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Abstract

The growing complexity of building and validating software
is a challenge for developers of distributed real-time and em-
bedded (DRE) applications. While DRE applications are in-
creasingly based on commercial off-the-shelf (COTS) hard-
ware and software components, substantial time and effort are
spent integrating components into applications. Integration
challenges stem largely from the lack of higher level abstrac-
tions for composing complex applications. As a result, consid-
erable application-specific “glue code” must be written, only
to be rewritten from scratch when building subsequent DRE
applications.

This paper provides four contributions to the study of com-
posing reusable middleware from standard components in
DRE applications: it (1) analyzes the limitations of current
approaches in middleware composition, (2) discusses the min-
imum set of requirements required of reusable middleware
components, (3) presents recurring patterns in the domain
of software composition and provides empirical evaluation of
these patterns as applied to TAO, our open-source Real-Time
CORBA Object Request Broker (ORB), and (4) compares our
approach to other research done in the area of software com-
position. Our results show that decoupling systemic QoS prop-
erties from functional properties enhances composition flexbil-
ity, increases reuse, and shields higher-level middleware and
application developers from the complexities of the underlying
middleware and OS platforms.

1 Introduction

1.1 Emerging Trends

With the proliferation of enterprise component technologies,
such as the CORBA Component Model (CCM) [1], Microsoft
.NET [2], and Enterprise Java Beans (EJB) [3], large-scale dis-
tributed applications are increasingly being developed and de-
ployed in a modular fashion. Modularity elevates the level of
abstraction used to program complex applications, encourages
systematic reuse, and enhances software maintainability over
an application’s lifecycle. Projects are also increasingly re-

lying upon commercial off-the-shelf (COTS) components and
frameworks as the basis for their distributed software infras-
tructure.

1.2 Key Challenges

Although component-based software development techniques
are maturing for business and desktop systems, they are less
mature for mission-critical domains, such as distributed real-
time and embedded (DRE) applications. This paper focuses
on the following challenges involved in QoS-enabled software
composition in the context of emerging component models:
The need to reduce tight coupling of component meta-
data with component functionality. Component meta-data
includes information such as the list of files used to imple-
ment a component, versioning information, a checksum to en-
sure component integrity, or information about the required
privileges for a component to function. In DRE applications,
a reusable component can be reapplied in a variety of con-
texts, each with differing QoS requirements, such as the dead-
lines for various time-critical functionality, concurrency lev-
els, type of synchronization mechanisms, number of simul-
taneous transport connections allowed, and whether transport
connections can be shared by multiple threads.

To reuse a component in more contexts than it was designed
originally, the component’s functionality needs to be separated
from meta-data (such as its QoS properties) and described in
a manner that can be understood by component users and as-
sociated tools. Composition problems can occur, however, if
component meta-data is described at the same level of abstrac-
tion as the component functionality. In particular, tightly cou-
pling meta-data and functionality can require applications to
be written in the same language as its building block compo-
nents, which may not be feasible if these entities have been
developed independently at different points in time.
The need to specify component QoS requirements in a
context-insensitive manner. A component in a DRE ap-
plication may be functionally correct, yet can malfunction
due to failure of assumptions stemming from the lack of
context-dependent information, such as thread creation strate-
gies, component lifetime (e.g., persistent vs. transient), type of
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invocation (e.g., synchronous or asynchronous), and presence
or absence of middleware services, such as event channels [4].
The context in which a component executes is generally pro-
vided by the external environment. Composition problems
can arise when QoS requirements of components are speci-
fied with implicit assumptions on properties of external enti-
ties (e.g, the threading model required to run the component)
that are external to a particular component of a software sys-
tem. Unstated assumptions related to QoS properties of com-
ponents make it hard to enforce QoS requirements effectively
in open systems.
The need to validate component properties. A compo-
nent implementation’s properties (e.g., the implementation
language, version of the component, level of privileges re-
quired, and dependencies on other components) must be val-
idated. Validation should be performed against the compo-
nent’s specification to avoid problems such as (1) errors caused
by misconfiguration, (2) unauthorized use of resources by
components, and (3) lack of confidence that the QoS assur-
ances provided by the middleware are sufficient from an appli-
cation’s perspective. Validation is required for each individual
component, as well as the application and system levels.
The need to ensure that a complex software system can be
deployed seamlessly. To reduce the complexity of installing
and maintaining complex DRE applications, it is necessary
that all the individual components be deployed using the same
framework and follow the same guidelines. If each individual
component needs a different mechanism for deployment, the
costs of maintenance outweigh the advantages gained by de-
veloping applications in a component oriented fashion. It is
also hard to track the dependencies of components upon other
components and ensure that inter-dependent components are
initialized in a particular order. To ease this task, components
need to be packaged as a hierarchy that provides various infor-
mation about the related components and captures dependen-
cies present in component initialization and deployment. This
packaging is necessary so that the deployment process can be
automated, or at least controlled by an administrator.

