shows the multiple specializations of the Slot class such as
socket, memory, file, and database. This design is an exam-
ple of the Proxy and Bridge patterns [11], where the Blob
interface is decoupled from its implementation so that the
two can vary independently. Section 3.1 describes the Blob
Proxy programming interface in greater detail.

The Blob Streaming framework can be extended by adding
new Slot implementations. The separation of interface from
implementation allows these extensions to be transparent to
code that uses the Blob Streaming framework. This sep-
aration also enables the Blob Streaming framework to use
the same Slot implementation instance for different Blob
Proxies.3

The advantage of defining a uniform Blob Proxy interface
is to reduce software dependencies. Using this generic inter-
face, application software can be written to store and retrieve
images from Blob Stores, rather than to files or databases di-
rectly. This shields existing software from changes in storage
type. A disadvantage to this approach is the increased learn-
ing curve. For example, developers of Blob Servers who
are familiar with a particular database must learn the Blob
Store interface in order to use Blob Streaming. Therefore, as
discussed in Section 3.1, the Blob Streaming interface was
modeled after the UNIX file system interface, which pro-
vides a uniform set of operations (likeopen, close, read,
write, seek, etc.) on various types of devices, files, and
I/O streams.

3This approach is used by some CORBA implementations like Orbix
where multiple proxies use the same socket channel to communicate with a
server. Some slots that take relatively long to setup (such as socket slots) can
be cached internally to the library and can be reused by new Blob Proxies.

2.2.3 Abstracting Away from Blob Type

In addition to shielding application software from Blob lo-
cation, the Blob Streaming framework abstracts away from
Blob type. Therefore, a Blob Store that receives and stores
MR images uses the same software to receive and store CT
and CR images. The type of data being transferred is not
directly exposed by the Blob Streaming interface.

The primary advantage of decoupling Blob type from Blob
transfer is to maximize software reuse and enhance interface
uniformity. In addition, our design allows meta-data (such as
image identification information including patient name and
examination data) to be separated and stored in a database.
This decoupling allows image data (pixels) to be transported
as fast as possible to the destination (e.g., using memory-
mapped I/O and DMA). If an application requires access to
the image’s meta-data, complex queries can be performed on
the database.4

The Blob Streaming framework is similar to the abstraction
provided by an OS file system. The file system supports a
variety of file formats. It is up to the application using the
file to correctly interpret the file format. However, the type
of abstraction offered by Blob Streaming is not available in
other medical imaging toolkits (such as DICOM and HL7).
Many such toolkits only transfer data formatted according to
the protocol’s specification. This becomes a problem when
trying to extend a project to deal with new data types or when
trying to optimize performance.

Another advantage of the Blob Streaming design is that it
allows the integration of image processing and Blob transfer
operations. Applications need not wait for an entire Blob
to transfer before processing the data (e.g., compressing it
as it is sent on the network and decompressing while be-
ing received). This technique is a form of Integrated Layer
Processing (ILP) [13], which has been used in high-speed
communication protocol stacks. ILP optimizations can im-
prove performance significantly by overlapping communi-
cation and computation, as well as reducing memory bus
traffic.

2.2.4 Abstracting Away from Blob Transport Mecha-
nism

Blob Streaming presently uses a combination of CORBA
and TCP/IP as data transport mechanisms. CORBA is used
for location and control operations, whereas TCP/IP is used
for bulk data transfer. This design choice reflects a tradeoff
between flexibility and efficiency. Blob Streaming leverages
CORBA’s abstraction and flexibility, while still utilizing the
efficiency of socket programming.

To shield applications from these low-level communica-
tion details, however, the public interface of Blob Stream-
ing does not expose its internal transport mechanisms. This

4Consistency management between pixel store and database entries are
considered outside the scope of the Blob Streaming framework. Certain
image formats (e.g., DICOM) place meta-data as header information of the
Blob. Since Blob Streaming treats all Blobs as untyped streams of data,
images with integrated meta-data also can be transferred easily.
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allows changes in the Blob Streaming architecture without
affecting public interfaces. In particular, since CORBA is
not visible to application programmers, different implemen-
tations of CORBA can be used (such as ORBeline, HP ORB
Plus, or Sun NEO). Moreover, CORBA can be removed en-
tirely and replaced with another mechanism (such as DCOM,
DCE RPC, or Sun RPC). We chose CORBA since other parts
of our EMIS use CORBA services like the COS Naming and
Events [12]. Selecting a common distributed object com-
puting framework reduced our training, maintenance, and
software licensing costs.

Similarly, multiple transport mechanisms can be used
transfer bulk data efficiently. For instance, certain types of
traffic (such as video and voice) can tolerate some degree of
loss. In these cases, performance can be optimized by using
a lightweight ATM protocol in place of TCP/IP. Since Blob
Streaming provides a layer of abstraction over these details,
optimizations can be performed without altering applications.

The primary advantages of decoupling the Blob Stream-
ing public interface from its internal transport mechanisms
are to improve flexibility, increase portability, and enable
transparent performance tuning. Therefore, the framework
can be tuned to use the best performing technology with-
out affecting applications. For instance, subsequent versions
of Blob Streaming could omit TCP/IP in favor of a strictly
CORBA implementation if CORBA becomes performance-
competitive with lower-level sockets programming. Like-
wise, CORBA could be replaced by DCOM and TCP/IP
replaced by a lightweight ATM protocol. Figure 5 shows
the communication layers currently used by Blob Streaming.
In addition, it illustrates the different IPC and network layer
choices that can be used as alternatives.

One disadvantage with Blob Streaming is performance
overhead of the extra levels of abstraction. Although the cost
of these abstractions can be reduced through optimizations
such as C++ inlining, some overhead remains, as shown
in Section 4. Another disadvantage is the increased com-
plexity of the Blob Streaming internal design. In particular,

connection management and synchronization are more com-
plex. However, the complexity is not exposed to applications,
which use the simple Blob Proxy interface provided by the
Blob Streaming framework.

2.2.5 Abstracting from Concurrency Policies

Different applications require different types of operation in-
vocation semantics from a framework. For instance, a multi-
threaded server can simplify application software by using
synchronous interfaces. Conversely, a single-threaded server
that cannot afford to block on a single transaction needs an
asynchronous interface to all long-duration operations. Sim-
ilarly, client applications are frequently single-threaded and
event-driven (e.g., GUIs), which cannot block indefinitely on
synchronous calls.