1.3 Solution Approach

This paper describes how we are implementing the
Component-Integrated ACE ORB (CIAO), which extends the
CORBA Component Model (CCM) [1], to address the chal-
lenges outlined in Section 1.2 as follows:
Reduced coupling by separating meta-data from func-
tionality. CIAO provides a framework based oneXtensible
Markup Language(XML) [5] mechanisms to define the gram-
mar for describing component features. Our XML-based ap-
proach to describing component properties and systemic meta-
data makes components amenable to composition from (1) in-
dependent portions of a larger application and (2) future appli-

cations that can parse XML. This approach helps to decouple
the functional aspects of a component-based application from
the underlying QoS aspects and configuration details, thereby
increasing composition flexibility and systematic reuse. In
the CIAO project, we specify meta-data for components via
XML, using its content-agnostic metalanguage properties to
express QoS configuration templates and conforming configu-
ration files. Section 4.1 describes how we decouple meta-data
from functionality in CIAO.
Context-insensitive specification of QoS requirements. In
CIAO, a component’s dependencies are specified explicitly
using meta-data present with each component, thereby re-
ducing the amount of implicit contextual information. This
design helps make the implementation assumptions explicit,
thereby ensuring that the environment in which the compo-
nent executes can either satisfy the assumptions or fail grace-
fully. CIAO uses XML Document Type Definitions (DTDs)
to identify critical QoS parameters of component-based DRE
applications and to specify properties of components defined
by CCM. There is considerable flexibility in specification of
QoS requirements so that the requirements make sense from
the perspective of a component, as well as from the end-to-
end perspective needed for configuring a complete applica-
tion. Section 4.2 describes how we support context-insensitive
specification of QoS requirements in CIAO.
Validation of component configurations. After component
properties are specified, their configurations must be validated
at deployment time. In the CIAO project, default attributes
are generated by a component-enabled OMG Component Im-
plementation Definition Language (CIDL) compiler (see Sec-
tion 3.1) as part of the meta-data for every component. These
attributes can be modified or extended by users. XML DTDs
can be used to (re)validate meta-data attributesbeforecompo-
nents are deployed, thereby avoiding exceptions during run-
time. CIAO provide methods to validate (1) configurations
of components, (2) privileges of components, and (3) QoS
properties of the system both during and after an application
is composed from a set of component building blocks. Sec-
tion 4.3 describes how we validate component configurations
in CIAO.
Component packaging and deployment. After specifica-
tion and validation, component implementations need to be
packaged so that they can be deployed. As shown in Figure 1,
packaging involves grouping the implementation of compo-
nent functionality (which is typically stored in a dynamic link
library (DLL)) together with other meta-data that describes
properties of this particular implementation. Packaged com-
ponents are in “passive mode,”i.e., all their functionality is
present, but they are inert object code. To carry out their
functionality at run-time, components must transition to “ac-
tive mode,” where the inter-connection between components
is established. Deployment mechanisms are responsible for
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Figure 1: Component Packaging and Deployment

transitioning components from passive to active mode. Sec-
tion 4.4 describes how component packaging and deployment
is performed in CIAO.

2 Overview of Components and Com-
ponent Models

Some of the capabilities that are shared among component
models are as follows:

Multiple views per component. Each component model
specifies a collection of interfaces that a component can ex-
port to its clients. These interfaces vary in the capabilities that
they offer to clients. It is therefore possible for a single com-
ponent to play multiple roles to the component’s clients at the
same time. Moreover, a client can navigate from one view to
another by using the introspection interfaces provided by the
component.

Execution environment. Each component model defines an
environment, known as acontainer, within which components
can be instantiated and run. Containers shield components
from low-level details of the underlying middleware. They
are also responsible for locating and/or creating component
instances, interconnecting components together, and enforc-
ing component policies, such as life-cycle, security, and per-
sistency.

Component identity. Component models have mechanisms
to identify their components uniquely. For example, .NET
uses public key cryptography tokens to tag each component’s
interface and identify it uniquely across different software do-
mains. EJB uses the Java Naming and Directory Interface
(JNDI), which encapsulates low-level naming services such as
LDAP, NIS, and DNS. EJB components are identified by hi-
erarchical namespaces which use a directory naming scheme
typically associated with an organization’s Internet domain.
The CCM uses DCE “universally unique ids” (UUIDs) to
identify component implementations. Section 3 explains other
capabilities that CCM provides to identify components.

Association with an object model. Today’s component
models are developed atop underlying object models that de-
fine the basic units of encapsulation and interoperability. The
object models associated with component models include:

� EJB uses the Java programming language object model,
exemplified byjava.lang.Object, with the Java Virtual
Machine (JVM) [6] providing run-time support.

� .NET is based on the Microsoft Intermediate Language
(IL) [7], exemplified bySystem.Object, with the Com-
mon Language Runtime (CLR) [8] providing run-time
support.

� CCM is based on the CORBA object model, exemplified
by CORBA::Object, with a CORBA [9] ORB providing
run-time support.

The JVM and CLR are similar in that they provide a run-
time environment that manages running code and simplifies
software development via automatic memory management
mechanisms, translating bytecodes into actions or operating
system calls, a common deployment model, and a security
mechanism. Automatic memory management via garbage col-
lection coupled with a virtual machine architecture is a source
of non-determinism and impacts performance in DRE appli-
cations. In contrast, since CCM uses CORBA as its underly-
ing object model, it need not use a virtual machine or garbage
collection and hence is a more suitable platform for DRE ap-
plications with stringent QoS requirements.
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3 Overview of the CCM and CIAO

3.1 Key Capabilities of the CCM

The CORBA Component Model (CCM) is an OMG specifi-
cation that standardizes the development of component-based
applications in CORBA. Since CCM uses CORBA’s object
model as its underlying object model, developers are not tied
to any particular language or platform for their component im-
plementations.

Facets
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Figure 2: Key Elements in the CORBA Component Model

Key elements of the CCM include:
� Component, which is the basic building block used to

encapsulate application functionality
� ComponentHome, which is a factory that creates and

manages components
� Container, which provides components with an abstrac-

tion of the underlying middleware and regulate their
shared access to the middleware infrastructure,

� Component Implementation Framework, which de-
fines the programming model for constructing component
implementations, using the Component Implementation
Definition Language (CIDL) descriptions for automating
generation of programming skeletons,

� Component server, which groups components and con-
tainers together to form an executable program.

� ORB Services, which provide common middleware ser-
vices, such as transaction, events, security and persis-
tence.

Figure 2 illustrates some of the above described elements.
The remainder of this section explains why these elements are
needed in CCM by illustrating the key software development
challenges they address, which include:

1. Identifying and reusing commonality in software appli-
cations

2. Reducing coupling between components and underlying
middleware

3. Specifying component interconnections

4. Using adaptive strategies for creating components
5. Configuring components
6. Resolving dependencies automatically

7. Evolving component software

3.1.1 Identifying and Reusing Commonality in Software
Applications

Context. A family of applications exhibiting commonality
that can be refactored into reusable units, each of which offers
specific functionality.

Problem. If application software is implemented in a mono-
lithic fashion, it is hard to identify and refactor common func-
tionality among related applications. Choosing the right mod-
ule boundaries is hard without appropriate abstractions for de-
scribing functionality. Lack of functional abstractions leads to
unnecessary duplication across different modules and prevents
systematic reuse.

CCM Solution ! Component. Define acomponentab-
straction that serves as the building block for the structure of
software applications, as well as the candidate for demarcat-
ing modularity and functionality. A CCM component has the
following properties:

� It is an encapsulated part of a software system that imple-
ments a specific service or set of services.

� It has one or more interfaces that provide access to its
services.

� It is a meta-type that includes collection of entities, which
includes implementation(s) of application functionality
in a particular programming language and a set of prop-
erties associated with each such implementation.

� It is both an extension and a specialization of the
CORBA::Objectmeta-type that is defined by the original
OMG CORBA specification.

The capabilities of a CCM component are defined using ex-
tensions to the OMG Interface Definition Language (IDL).

3.1.2 Reducing Coupling Between Components and Un-
derlying Middleware

Context. Development of component software that relies on
services provided by the middleware.
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Problem. In earlier generation middleware based on object
models, programmers were responsible for connecting to and
configuring the policies of the underlying middleware. For
example, before the advent of CCM, CORBA developers had
to explicitly bind to, and configure the policies of, middle-
ware entities, such as event channels, transaction services, and
security services. These manual programming activities re-
quired developers to (re)write substantial amounts of “glue-
code,” which was often larger than that required to use the
functionality. These activities were error-prone since they re-
quired application developers to have expertise in low-level
details of the underlying middleware.
CCM Solution ! Containers. Define acontainerabstrac-
tion that provides the context in which components run. A
container acts as a bridge between the low-level middleware
and a component by configuring the underlying middlware
based on the policies defined in the component. A container
also provides an execution environment for components,e.g.,
it defines interception points where various run-time policies,
such as security and transaction, can be imposed and validated.
Components can also use the capabilities provided via the con-
tainers to shield component developers from undue dependen-
cies on the underlying middleware.

An important consequence of decoupling components from
containers is that the containers and the underlying middle-
ware can transparently perform optimizations, such as compo-
nent pooling, caching, and on-demand linking and load bal-
ancing of components. Likewise, the lifecycle of a component
can be managed by its container. This design has the advan-
tage of having information from the perspective of not only a
single component, but of all components residing within that
container.

3.1.3 Specifying Component Interconnections

Context. A complex system consisting of individual compo-
nents that must interoperate with each other at run-time.

Problem. A component can provide functionality at differ-
ent granularities. In software developed using object models, a
one-to-one association typically exists between an object and
the roles played by the objecti.e., a user of an object either
gets all the functionality and the artifacts of that functional-
ity or nothing. In complex software applications, however, a
one-to-one association of component and component roles can
result in an unwieldy proliferation of interfaces that must be
managed explicitly by client application developers.
CCM Solution ! Ports. Define aport abstraction that can
expose multiple views of a component to clients, based on con-
text and functionality. CCM ports define a set of connection
points between components to expose various roles supported
by a component interface. The CCM specifies the following

types of ports, which are a set of interfaces that are both exter-
nal (to the clients) and internal (to the underlying middleware):

� Facets, which are distinct named interfaces provided by
the component. Facets enable a component to export a
set of different functional roles to its clients.

� Receptacles, which are interfaces used to specify rela-
tionships between components. Receptacles allow a com-
ponent to accept references to other components and in-
voke operations upon these references. They therefore
enable a component to use the functionality provided by
other components.

� Event sources and sinks, which define a standard in-
terface for the Publisher/Subscriber architectural pat-
tern [10]. Event sources/sinks are named connection
points that send/receive specified types of events to/from
one or more interested consumers/suppliers. These types
of ports also hide the details of establishing and con-
figuring event channels [4] needed to support The Pub-
lisher/Subscriber architecture.

� Attributes , which are named values exposed via acces-
sor and mutator operations. Attributes can be used to
expose the properties of a component that are exposed
to tools, such as application deployment wizards that in-
teract with the component to extract these properties and
guide decisions made during installation of these com-
ponents, based on the values of these properties. At-
tributes typically maintain state about the component and
can be modified by these external agents to trigger an ac-
tion based on the value of the attributes.

3.1.4 Using Adaptive Strategies for Creating Compo-
nents

Context. Distributed software applications that consist of
components with different lifetimes.

Problem. Locating and/or creating components is a poten-
tially expensive operation. Moreover, requiring client ap-
plications to know how to locate and/or create components
is tedious and introduces unnecessary dependencies between
clients and the components they use. It also limits the flexibil-
ity of component creation strategies by tightly coupling com-
ponent creation with component use.