On multi-threaded operating systems like Solaris 5.x [14]
or Windows NT [15], applications can use threads to sim-
plify programming and take advantage of parallelism. A
multi-threaded application can use synchronous interfaces for
long-durationoperations (such as large image transfers) since
it will not block other threads. In contrast, single-threaded
applications must be programmed carefully to avoid starving
time-critical operations by blocking on long-duration opera-
tions.

Tightly coupling an application to a particular concurrency
policy increases development effort if the concurrency policy
changes (e.g., if a single-threaded application becomes multi-
threaded or vice versa). It is hard to avoid this tight coupling
because reusable frameworks and applications often must be
developed without knowledge of the end system concurrency
policies or hardware/software capabilities.

The Blob Streaming framework is designed to decou-
ple application software from dependencies on concur-
rency policies. Blob Streaming accomplishes this by
providing uniform callback-driven interfaces to both syn-
chronous and asynchronous operations. Switching between
synchronous/return-value and asynchronous/callback inter-
faces can require modifications to application software. For
instance, consider the case where a server implemented using
multiple threads is ported to a platform that does not support
threads. If the software run by the threads uses synchronous
interfaces, many changes will be necessary to support asyn-
chronous transactions in a single thread.

To improve portability and uniformity, the Blob Stream-
ing framework supports a uniform callback interface for both
synchronous and asynchronous operations. These callbacks
indicate when an operation completes. For instance, a single-
threaded application that needs to load a large image from a
remote Blob Server performs an asynchronous Blob Stream-
ing read, which does not block the application from han-
dling GUI events. When the library completes the opera-
tion, the application is notified via a callback. Similarly,
synchronous Blob Streaming operations also complete with
callback notifications. The difference from asynchronous
calls is that the callback has already been executed when the
synchronous call returns.



The advantages of abstracting away from concurrency
policies are increased uniformity and increased flexibility of
concurrency strategies. For instance, the same software that
is used asynchronously in a single-threaded application can
be used synchronously in a multi-threaded application. Be-
cause both synchronous and asynchronous operations use
callbacks, switching to new concurrency policies simply re-
quires toggling a flag. Therefore, no application software
will change. This flexibility is particularly useful for devel-
opers of reusable components who write software that can be
used with a variety of concurrency strategies.

The disadvantage of this approach is that some develop-
ers may never want to program asynchronous operations.
To some extent, the use of uniform interfaces increases
the complexity of synchronous calls in order to eliminate
dependency on a particular concurrency model. To ad-
dress this issue, the Blob Streaming library offers wrap-
pers around the synchronous callback operations to provide
a synchronous/return-value API. This is illustrated in Sec-
tion 3.4.

2.2.6 Abstracting Away from Event Loops

Complex EMIS applications must react to events from mul-
tiple sources. Common sources of EMIS events include DI-
COM toolkits, HL7 interface engines, GUI window events,
and Blob Streaming transfers. Furthermore, the Blob Stream-
ing library must integrate the processing of socket-level
events, CORBA events, timer events, and signals.

Each of these sources of events (X Windows, CORBA,
etc.) has its own event loop. If an application must react to
all of these events, it can not block indefinitely on any one
event loop. One solution is to use a polling technique where
the application uses a round-robin policy to check each event
loop. A disadvantage to this approach is that it can lead to
excessive overhead when there are no pending events.

An alternative approach is to combine the multiple event
loops into a single waitable object. Blob Streaming uses
ACE’s Reactor [10] to implement this technique. The
Reactor provides a mechanism that integrates the event
demultiplexing and event handler dispatching components
of multiple frameworks. It presents applications with an
object-oriented interface to lower-level OS event demulti-
plexing mechanisms that react to I/O handle events, timer
events, and signal events. The select, poll, and
WaitForMultipleObjects system calls are common
examples of these demultiplexing mechanisms. This allows
the application to block on the Reactor for all events, elimi-
nating the overhead imposed by the polling technique.

Frameworks such as X windows or CORBA are generally
driven by events from “waitable” I/O handles (also called
descriptors). We will use a UNIX-centric naming policy and
call these select-based objects. Some applications and frame-
works also use waitable resources such as message queues,
semaphores, and condition variables. We will call these
synchronization-based objects.

An example of a synchronization-based object exists in
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Figure 6: Participants and Collaborations integrating MT-
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MT-Orbix. The MT-Orbix library dedicates a thread to each
network connection. This allows easy integration with third-
party toolkits (such as the Tuxedo transaction monitor) that
utilize System V message queues (which are synchronization-
based). Requests that come over the connections are queued
up in a thread-safe message queue. The main thread of control
now waits on a conditional variable, rather than waiting in
a demultiplexing operation (like select or poll) as it
would in the single-threaded. After a new request is added to
the message queue, the main thread is signaled, which then
dequeues and processes the request.

The MT-Orbix model adds a synchronization-based source
of event demultiplexing to applications. For Win32 plat-
forms, WaitForMultipleObjects can be used to wait
on both select-based and synchronization-based objects.
However, this is problematic for platforms (such as SVR4
UNIX) that do not provide a uniform model for demultiplex-
ing synchronization-based events. The problem is relatively
easy to solve if applications can use multiple threads. In
this case, one or more threads could be dedicated to process
select-based events, while other threads could be dedicated
to process the synchronization-based events queued in the
message queue.

However, many systems (including our EMIS applica-
tions) must deal with large amounts of legacy code that is
not thread-safe. Therefore, it becomes essential that the
select- and synchronization-based events be combined into
one logical source. Figure 6 shows how we use the following
components to adapt the MT-Orbix I/O handles into a single
demultiplexing object:

� Reactor – The main thread is dedicated to handling
select-based events. This is done through the select
demultiplexingoperation. The purpose of the remaining



components is to allow the Reactor to wait for MT-
Orbix events, as well as select-based events.

� Object Adapter – A separate thread is dedicated to
handling synchronization-based MT-Orbix events. This
is done with MT-Orbix’s impl is ready and thread
filters. MT-Orbix uses a thread per network connec-
tion to receive incoming requests. When requests are
given to the Object Adapter, it uses the Thread
Filter to decide whether to process the event or not.