For example, different component types might need creation
strategies that differ from the other component types depend-
ing on the lifetime of instances of each type. In particular, a
component instance created as part of a database transaction
might have a different lifetime than one that is controlling the
trajectory of a missile. Strategies used in the creation of both
will involve a different set of tradeoffs, which ought to be han-
dled by the middleware rather than each application.
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CCM Solution !Component homes. Define acomponent
homeabstraction that is responsible for creating and subse-
quently locating certain types of components in a software sys-
tem. Components reside in component homes, which embody
the Factory [11] design pattern. Component homes shield
clients from the details of creation strategies of components
and subsequent queries, to locate a component instance. This
capability increases the flexibility of a system since changes
in how a component are created need not affect component
clients.

3.1.5 Configuring Components

Context. A distributed system where a component needs to
be configured differently depending on the context in which it
is used.

Problem. As the number of component configuration pa-
rameters and options increase, it can become overwhelmingly
complex to configure applications consisting of many individ-
ual components. The problem stems not only from the num-
ber of alternative combinations, but also from the disparate
interfaces for modifying these configuration parameters. Ob-
ject models have historically required application developers
to manually write large amounts of application-specific “glue
code” to interconnect and configure components. In addition
to being tedious and error-prone, this coding process exposes
the component developers to low-level details of the underly-
ing middleware.

CCM Solution ! Assembly. Define anassemblyabstrac-
tion to group components and characterize their meta-data that
describes the components present in the assembly. Each com-
ponent’s meta-data in turn describes the features available in
it (i.e., properties) or the features that it requires (i.e., a de-
pendency). After an assembly is defined, the actual task of
modifying the parameters need not involve manual writing of
glue code. Instead, meta-programming techniques [12] can
be applied to generate code to configure the component in a
context-dependent fashion, due to the decoupling of the prop-
erties of components and the code needed to configure these
properties into the components.

CCM assemblies are defined using XML DTDs, which pro-
vide an implementation-independent mechanism for describ-
ing component properties. With the help of these XML DTD
templates, it is possible to generate default configurations for
CCM components. These assembly configurations can pre-
serve the required QoS properties [13] and establish the nec-
essary configuration and interconnection among the compo-
nents.

3.1.6 Resolving Dependencies Automatically

Context. Run-time deployment of distributed applications
built using components as the core software building blocks.

Problem. Any non-trivial software system consists of a col-
lection of components that have various dependencies, such as
reliance on a particular group of components, order of compo-
nent initialization, or domain-specific requirements (e.g., re-
quired sensor rate in the avionics domain [14]). Resolving
these dependencies manually does not scale as the number of
components in a system grows. Likewise, ignoring or under-
specifying these dependencies can result in an unstable system
if the system run-time assumes that components are indepen-
dent and then instantiates them in invalid order. For example,
the wheels of a carrier-based fighter aircraft must open before
the aircraft tries to land.
CCM Solution ! Deployment application. Define ade-
ployment applicationthat is responsible for managing the de-
pendencies among a collection of interdependent components.
A deployment application can ensure that component inter-
connections are established correctly and in the right order by
using meta-data that capture these dependencies, along with
information about the interconnections expressed via CCM
ports.

3.1.7 Evolving Component Software

Context. Software applications that have been partitioned
into many individual components.

Problem. Although partitioning a system into a collection of
individual components avoids the many problems discussed in
Section 3.1.1, it can be a maintenance problem. For example,
the person-hours needed to evolve complex applications in-
creases considerably as the number of individual components
in a system increases. This problem is exacerbated by the fact
that it is hard to determine the relationship between a compo-
nent and its running context solely based on the presence of a
component in a live system.
CCM Solution ! Component servers. Define acompo-
nent serverabstraction that is responsible for aggregating the
“physical” (i.e., implementation of component instances) en-
tities into “logical” (i.e., functional) entities of a system. A
component server is a singleton [11] that plays the role of a
factory to create containers. A component server is the equiv-
alent of a server process in the object models. Figure 3 shows
the steps involved in deploying component software through
component servers in a top-down fashion.

A component server is typically assigned one high-level
functionality within a complex system. For example, a wing
sensor of an aircraft might be configured as a component

6



ServerProcess

ComponentServer

ComponentHome

Deployment
Application

Container

Component

ComponentHome

ComponentServer

Component

Component

Component

Component

ComponentHome

Component

ComponentHome

Component

Component

Component

Component

Component

Container

ComponentServer

Assembly Assembly

Assembly
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server consisting of a number of components that work to-
gether to control the wings of the aircraft. During deployment,
a single component server per assembly is created on each
host. The component server reads the description of the meta-
data from the assembly and is responsible for initiating the
construction and teardown of the component/container hierar-
chy. Multiple containers can exist within a component server –
the component server is responsible for managing the lifecyle
of containers created within it.

3.2 Key Capabilities of CIAO

The Component-Integrated ACE ORB(CIAO) developed at
Washington University, St. Louis is an extension to CCM.
CIAO is designed to bring the component-oriented develop-
ment paradigm to DRE application developers by abstracting
DRE-critical systemic aspects, such as QoS requirements and
real-time policies, as installable/configurable units. Promot-
ing these DRE-critical aspects as first-class meta-data disen-
tangles the code that controls these systemic aspects from ap-
plication logic. It also makes is easier to compose components
into DRE applications flexibly. Since mechanisms to support
various DRE-critical systemic aspects can be validated using
tools that analyze and synthesize these aspect from a higher
level of abstraction, CIAO also makes configuring and manag-
ing these aspects easier [15].