� Thread Filter – Orbix filters allow applications
to access incoming CORBA requests before invok-
ing upcalls on the appropriate objects. The Thread
Filter notifies the Reactor via a selectable IPC
Channel when MT-Orbix events occur.

� IPC Channel – An intra-process communication
channel (e.g., a UNIX pipe or a socket) is cre-
ated for communication between the two event han-
dlers. The reading end of the IPC Channel is owned
by the Reactor thread and is registered with the de-
multiplexing operation for input events. The Object
Adapter thread owns the writing end of the IPC
Channel. When MT-Orbix events occur, theObject
Adapter thread uses the IPC Channel to commu-
nicate the event to the Reactor thread.

� MT-Orbix Handler – When the Reactor is no-
tified of MT-Orbix events, it calls the MT-Orbix
Handler to handle the request. The MT-Orbix
Handler then uses the Orbix Object Adapter to
continue the method dispatching.

� Object Implementation – Once MT-Orbix re-
quests are received and processed by the various com-
ponents discussed above, application level objects are
finally called by the Reactor thread.

A drawback to this approach is that server concurrency is
reduced since all demultiplexing is serialized through the
Reactor. However, restoring the simple model of “single
threaded, single source of events” made it possible to inte-
grate our existing non-thread-safe legacy applications with-
out undue redevelopment effort and extra cost.

The advantage of integrating multiple event loops is that it
allows developers to use Blob Streaming while continuing to
integrate with other frameworks. For instance, an application
developer buildingX-window applications can perform Blob
Streaming operations without changing how the application
interfaces with the event-loop. Since Blob Streaming uses the
Reactor, the framework can be integrated with the necessary
event-loop without affecting internal framework software or
external framework interfaces.

The disadvantage to this approach is that the Reactor must
be integrated with each new framework. This integration
can be difficult if the framework does not provide adequate
hooks into its internal event demultiplexing logic. More-
over, there is a performance penalty for this integration. For
instance, the approach we used to integrate MT-Orbix with

our single-threaded applications effectively eliminated con-
currency within the event demultiplexing layer of imaging
applications.

2.2.7 Abstracting Away from Platform-specific OS
Mechanisms

As shown in Figure 2, the Blob Streaming framework shields
applications from non-portable OS-specific features such as
memory mapping, event demultiplexing, multi-threading,
and interprocess communication. This, in turn, makes ap-
plications using the Blob Streaming interface portable across
platforms without changing application communication soft-
ware. The Blob Streaming framework has been ported to a
variety of UNIX platforms, as well as Win32 platforms [15].

The primary advantage of decoupling application software
from OS-specific mechanisms is cross-platform portability.
The primary disadvantage is that performance and function-
ality may be compromised to provide a generic OS interface.
For example, the version of Blob Streaming described in
this paper did not take advantage of native Windows NT
asynchronous I/O mechanisms such as overlapped I/O or I/O
completion ports [16].

3 Blob Streaming Interfaces and Ex-
amples

This section describes the key components in the Blob
Streaming framework and illustrates how to use these compo-
nents to program synchronous and asynchronous Blob trans-
fer applications. Our goal is to demonstrate the expressive
power and simplicity of the framework.

3.1 Blob Proxy

Figure 7 shows the interface of the Blob Proxy class,
which includes methods like open, close, read, write,
size, and position. These methods are similar to those
provided by System V Release 4 (SVR4) UNIX for file I/O.
SVR4 UNIX adapts a wide variety of disk and communi-
cation devices into a common set of I/O operations. Blob
Streaming has the following notable differences from the
SVR4 UNIX file system interfaces, however:

� Seamless Integration of Memory, Networking, and File
I/O – The SVR4 UNIX I/O interfaces are not entirely
uniform. For instance, a different set of calls is required
to open a socket vs. opening a file. Likewise, SVR4
UNIX uses a different interface for memory-mapped
file I/O and buffer-based network/file I/O. In contrast,
Blob Streaming provides a uniform interface for all these
forms of I/O. This makes it possible to abstract away
from Blob location by removing inconsistencies and
special cases in the I/O programming model.



� Object-oriented interfaces – Low-level network pro-
gramming tools such as sockets do not provide suffi-
cient type-checking since they utilize untyped I/O han-
dles. It is disturbingly easy to misuse these interfaces
in ways that can only be detected at run-time (such
as trying to read or write data on a passive-mode lis-
tener socket used to accept connections). Unlike SVR4
UNIX, which provides these C-level system call inter-
faces, Blob Streaming provides C++ interfaces. The
use of C++ enforces encapsulation and yields a more
modular, extensible, and less error-prone programming
interface, without compromising performance.

The BlobProxy interface is designed so that operations
can be invoked synchronously or asynchronously. Asyn-
chronous invocation is useful for long-duration operations
(such as open, send, and recv) that can run independently
without blocking the main thread of control. Synchronous
invocation is useful for (1) short-durationoperations (such as
size and type) that do not block the caller for long and (2)
applications that spawn multiple threads to execute the calls
without blocking the entire process.

The SynchOptions class gives users a single interface
to specify the type of synchrony/asynchrony policy used for a
call. This encapsulation simplifies the Blob Streaming inter-
faces and gives applications greater flexibility over the syn-
chronization policies used by the application. For instance,
applications can define a global instance ofSynchOptions
that is passed in to every Blob Streaming operation. In this
way, applications can change the synchronizationpolicy used
by the entire application through a single SynchOptions
instance. The SynchOptions interface is defined as fol-
lows:

class SynchOptions
{
// Options flags for controlling synchronization.
enum Options {
NONBLOCK, // Use asynchronous invocation.
BLOCK, // Use synchronous invocation.
TIMEOUT // Use timed invocation.

};

SynchOptions
(Options options, // Synch policy.
const TimeValue &timeout, // Timeout duration.
LocalReceiver *notifiee = 0); // Who to notify.

// ...others omitted...
}

The Options enumeration records whether the call is to
be made synchronously or asynchronously and whether is
should be timed or not. If theTIMEOUT enumeral is enabled,
the TimeValue is interpreted as specifying a timeout du-
ration. Finally, if the call is performed asynchronously, the
LocalReceiver pointer is used to specify an object who
receiveNotificationmethod is called back when the
asynchronous invocation completes.

class BlobProxy
{
public:
// Open the Blob Proxy.
void open (const SynchOptions &options);

// Close the proxy down and release resources.
void close (void);

// Read <numBytes> from the Blob Proxy into the
// <buffer>.
void read (Buffer &buffer,

size_t numBytes,
const SynchOptions& options);

// Write <numBytes> from the <buffer> to the
// Blob Proxy.
void write (const Buffer &buffer,

size_t numBytes,
const SynchOptions& options);

// Size of data represented by the Blob Proxy.
size_t size

(const SynchOptions& options) const;

// Type of data represented by the Blob Proxy.
// Various types include pixel data or DICOM
// image.
BlobProxy::Type type

(const SynchOptions& options) const;

// Set/Get the position of the Blob Proxy
// This allows the user to move to a
// particular location in the Blob.
void position (size_t offset,

BlobProxy::OffsetSetting whence,
const SynchOptions& options);

size_t position
(const SynchOptions& options) const;

// ...others omitted...

private:

// A Blob Proxy can only be created
// by a Blob Proxy Factory.
BlobProxy (const BlobKey &key);

};

Figure 7: Blob Proxy Interface



class BlobProxyFactory
{
public:

// The factory creates a new Blob Proxy that
// is bound to an existing Blob represented
// by the <key>.
static
BlobProxy *bindBlob (const BlobKey &key,

const SynchOptions &options);

// The factory creates a new Blob (represented
// by <key>) of <size> bytes. It also creates
// a Blob Proxy that is bound to the new Blob.
static
BlobProxy* routeBlob (const KBlobKey &key,

size_t size,
const SynchOptions &options);

// ... others omitted...
};

Figure 8: Blob Proxy Factory Interface

3.2 Blob Proxy Factory

The Blob Proxy Factory is responsible for creating prox-
ies to Blobs that may be remote or local. The Factory is
also responsible for dynamically selecting and configuring
the objects (such as Slots) needed to implement the Blob
Proxy interface. This encapsulation of the responsibility and
process of creating and composing implementation objects
for the Blob Proxy isolates the user of the proxies from the
implementation classes.

Figure 8 shows the interface of the Blob Proxy
Factory class, which has methods like bind and route.
The bind method creates a Blob Proxy that is bound to a
Blob. This is similar to the functionality provided by CORBA
for creating a proxy to a remote object. The route method
is used to create a new Blob of a given size. In this case, the
factory is responsible for communicating with the appropri-
ate Blob Store to reserve space for the new Blob. If the space
is successfully reserved, a proxy is created to the new Blob
and returned to the user.

3.3 Blob Transporters

The Blob Transporter is responsible for efficiently copying
data from one Blob to another. The Blob Transporter imple-
ments algorithms that iterate over the source Blob and copy
the data to the destination Blob. The copy methods of the
Blob Transporter are similar to the algorithms provided by
the C++ Standard Template Library (STL) [17]. STL al-
gorithms are completely generic and behave the same way
irrespective of the types they work on. In contrast, the algo-
rithms defined by the Transporter are optimized for different
Blob locations. Since there are relatively few Blob locations
types (memory, file, network, and database), it is feasible to
explicitly optimize each type of Blob Transporter. For in-
stance, a transporter can simply perform a memcpywhen the
source and destination of a copy are both in memory.

class CopyTransporter
{
public:

// Copy entire <source> Blob to
// <destination> Blob.
static
void copy (BlobProxy *destinationProxy,

BlobProxy *sourceProxy,
const SynchOptions &options);

// Copy <size> bytes from <source> Blob
// to <destination> Blob.
static
void copy (BlobProxy *destinationProxy,

BlobProxy *sourceProxy,
size_t size,
const SynchOptions &options);

// ... others omitted...
};

Figure 9: Blob Transporter Interface

Figure 9 shows the interface of theBlob Transporter
class. Note that the CopyTransporter only implements
static interfaces. State for copies in-progress is dynamically
allocated by the copy routine and deleted when the operation
completes. If the state for a copy operation was kept as in-
stance data in a CopyTransporter instance, the instance
would only be able to keep track of one in-progress copy.
This would also force the user to create and manage mul-
tiple instances of CopyTransporter in order to execute
multiple copy operations simultaneously.

3.4 Using the Blob Streaming Framework

The following discussion presents several use-cases that
illustrate how to program synchronous and asynchronous ap-
plications using Blob Proxies. The two examples in
Figures 10 and 11 use Blob Streaming to copy images from a
remote Blob Store to a local Blob Store. Blobs in the system
are identified uniquely by BlobKeys. Both examples copy
an image identified by sourceKey to an image identified
by destinationKey.

A destinationKey is created by replicating the
sourceKey and changing the host information in the
destinationKey to the local host. Space is then re-
served for the new image at the local BlobStore by
calling BlobStreamingFactory::routeBlob. The
copy options sets a timeout of 30 seconds for the copy oper-
ation. The copy operation will timeout if the operation does
not complete in the specified time.

In the synchronous example, an exception is raised in the
event of failure or timeout. In the asynchronous example, the
Replicator class is notified of the result of the operation.
Exceptions cannot be raised in the asynchronous example
since the call to the copy method returns immediately with-
out blocking the caller.

The primary difference between the two examples is the
nature of the copy call. The first example shown in Fig-



// Retrieve to local store.
void copy (BlobKey sourceKey ) {

// Create a key for the destination
BlobKey destinationKey (sourceKey,

localHostName);

// Allocate space on Blob Store for
// destination Blob.
BlobStreamFactory::routeBlob (destinationKey,

source->size ());

// timeout after 30 seconds
TimeValue timeout (30);
SynchOptions copyOptions
// Synchronous, timed invocation.
(SynchOptions::TIMEOUT |
SynchOptions::BLOCK,
timeout); // Amount of time to block.

// Synchronous copy of the Blob.
try {
CopyTransporter::copy (sourceKey,

destinationKey,
copyOptions);

} catch (RecoverableException exc) {
switch (exc.tag ()) {
case ERROR_BLOB_COPY_FAILED:
// report failure
break;

case ERROR_BLOB_COPY_TIMEOUT:
// report timeout
break;

}
}
// report success

}

Figure 10: Synchronous, Return-value-based Copy Example

class Replicator
: public LocalReceiver

// Defines the pure virtual
// receiveNotification() method.