The CIAO implementation is based on TAO, which is
our open-source, high-performance, highly configurable Real-
time CORBA ORB that implements key patterns [16] to meet
the demanding QoS requirements of distributed applications.
CIAO enhances TAO to simplify the development of DRE ap-
plications by enabling developers to declaratively provision
QoS policies end-to-end when assembling a system. Figure 4
shows the key extensions to the CCM in CIAO, which include:
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Component assembly. CIAO extends the notion of compo-
nent assembly to include server-level QoS provisioning and
implementations for required QoS supporting mechanisms.
CIAO’s extended assembly descriptor definition also enables
specification of QoS provisioning to connect components.
QoS-aware containers. CIAO’s QoS-aware containers pro-
vide a centralized interface for managing provisioned compo-
nent QoS policies and interacting with QoS assurance mecha-
nisms required by the QoS policies.
QoS adaptations. CIAO also supports installation of meta-
programming hooks, such as Portable Interceptor and smart
proxies [12], which can be used to perform dynamic QoS pro-
visioning behaviors that provision QoS resources and adapt
applications to changes in system QoS.

Application developers can use CIAO to decouple QoS pro-
visioning functionality from component implementation and
assemble a DRE application by composing and connecting
application functional components, QoS specifications, and
reusable QoS adaptation behaviors together. Section 4 de-
scribes how CIAO addresses the challenges in assembling and
deploying components.

4 Addressing Key Design Challenges
for Composable DRE Applications

As described in Section 3, the CORBA Component
Model (CCM) specifies the core infrastructure needed for
component-based software development. That section also ex-
plains how CCM provides capabilities that help them develop
composable middleware and applications. The capabilities of-
fered by CCM, however, are targeted towards enterprise and
desktop applications, which do not possess key challenges in-
herent to developing DRE applications.

To address the challenges in developing components for
DRE applications effectively, we have extended the CCM
specification in CIAO to allow specification of component
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properties that are critical to support DRE applications with
stringent QoS requirements. Specifically, CIAO enhances
CCM to support static QoS provisioning, which allocates re-
sources at various levels in a distributed systema priori. This
capability is useful when DRE application components need
to provide hard real-time guarantees or to simplify the specifi-
cation of QoS as part of a large system. In CIAO, specification
of static QoS provisioning is acheived via extensions to meta-
data using XML. Through these extensions, key QoS related
properties of the TAO Real-time CORBA ORB are exposed to
developers of DRE components and applications.

The remainder of this section describes how CIAO ad-
dresses the following challenges that were first introduced in
Section 1:

� Reducing coupling by separating meta-data from func-
tionality

� Context-insensitive specification of QoS properties
� Validation of component configurations
� Component packaging and deployment

4.1 Reducing Coupling by Separating Meta-
data from Functionality

Context. Developing DRE middleware that have consider-
able amount of systemic meta-data.
Problem. DRE middleware have traditionally contained a
considerable amount of meta-data,i.e., information that de-
scribes systemic characteristics. As identified in Section 1,
these meta-data do not implement application functionality per
se. They are nevertheless important for the proper function-
ing of the application. There are two common problems with
meta-data:

� Tangling the meta-data with the implementation of the
functionality leads to an overly strong coupling between
the two, which can impede application evolution.

� Specifying meta-data in anad hocmanner prevents in-
teraction with portions of the application developed by
other suppliers who use non-compatible meta-data speci-
fication mechanisms.

Together, these two factors present DRE integrators with a
challenge whereby individual components may function satis-
factorily, but the composition of these components into higher-
level applications may not meet various systemic QoS proper-
ties, such as time and space constraints. This problem arises
from freezing the interoperability options prematurely,i.e., at
the end of the component design cycle rather than during the
application integration cycle.
Solution ! Use a meta-language to describe meta-data.
Describe component meta-data separately from the implemen-
tation of the component functionality. Designing a language
to define the meta-data is hard since it incurs the challenges

associated with designing programming languages. For exam-
ple, the language used to define meta-data should be extensi-
ble to allow the specification of meta-data that is open-ended
and subject to change. Designing a language for extensibil-
ity [17] involves tradeoffs (such as level of expressibility, ease
of adding new features, maintaining backward compatibility,
and preventing alienation of existing users) that must be han-
dled carefully.

XML provides a basis for defining a meta-language,i.e., a
language that can be used to describe another language. In this
case, the XML-based meta-language is used to describe DRE
application meta-data, while minimizing the effort required to
design a full-fledged language. Using XML to specify com-
ponent meta-data enables designers and integrators of DRE
applications to separate the “meta-data” from the component
implementations, while also enabling the integration and com-
position of third-party code.

Applying the solution in CIAO. CIAO uses ACEXML,
which is an open-source C++ library for parsing XML files.
ACEXML provides an API based on the Simple API for XML
(SAX) [18] to assist in handling XML used for the specifica-
tion of meta-data. There are two types of XML APIs:

� Tree-based APIs, which map an XML document into
an internal tree structure, then allow an application
to navigate that tree. The Document Object Model
(DOM) working group at the World-Wide Web Consor-
tium (W3C) maintains a recommended tree-based API
for XML and HTML documents, and there are many such
APIs from other sources, such as DOM model APIs for
Mathematical Markup Language [19], Scalable Vector
Graphics [20], and Synchronized Multimedia Integration
Language [21].

� Event-based APIs, which reports parsing events (such
as the start and end of elements) directly to an applica-
tion via callbacks and does not usually build an internal
tree. An application implements handlers to deal with the
different events, much like handling events in a graphical
user interface. SAX is the best known example of such
an API.