{
public:
// Handles I/O completion.
virtual bool receiveNotification

(LocalNotification *notification);

// Retrieve to local store.
void copy (BlobKey sourceKey) {

// Create a key for the destination
BlobKey destinationKey (sourceKey,

localHostName);

// Allocate space on Blob Store for
// destination Blob.
BlobStreamFactory::routeBlob (destinationKey,

source->size ());

// Timeout after 30 seconds.
TimeValue timeout (30);
SynchOptions copyOptions

// Asynchronous, timed invocation.
(SynchOptions::TIMEOUT |
SynchOptions::NONBLOCK,
timeout, // Amount of time to wait.
this); // Notify this object (Replicator)

// upon completion of the copy.

// Start an asynchronous copy. On completion,
// our receiveNotification() method is called.
CopyTransporter::copy

(sourceKey, // copy from this Blob
destinationKey, // to this Blob
copyOptions); // copy options

};

Figure 11: Asynchronous callback-based copy example

ure 10 uses a synchronous, return-value based version of the
CopyTransporter::copymethod call. The second ex-
ample shown in Figure 11 uses the asynchronous, callback
based version of the CopyTransporter::copymethod
call.

Figure 12 illustrates the method that receives copy notifi-
cations for callback-based copies. The following changes to
Replicator::copy are all that are required to make an
asynchronous, callback-based operation like this:

SynchOptions copyOptions
// Asynchronous, timed invocation.
(SynchOptions::TIMEOUT |
SynchOptions::NONBLOCK,
timeout, // Amount of time to wait.
this); // Notify this object upon

// completion of the copy.

into a synchronous, callback-based operation like this:

SynchOptions copyOptions
(SynchOptions::TIMEOUT, timeout);

If the thread executing the copy operation can afford to
block without compromising the quality of service of other
components of the application, the synchronous approach can



bool Replicator::receiveNotification
(LocalNotification *notification)

{
CopyTransporter::CopyNotification *
copyNotification =
(CopyTransporter::CopyNotification *)
notification;

switch (copyNotification->result ()) {
case CopyTransporter::CopyNotification::SUCCEEDED:
// report failure
break;

case CopyTransporter::CopyNotification::FAILED:
// report failure
break;

case CopyTransporter::CopyNotification::TIMEOUT:
// report timeout
break;

default:
return 0;

}
};

Figure 12: Receiver of Copy Notifications

be used. However, if the long-duration copy operation will
affect other components of the application, the asynchronous
approach can be used. This allows the application developer
to develop the imaging replication module without becoming
dependent on the concurrency model used for image replica-
tion. As a result, systems that use Blob Streaming are more
portable than those written to use lower-level OS mechanisms
directly.

4 Performance of the Blob Streaming
Framework

Sections 2.2 and 3 motivate and outline the design and use
of the Blob Streaming framework. Our design abstracts
away from many low-level communication tasks to achieve
the flexibility requirements of distributed EMISs. In prac-
tice, however, we recognized that the framework will not
be widely used unless applications built using it meet their
performance requirements.

This section describes performance tests of the Blob
Streaming framework. The test scenario involved the point-
to-point transfer of Blobs between a client and a server. In
a large-scale EMIS, several types of bulk data transfers can
place high loads on a communications framework. For in-
stance, transferring a typical MR image study can include
fifty 250 Kbyte images. Likewise, a CR image study can
include several 500 Kbyte images. The tests performed on
the Blob Streaming framework have been designed to mimic
the behavior of transmitting studies such as these.

4.1 Test platform and benchmarks

The performance results in this section were collected us-
ing a Bay Networks LattisCell 10114 ATM switch connected
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Figure 13: Push and Pull Models

to two dual-processor SPARCstation 20 Model 712s run-
ning SunOS 5.4. The LattisCell 10114 is a 16 Port, OC3
155Mbs/port switch. Each SPARCstation 20 contains two
70 Mhz Super SPARC CPUs with a 1 Megabyte cache per-
CPU. The SunOS 5.4 TCP/IP protocol stack is implemented
using an optimized version of the STREAMS communica-
tion framework [18]. Each SPARCstation has 128 Mbytes of
RAM and an ENI-155s-MF ATM adaptor card, which sup-
ports 155 Megabits per-sec (Mbps) SONET multimode fiber.
The Maximum Transmission Unit (MTU) on the ENI ATM
adaptor is 9,180 bytes. Each ENI card has 512 Kbytes of
on-board memory. A maximum of 32 Kbytes is allotted per
ATM virtual circuit connection for receiving and transmitting
frames (for a total of 64 K). This allows up to eight switched
virtual connections per card.

Data for the experiment was produced and consumed by
a client and server test application. The client represents a
diagnostic workstation. The server application represents a
Blob Store server. Various client and server parameters may
be selected at run-time. These parameters include the size of
the Blob being transferred and the size of the socket transmit
and receive queues.

Our test environment is similar to the widely available
ttcp benchmarking tool. However, our test application dif-
fers from ttcp since we implement a “request/response”
model rather than the conventional ttcp “flooding” model.
In our model, the client can request the server to send it data
(the “pull” model) or move data to the server (the “push”
model). This is different from ttcp because the data trans-



mitter does not simply flood the receiver with a continuous
unidirectional stream of bytes. The push and pull models im-
plemented by our test application are illustrated in Figure 13
and described below.

� The push model: This model is representative of the
use case where a modality stores data on a Blob Store. In
addition, it can be used by a Blob Store to pre-cache data to
a workstation. The push model behaves as follows:

1. Negotiation – the client sends control data to the server
characterizing the image being transferred from the
client to the server (e.g., size and name of the image);

2. Transmission – the client then sends the image data;

3. Confirmation – the server sends a confirmation to the
client when all the data is received. This acknowledg-
ment is necessary to insure end-to-end reliability of the
request/response transaction.

� The pull model: This model is representative of the use
case where a workstation retrieves data from a Blob Store.
The pull model behaves as follows:

1. Negotiation – the client sends control data to the server
characterizing the image the client wants from the server
(size and name of the image)

2. Transmission – the server then sends the image data.
Once the client receives the data that was requested
from the server, the request/response transaction is com-
plete. Unlike the push model, the pull model does not
require an extra acknowledgment, which improves per-
formance, as shown in Figure 19.

We implemented and benchmarked the following versions
of the test application for Blob transfers:

� C version: This version implemented completely in C. It
uses C socket calls to transfer and receive the data and control
messages via TCP/IP. Figure 14 illustrates the design of this
ttcp test.

� ACE C++ version: This version replaces all C socket
calls in the applications with the C++ wrappers for sockets
provided by the ACE network programming components [7].
ACE encapsulates sockets with typesafe, portable, and effi-
cient C++ interfaces. Figure 14 illustrates the design of this
test, as well.

� CORBA version: The Orbix 1.3 implementation of
CORBA was used. This version replaces all socket calls
in the test applications with stubs and skeletons generated
from a pair of CORBA interface definition language (IDL)
specifications. One IDL specification uses a sequence pa-
rameter for the data buffer and the other uses a string
parameter. Figure 15 illustrates the design of this test.

ATMATM

SWITCHSWITCH

1: write(buf)1: write(buf) 3: read(buf)3: read(buf)

2: forward2: forward

4: ack4: ack

SenderSender ReceiverReceiver

Figure 14: C and C++ ttcp Benchmarking Architecture

ATMATM

SWITCHSWITCH

2: forward2: forward

TTCPTTCP
ImplImpl

3: send(buf)3: send(buf)

4: ack4: ack

SenderSender 1: send(buf)1: send(buf)

TTCPTTCP
SkelSkel

TTCPTTCP
StubStub

Figure 15: CORBA ttcp Benchmarking Architecture



ATMATM

SWITCHSWITCH

SenderSender 1: send(buf)1: send(buf)

2: connect2: connect

BlobBlob
StoreStore

6: send(buf)6: send(buf)

7: ack7: ack
Blob_XportBlob_Xport

SkelSkel

4: forward4: forward
SrcSrc

BlobBlob
ProxyProxy

DestDest
BlobBlob

ProxyProxy

Blob_XportBlob_Xport
StubStub

SrcSrc
BlobBlob
ProxyProxy

DestDest
BlobBlob
ProxyProxy

5: read(buf)5: read(buf)3: write(buf)3: write(buf)
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ture (Push Model)

� Blob Streaming version: the Orbix implementation of
CORBA was used to exchange control messages and C++
wrappers for sockets provided by ACE were used for bulk
data transfer. This is the only test that implements both the
push and pull models. Figure 16 illustrates the design of this
test for the push model and Figure 17 illustrates the design
of the test for the pull model.

4.2 Performance Results

4.2.1 Throughput Results

We ran a series of tests that transferred 1 MB, 8 MB, 16 MB,
and 32 MB of user data using TCP/IP over our ATM network
testbed. Two different sizes for socket queues were used:
8 K (the default on SunOS 5.4) and 64 K (the maximum
size supported by SunOS 5.4). Each test was run 20 times
to account for performance variation due to transient load
on the networks and hosts. The variance between runs was
very low since the tests were conducted on an otherwise idle
network.

� Push Model Throughput: Figure 18 shows that differ-
ent versions of tests for Ethernet show much less variation,
with the performance for all tests ranging from around 8 to
8.7 Mbps with 64 K socket queues. In addition, Figure 18
summarizes the performance results for all the push model
benchmarks using 64 K and 8 K socket queues over a 155
Mbps ATM link.

The following describes the performance of each test pro-
gram, using 64 K and 8 K socket queues:

� The C and ACE C++ wrapper versions of the tests
obtained the highest throughput: 60 Mbps using 64
K socket queue. This indicates that the performance
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Figure 17: Blob Streaming ttcp Benchmarking Architec-
ture (Pull Model)

penalty for using the higher-level ACE C++ wrappers is
insignificant and is comparable with using low-level C
socket library calls directly.

� The Blob Streaming performance was slightly more than
80% of the C and C++ versions, reaching 50 Mbps with
64 K socket queues. The primary source of overhead
in the Blob Streaming framework is explained in Sec-
tion 4.2.2.

� The Orbix sequence version peaked at around 66%
of the C and C++ versions, reaching 40 Mbps, whereas
the Orbix string implementation peaked at 33 Mbps
(both using 64 K socket queues). The primary sources
of overhead for the Orbix implementation of CORBA
is explained in Section 4.2.2.

In addition to comparing the performance of the various
transport mechanisms, Figure 18 also illustrates the generally
low level of utilizationof the ATM network. In particular, 60
Mbps represents only 40% of the 155 Mbps ATM link. This
disparity between network channel speed and end-to-end ap-
plication throughput is known as the throughput preservation
problem [19]. This problem occurs when only a portion of
the available bandwidth is actually delivered to applications.

The throughput preservation problem stems from operat-
ing system and protocol processing overhead (such as data
movement, context switching, and synchronization [13]).
This throughput preservation problem is exacerbated by
contemporary implementations of distributed object com-
puting middleware like CORBA, which copy data multi-
ple times during fragmentation/reassembly, marshalling, and
demarshalling. Furthermore, the latency associated with
the request-response protocol implemented by ttcp signif-
icantly reduced performance. An earlier implementation of
ttcp [3] attained 90 Mbps over the same ATM testbed by
using a “flooding” traffic generation model that did not use
an end-to-end acknowledgment scheme.
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Finally, Figure 18 illustrates the impact of socket queue
size on throughput. Increasing the socket queue from 8 K to
64 K doubled performance from 28 Mbps to 60 Mbps. The
reason for this is that larger socket queues increase the TCP
window size [20], which allows the transmission of multiple
TCP segments back-to-back.

These socket queue results demonstrate the importance
of having hooks to manipulate underlying OS mechanisms
(such as transport layer and socket layer options). It is im-
portant to note that the choice of socket queue size has more
impact than the choice of communication model (i.e., C/C++
vs. CORBA vs. Blob Streaming). In fact, the slowest
communication model (CORBA) is faster with 64 K socket
queues than the faster communication model (C/C++) with 8
K queues. Clearly, communication frameworks that do not
offer these hooks to application developers are destined to
perform poorly over high-speed networks.