Figure 5 shows the how ACEXML can be used to parse
XML documents. During deployment (see Section 4.4)
ACEXML reads the meta-data from an assembly and uses it to
validate (see Section 4.3) the contents of the assembly. Since
DRE applications often have stringent footprint requirements,
they cannot afford the overhead involved with building the en-
tire tree structure in memory, as is the case with DOM based
APIs for parsing XML. This problem assumes greater signifi-
cance if the amount of meta-data specified becomes large and
unwieldy, such as when meta-data is auto-generated by model-
ing tools [22] and component-aware IDL compilers. To avoid
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Figure 5:Event Handling in ACEXML

this overhead, ACEXML is based on SAX which eliminates
the need to build the whole tree structure in memory.

4.2 Context-insensitive Specification of QoS
Properties

Context. Designing component-based DRE applications
that rely on underlying middleware to provide multiple lev-
els of QoS assurance to the application, including mini-
mum/average/maximum latency and throughput guarantees,
supported sensor rates, default number of network packets
queued, maximum size of an allowed packet, and allowed min-
imum/average/maximum deadlines.
Problem. Building complex DRE applications exposes de-
velopers to variations in the following:

� The implementation of QoS enabling mechanisms, such
as scheduling algorithms, thread pools, connection pool-
ing and caching and event demultiplexing provided by the
underlying middleware

� The number of such alternative QoS enabling mecha-
nisms that are exposed to the user as configurable values.

This variation can encourage developers to design applications
that depend on some or all of the QoS enabling mechanisms
outlined above to be provided by the underlying middleware
and made available to the component. Critical QoS require-
ments may not be met when components are used in a scenario

where such QoS enabling mechanisms are either unavailable
or insufficient to satisfy the design assumptions. Depending
on the criticality of the missed QoS property, there might be a
localized malfunction or a failure of the entire application.
Solution! Specify QoS properties in a context-insensitive
fashion. Identify properties of a component (i.e., the set of
configurable values) that when set in a particular fashion affect
the state and hence the behavior of the component. Specify the
properties such that the task of manipulating them is separate
from the functionality of the component. Care should be taken
to ensure that the amount of context-dependent assumptions is
limited, and if present, the dependency on such assumptions
are made explicit. It is also important that the specification of
these QoS properties, makes it possible to fully exploit addi-
tional QoS capabilities, present in some but not all implemen-
tations of the underlying middleware.

In general, QoS properties should be elevated to the role of a
first-class citizen in the middleware typesystem and associated
with components explicitly. Doing so can also prevent errors
during composition by recognizing mismatches in provided
and required properties, as explained in Section 4.3. In the
long run, standardizing common QoS properties of underlying
middleware, from different vendors, is important to ensure in-
teroperability, as well as to enhance the reuse of QoS-aware
components.
Applying the solution in CIAO. CIAO extends the CCM
component property file(.cpf), which is described in Sidebar 1
on page 10. This file specifies the QoS properties that are es-
sential to static QoS provisioning, such as size of the input
buffers to allocate, portion of the network bandwidth to re-
serve, and priority of the packets sent out by this component.
An example component property file (.cpf) is shown below:

<properties>
<simple name=bufSize type="long">

<description>Size of CDR input buffer
</description>

<value>4096</value>
<defaultvalue>256</defaultvalue>

</simple>
<simple name=bandwidth type="long">

<description>Network bandwidth to reserve
</description>

<!-- In Mbps -->
<value>15</value>

</simple>
<sequence name="Latency" type="sequence<long>">

<!-- Component’s min/avg/max latency in us -->
<simple type="long"><value>5</value></simple>
<simple type="long"><value>10</value></simple>
<simple type="long"><value>15</value></simple>

</sequence>
<struct name="PathMonitor" type="sensorStruct">

<description>Flightpath recalculation
</description>

<simple name="hour" type="short">
<value> 0 </value>

</simple>
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Sidebar 1: Separating Configuration Concerns
in CCM

Configuration of components in CCM is performed at different
levels of abstraction and involves different tradeoffs. CCM uses
XML-based descriptors to configure components. Each descrip-
tor exposes different aspects of a component-based system. In this
sidebar, we describe the different types of descriptors in CCM and
explain how they help separate the concerns of component config-
uration:

� CORBA assembly descriptor (.cad), which is a meta-
information file with details of an assembly archive. It in-
cludes a list of the set of components that form the as-
sembly, component descriptors and implementations, the
inter-connections between these components, and component
homes. It is used by the deployment tool to configure the
component inter-connections, component homes, etc.

� CORBA component descriptor (.ccd), which is a meta-
information file that describes the features of a single compo-
nent. It includes information, such as the provided, required
and supported interfaces; ports information; and QoS policies
(e.g., threading, transaction and security and access mode).

� CORBA software descriptor (.csd), which is a compressed
file that contains one or more implementations of a compo-
nent or an interface. It can be used to deploy an individual
component or an interface that is not part of an assembly.

� Component property file (.cpf), which is used to describe
QoS properties of an assembly as a whole or an individ-
ual component or a specific implementation of a component.
Properties can optionally be overridden if specified at multi-
ple levels.

By using descriptors at multiple levels of granularity, CCM sep-
arates out the concerns of component software and enables the
weaving of complete applications from these individual aspects.

<simple name="minute" type="short">
<value> 0 </value>

</simple>
<simple name="second" type="short">

<value> 0 </value>
</simple>
<simple name="millisecond" type="short">

<value> 5 </value>
</simple>

</struct>
</properties>

Developers of components based on CIAO can use and con-
figure these properties of the underlying middleware. They
can also expose it to other components by defining a mapping
between the underlying middleware properties and properties
of by the component.

The component property file is a XML-based vocabulary
that is read at deployment time and used to configure the com-
ponent. By explicitly specifying the properties and separat-
ing them from the component functionality, CIAO allows the

context-insensitive specification of these properties. By re-
moving the specification and manipulation of these properties
from the functional properties of the component, CIAO also
reduces the amount of tedious and error-prone glue-code that
must be written to configure components.

4.3 Validation of Component Configurations

Context. Integrating a complex DRE application from a set
of generic and reusable COTS components.
Problem. Developers of reusable COTS components must
validate that their implementations satisfy the intended func-
tionality and QoS. A common validation procedure is black-
box or whitebox testing [23]. While this validation process
yields readily available and tested components, the task of
integrating these components and configuring them to cus-
tomize an application is hard. In particular, manually inte-
grating COTS components is error-prone since it involves

� Checking a large number of individual components’ QoS
properties to ensure that the component satisfies the re-
quirements and

� Ensuring that the overall system composed of these indi-
vidual components satisfies the QoS guarantees.

Solution ! Validate component configurations. Validate
component configurations by checking the meta-data associ-
ated with a component to ensure that the end-to-end require-
ments of the application match the capabilities offered by its
constituent components. This validation process does not in-
clude mechanisms to check whether the functionality adver-
tised by a component is indeed provided by the component.
The topic of verifying semantics of a component [24] is vast
and merits a detailed discussion [25] of its own.

Validation can be done by using XML-based descriptors,
which contain meta-information that describe the systemic
properties of individual components, component packages, or
component assemblies (see Section 4.4). The format of these
descriptor files are specified via a set of XML DTDs. Vali-
dation of meta-data specified in XML involves checking for
conformance with the rules specifieda priori for meta-data in
the DTD. However, this validation process is effective, only
when it is automated and not exposed to human errors. If this
validation is conducted during deployment (see Section 4.4),
it can avoid exception conditions after the application is de-
ployed and running.
Applying the solution in CIAO. Component configurations
in CIAO are specified through a set of descriptors, as outlined
in the preceding paragraph. CIAO’s implementation of CCM
CIDL compiler generates a default configuration for every
component and hence a default descriptor. In many real-life
use-cases of components, however, a descriptor may need to
be modified and extended by component developers to better
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suit their requirements or to impose certain policies on compo-
nents. After a default descriptor generated by the CIDL com-
piler is modified or extended by a developer (or if a descrip-
tor is specified from scratch by a developer), it is essential to
check if the descriptor still conforms to the descriptor’s DTD.
Descriptors are validated for conformance with their DTDs us-
ing the ACEXML library presented in Section 4.1, which pro-
vides a general-purpose that can be used to validate any XML
DTD.

4.4 Component Packaging and Deployment

Context. Deploying a DRE application that is built from
reusable COTS components.
Problem. DRE applications are composed of many compo-
nents. In complex DRE applications, there may be hundreds
or thousands of these components. As the number of com-
ponents increase, it is hard to manage the application at the
granularity of individual components. Specifying the provi-
sioning at the level of individual components might also be
insufficient. Some of the QoS properties cross-cut component
boundaries, so they should be handled at multiple levels of
granularity. Supporting static provisioning of QoS therefore
becomes harder in the presence of a large number of compo-
nents.
Solution ! Use component assemblies. Specify QoS
properties at multiple levels of abstraction to support static
provisioning of QoS in an end-to-end fashion. To support
specification of QoS properties at multiple levels, component
software needs to be packaged in a suitable hierarchical for-
mat. This format should also allow specification of QoS poli-
cies, which assist in overriding a particular property to main-
tain end-to-end guarantees. Policies are specified in conjunc-
tion to the specification of QoS properties.

The levels of abstraction at which the QoS properties can be
specified include:
� Component software package, which contains one or

more implementations of a component. Each package
needs to have an associated descriptor, as explained in
Section 4.3, which assists in composition and in provi-
sioning of QoS properties during deployment. A compo-
nent software package may be installed on a component
server and servers as the vehicle for deploying a single
component implementation.

� Component assembly package, which contains a set of
inter-dependent components and information which de-
scribes the dependencies between these components. A
component assembly package serves as the vehicle for
deploying a set of interrelated components. The defini-
tion of a component assembly is recursive and a com-
ponent assembly itself can be composed further to yield
another assembly.

The use of XML for the descriptors at each level not only
serves as a “glue-language” for composition, but also enables
the development of value-added services, such as graphical
user interface (GUI)- based packaging tools, that are indepen-
dent of the components or the application.
Applying the solution in CIAO. In CIAO, a component
software package is described by aCORBA software descrip-
tor (.csd) file, which is described in Sidebar 1 on page 10. This
file captures the high-level details of components present in a
software package, such as ownership information along with a
list of implementations of components. Each implementation
in turn describes features, such as type and version of of the
OS and CPU, along with the type(s) of component present in
the implementation. An example CORBA Software Descrip-
tor (.csd) file is shown below:

<softpkg name="Sensor" version="1,0,1,0">
<pkgtype>CORBA Component</pkgtype>
<title>Sensor</title>
<author>

<company>Qosketeers Inc.</company>
<webpage href="http://www.qosket.com"/>

</author>
<description>

Yet another QoS package example
</description>
<license

href="http://www.qosket.com/license.html" />
<propertyfile>

<fileinarchive name="Sensor.cpf"/>
</propertyfile>
<implementation

id="DCE:700dc518-0110-11ce-ac8f-0800090b5d3e">
<os name="WinNT" version="4,0,0,0" />
<os name="Win95" />
<processor name="x86" />
<compiler name="Microsoft Visual C++" />
<programminglanguage name="C++" />
<dependency type="CORBA 3.0 ORB">