� Pull Model Throughput: Figure 19 compares the per-
formance of the pull model and the push model of the Blob
Streaming versions of the tests.5 For 64 K socket queue
size, the pull model out-performed the push model by 15% to
20% for all sizes of data being transferred. This result illus-
trates the drawback of the push model, which must wait for
an acknowledgment from the receiver in order to guarantee
end-to-end delivery.

Figure 19 also compares the two models with 8 K socket
queue sizes. There is no appreciable difference in perfor-

5Due to space constraints, the ACE, C, and CORBA pull model results
are not shown – they exhibit similar performance curves, however.
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mance of the two models with this socket queue size. This
illustrates once again how important it is for ORBs to allow
applications to tune the size of the underlying socket queues.

4.2.2 High Cost Functions

In order to explain the throughput results shown above, we
used the Quantify execution profiler [21] to pinpoint the
sources of overhead. The test applications were relinked
usingQuantify, which modified the object code to include
monitoring instructions. Two related tools (qxprof and
qv) were then used to display and measure the amount of
time spent in functions during program execution. Figure 20
lists the functions where the most time was spent sending and
receiving 1 Mbytes of user data and using 64 K socket queues.
The results show the push model experiment repeated 100
times.

� High cost operations for C and ACE C++: The high
cost operations for C and ACE C++ wrapper versions are
nearly identical. The sender spent 94% of the time in the
write system call sending data to the receiver. About 3%
of the time was spent in receiving acks from the receiver.
The receiver spent 93% of the time in the read system call
receiving data from the sender. About 1.5% of the time was
spent in sending acks from the sender.

The sender approximately made 100 write system calls
(once per iteration) to send the data and approximately 100
read system calls (once per iteration) to receive the ack. The
receiver made approximately 13,000read system calls (130
times per iteration) to receive the data and approximately 100
write system calls (once per iteration) to send the ack. The
excessive amounts of reads results from fragmentation of
the data into packets of 9,180 bytes, which is the maximum
transmission unit (MTU) size of the ATM network.

� High cost operations for Orbix: Two different imple-
mentations of Orbix were profiled. The first version uses a
sequence parameter for the data buffer and the other uses
a string parameter. Both the sender and the receiver spent
a considerable amount of time in copying data (6-12% of the
time was spent in memcpy), slowing down the performance
of the system. The decrease in performance compared to
the C and ACE wrappers versions causes the sender to wait
longer to receive the ack from the receiver. This is indicated
by the time spent in theread system call. These experiments
are similar to the ones in [3] and details about the behavior is
explained in that paper.

The Orbix implementation differs from the C and ACE
implementations in the number of read system calls made
to receive an ack. Orbix implementations make two read
system calls per-ack compared to one call by the C and ACE
versions. This is because Orbix uses the “header followed
by the data” protocol. The first read system call reads the
fixed size header and the subsequent read system call reads
the variable size payload. This protocol is not necessary in
the C and ACE versions since the only type of information
sent to the sender is an ack.

Test %Time #Calls Name

C sockets 93.9 112 write
(sender) 3.6 110 read
C sockets 93.2 13,085 read
(receiver) 4.5 102 write
ACE C++ wrapper 94.4 112 write
(sender) 3.2 110 read
ACE C++ wrapper 93.9 12,984 read
(receiver) 5.6 102 write
Orbix Sequence 53.5 127 write
(sender) 35.1 223 read

7.3 1,108 memcpy
Orbix Sequence 84.6 12,846 read
(receiver) 12.4 1,064 memcpy

3.2 101 write
Orbix String 45.0 127 write
(sender) 35.1 223 read

10.8 1,315 strlen
6.0 1,108 memcpy

Orbix String 70.7 12,443 read
(receiver) 16.1 2,142 strlen

10.0 1,064 memcpy
3.0 101 write

Blob Streaming 48.8 327 write
(sender) 44.8 232 read

1.3 2,055 memcpy
Blob Streaming 77.2 12,546 read
(receiver) 16.4 12,734 memcpy

1.4 102 write

Figure 20: High cost Functions for Push Model Blob
Streaming Tests

Figure 18 illustrated that the performance of the Orbix
sequence results consistently performed around 6 to 7
Mbps higher than the string. This difference in perfor-
mance is due to the C++ mapping for strings in the CORBA
IDL specification. The client-side stubs that perform pa-
rameter marshalling for remote calls must obtain the length
of the string being sent. This is accomplished via calls to
strlen, which add significant overhead to thestring ver-
sion. However, the IDL-to-C++ mapping of the sequence
provides length fields in addition to the data.

To illustrate the difference, consider the following IDL
definition of a sequence and its corresponding C++ map-
ping:

// IDL definition
typedef sequence<char> char_sequence;
oneway void push (in char_sequence data_seq,

in string data_string);

// C++ mapping
struct char_sequence {
u_long _maximum;
u_long _length;
char *_buffer;

};

void push (const char_sequence &data_seq,
const char *data_string);

The length field is explicitly set by the application allow-
ing client-side stub to know the size of the buffer. Thus,
data string requires a strlen; data seq does not.



� High cost operations for Blob Streaming: Compared
with the C, ACE, and Orbix implementations, the Blob
Streaming sender implementation performs a higher num-
ber of write calls. As shown in Figure 20, Blob Streaming
makes three write system calls per iteration, whereas the
C, ACE, and Orbix versions only make one call. The first call
by Blob Streaming sends the control information, the second
call is for the data, and the third is for a request for the ack.
The control information cannot be bundled with the data as
Blob Streaming uses different channels for control and data
messages. All the other versions use the same channel for
control and data messages.

The Quantify analysis of the Blob Streaming imple-
mentation revealed that the receiver spent 16.4% of the time
in memcpy. Upon closer inspection, we found our imple-
mentation was making an extra copy of the data received
from clients. A single extra copy reduced the performance of
Blob Streaming and the sender has to wait longer to receive
an ack from the receiver.

One way to reduce this overhead is to have the application
preallocate the buffer space before passing into the Blob
Stream receiver. Once we remove the extra data copy from
the receiver, we expect the results to perform roughly the
same as the C and ACE C++ wrapper versions. In particular,
although the sender makes three times more calls to write,
we expect the overhead is due to the extra data copying on
the receiver, rather than the additional mode switching on the
sender.