<name>CIAO</name>
</dependency>
<descriptor type="CORBA Component">

<fileinarchive>
QoScontainer.ccd

</fileinarchive>
<fileinarchive name="QoScontainer.ccd" />

</descriptor>
<code type="DLL">

<fileinarchive name="sensor.dll"/>
<entrypoint>createSensor</entrypoint>

</code>
<dependency type="DLL">

<localfile name="Monitor.dll"/>
</dependency>

</implementation>
<implementation

id="DCE:297f3e18-0110-11ce-ac8f-08074982ad3e"
variation="RemoteHome">

<os name="Solaris" version="5,5,0,0" />
<processor name="sparc" />
<!-- . . . -->

</implementation>
<implementation>

<!-- another implementation -->
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</implementation>
</softpkg>

Each type of component within an implementation is de-
scribed by aCORBA component descriptor(.ccd) file, which
is discussed in Sidebar 1 on page 10. This file captures the
structure of a component, with respect to its supported inter-
faces, inherited components, and ports. CIAO uses component
descriptor files to facilitate inter-connections between compo-
nents. An example CORBA component descriptor (.ccd) is
shown below:

<?xml version="1.0"?>
<!DOCTYPE corbacomponent

SYSTEM "corbacomponent.dtd">
<corbacomponent>

<corbaversion> 3.0 </corbaversion>
<componentrepid

repid="IDL:FlightPath:1.0" />
<homerepid

repid="IDL:FlightPathHome:1.0" />
<componentkind>

<entity>
<servant lifetime="process" />

</entity>
</componentkind>
<security rightsfamily="corba" />
<threading policy="multithread" />
<configurationcomplete set="true" />
<homefeatures

name="FlightPathHome"
repid="IDL:FlightPathHome:1.0">

<operationpolicies>
<operation name="*">

<transaction use="never" />
</operation>

</operationpolicies>
</homefeatures>
<componentfeatures

name="FlightPath"
repid="IDL:FlightPath:1.0">

<inheritscomponent
repid="IDL:QoSket/Path:1.0" />

<ports>
<provides

providesname="calculate_freq"
repid="IDL:Frequency:1.0"
facettag="1"/>

<provides
providesname="admin"
repid="IDL:QoSket/Admin:1.0"
facettag="3" />

</ports>
</componentfeatures>
<interface name="FlightPath"

repid="IDL:FlightPath:1.0">
<inheritsinterface

repid="IDL:WingMonitor:1.0" />
</interface>

</corbacomponent>

A component assembly descriptor(.cad) file describes
which components make up the assembly, how those com-
ponents are partitioned, and how they are connected to each
other. During deployment, the CIAO deployment mechanism

consults the component assembly descriptor file to bootstrap
the deployment. An example component assembly descrip-
tor(.cad) is shown below:

<!DOCTYPE componentassembly
SYSTEM "componentassembly.dtd">

<componentassembly id="ZZZ123">
<description>Example assembly</description>
<componentfiles>

<componentfile id="A">
<fileinarchive name="ca.ccd"/>

</componentfile>
<componentfile id="B">

<fileinarchive name="cb.ccd"/>
</componentfile>
<componentfile id="C">

<fileinarchive name="cc.ccd">
<link

href="ftp://www.QoS.com/cc.aar"/>
</fileinarchive>

</componentfile>
<componentfile id="D">

<fileinarchive name="cd.ccd"/>
</componentfile>
<componentfile id="E">

<fileinarchive name="ce.ccd"/>
</componentfile>
<componentfile id="F">

<fileinarchive name="cf.ccd"/>
</componentfile>

</componentfiles>
<connections>

<connectinterface>
<usesport>

<usesidentifier>abc</usesidentifier>
<componentinstantiationref

idref="Aa"/>
</usesport>
<providesport>

<providesidentifier>abc
</providesidentifier>

<componentinstantiationref
idref="Bb"/>

</providesport>
</connectinterface>
<connectevent>

<consumesport>
<consumesidentifier>pqr

</consumesidentifier>
<componentinstantiationref

idref="Aaa"/>
</consumesport>
<emitsport>

<emitsidentifier>mno
</emitsidentifier>

<componentinstantiationref
idref="Ee"/>

</emitsport>
</connectevent>

</connections>
</componentassembly>

In CIAO, an instance of a daemon process (called
compassd ) runs on every host that will participate in the de-
ployment. This daemon acts as the manager for the compo-
nents that are installed on a particular host. A new component
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can be installed by specifying the file containing the imple-
mentation along with the hostname and port number where the
component has to installed. If another implementation of the
same component is already running on a particular host (which
the daemon can determine by comparing against the UUID of
a component implementation), the daemon will ensure it is not
installed again.

5 Concluding Remarks

The concept of composable middleware for distributed real-
time and embedded (DRE) applications can provide benefits
to developers of both DRE middleware and applications, as
well as DRE application integrators. This paper describes how
our work on the Component-Integrated ACE ORB (CIAO) ad-
dresses key challenges that arise when applying state-of-the-
practice component model technology to DRE applications.
We also describe the CORBA Component Model (CCM) spec-
ification and then describe enhancements to CCM we have
implemented in CIAO. By applying the solutions described in
this paper, we are decoupling various aspects of DRE software
applications, thereby enabling application developers, system
engineers, and end-users to select components that can be
composed to build complete DRE applications with a shorter
time-to-market. Our long-term goal is to provide the same
benefits available to developers of desktop and enterprise ap-
plications to the much more challenging domain of DRE ap-
plications.

The long-term goal of the work described in this pa-
per is to enable reflective ORB behavior and expose these
ORB features so that they can be monitored and controlled
effectively by higher-level tools and management applica-
tions. ACEXML used in the deployment framework of
CIAO is available from the ACE CVS repository available at
http://cvs.doc.wustl.edu/viewcvs.cgi/ACEXML/.
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