5 Evaluations and Recommendations

When developing large frameworks such as Blob Stream-
ing, the greatest challenge is designing for future changes
in requirements and environments. The framework must be
able to adapt to the ever-changing needs of the customer it
is built for. Blob Streaming chose CORBA as a tool to help
the framework meet these demands. The following two sec-
tions discuss our recommendations to others facing similar
challenges.

5.1 Designing Object-Oriented Communica-
tion Frameworks

Based on our performance experiments and our experience
using the Blob Streaming framework, our evaluations and
recommendations for developing object-oriented communi-
cation frameworks for high-performance bulk data delivery
systems include the following:

� Develop flexible tools – The framework must be able to
deal with new types of data and new transport protocols
and networks. If the tools used to build the framework
cannot adapt to changing needs, the framework will not
be flexible either. This was one of our motivations for
using CORBA.

� Know the performance requirements – Meeting the
performance requirements of bandwidth-intensive and
delay-sensitive applications is essential before the
framework will be adopted widely. Furthermore it is
important to evaluate tools based on empirical mea-
surements rather than adopting a particular communi-
cation model or implementation unconditionally. Our
performance requirements motivated the combination
of CORBA with lower-level transport mechanisms to
achieve the performance benefits of sockets.

� Make the system easy to use – The learning curve of us-
ing a new framework must be as small as possible. This
inspired us to simplify the Blob Streaming interfaces
by modeling after the UNIX file I/O interfaces and in-
cluding abstractions such as SynchOptions and the
stateless CopyTransporter. Whenever possible,
leverage well known designs and idioms that will help
decrease the learning curve for the framework users.

� Decouple concurrency policies – The framework should
try to avoid making concurrency policy decisions. Ap-
plications using the framework should not have to
be single- or multi-threaded. The framework must,
however, provide mechanisms that allow the frame-
work to work correctly in a multi-threading and multi-
processing environment. Blob Streaming addresses this
need by supporting uniform callback interfaces for both
synchronous and asynchronous operations.

� Design with portability in mind – Portability require-
ments of the framework must be addressed in the early
phase of design. This helps the designers and devel-
opers make reasonable assumptions about the OS level
services available. Blob Streaming uses the ACE toolkit
[7] to remove dependencies from OS-specific system
call mechanisms.

� Design for new technologies – Networks have experi-
enced a tremendous growth in the last few years. There
is no reason to doubt that this trend will continue for
many more years. Prototypes of gigabit network are
already being developed [22]. Next generation frame-
works must be able to adapt to new technologies such
as higher speed networks and new transport protocols.

� Do not assume event-loop ownership – The framework
should not assume ownership of the event-loop. Ap-
plications using the framework will typically be deal-
ing with multiple sources of input like GUI events and
CORBA events. Blob Streaming uses the ACE Reac-
tor [10] as a single demultiplexing object to encapsulate
these multiple sources of events.

5.2 Using CORBA Effectively

CORBA offers many advantages for developing complex
distributed systems since it automates many common net-
work programming tasks such as object selection, location,
and activation, as well as parameter marshalling and framing.



However, a major disadvantage of CORBA is that current im-
plementations incur significant performance overhead when
used to transfer large amounts of data [3].

We addressed the performance problems of CORBA by
integrating it with sockets. Our approach uses CORBA for
control messages and sockets for bulk data transfer. This two-
tiered design leverages CORBA’s extensibility and socket’s
efficiency. CORBA is particularly useful for short-duration,
request/response operations that exchange richly typed data.

Modifyingor extending the type of information exchanged
between applications is also straightforward using CORBA
since it automatically generates code to marshall the param-
eters. Thus, for many types of inter-process communication,
CORBA offers a powerful solution. TCP/IP endpoint ne-
gotiations in Blob Streaming are performed using CORBA
messages. These negotiations usually contain small amounts
of richly typed data, and therefore are well suited for CORBA.

The poor performance of CORBA bulk data transfer is a
result of existing implementations that fail to optimize com-
mon sources of overhead. This overhead stems primarily
from inefficient presentation layer conversions, data copy-
ing, memory management, and inefficient receiver-side de-
multiplexing and dispatching operations. This overhead is
often masked on low-speed networks like Ethernet and Token
Ring. On high-speed networks like ATM or FDDI, however,
this overhead becomes a significant factor limiting commu-
nication performance [23]. To overcome these inefficiencies,
we use sockets to setup point-to-point TCP connections and
transmit bulk data efficiently across the connections. Since
Blob Streaming does not interpret the data it transfers, the
untyped nature of socket-level data exchange is acceptable.

Low-level network programming interfaces like sockets
are hard to program because they have complex interfaces
and are prone to subtle programming errors. Our solution to
this problem was to use C++ wrappers from the ACE toolkit
[7] to encapsulate the C interfaces. ACE provides a rich set of
efficient, reusable C++ wrappers, class categories, and frame-
works that perform common communication software tasks
(such as event demultiplexing, event handler dispatching,
connection establishment, message routing, dynamic config-
uration of application services, and concurrency control).

It is important to note that ACE does not offer all the
services of CORBA (such as object selection, location, ac-
tivation, and parameter marshalling). Therefore, CORBA
provides important value as a higher-level distributed object
computing framework.

6 Concluding Remarks

We are currently deploying the Blob Streaming framework in
a production distributed electronic medical imaging system
being developed as part of Project Spectrum at the Electronic
Radiology Lab (ERL) at the Washington University School
of Medicine and BJC Health System, in collaborationwith in-
dustrial partners Kodak Health Imaging Systems, IBM/ISSC,
and Southwestern Bell Corporation. BJC is one of the na-

tion’s largest integrated health delivery systems, representing
an alliance of health care partners in Missouri and southern
Illinois.

Distributed electronic medical imaging systems like
Project Spectrum require high-performance bulk data com-
munication. The Blob Streaming framework described in
this paper uses sockets to achieve high performance and uses
CORBA to provide the flexibility needed for distributedelec-
tronic medical imaging systems. Blob Streaming allows ap-
plication code to be developed independent of Blob location,
Blob type, and Blob storage. These abstractions allow im-
age processing algorithms to be reused for many types and
locations of Blobs. In addition, Blob Streaming is designed
to allow flexibility across platforms by abstracting from OS-
specific mechanisms, concurrency policies, and event loops.
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