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Introduction

CORBA Object Request Brokers (ORBs) deliver client re-
quests to servants and return responses to clients [1]. To ac-
complish this, ORBs manage transport connections, perform
transport endpoint demultiplexing, and provide the multi-
threading architecture used by applications. The architecture
used to multi-thread an ORB has a substantial impact on its
performance and predictability [2]. A key challenge for ORB
developers and application programmers, therefore, is to de-
vise threading architectures that can handle multiple client re-
quests efficiently.

Multi-threading allows operations to execute simultane-
ously without impeding the progress of other operations. Like-
wise, multi-threading can minimize latency and ensure pre-
dictability in real-time systems [2]. This paper describes and
evaluates common CORBA multi-threading architectures used
by ORB implementations, including CORBAplus, HP ORB
Plus, miniCOOL, MT-Orbix, TAO, and VisiBroker.

Sidebar: Overview of Multi-threading

A thread is a single sequence of execution steps performed in
the context of a process [3]. In addition to its own instruc-
tion pointer, a thread contains resources like a run-time stack
of method activation records, a set of registers, and thread-
specific storage. A preemptive multi-threaded OS, such as So-
laris or Windows NT, provides a scheduler that ensures each
thread of control runs according to its priority and/or its exe-
cution quantum.

Contemporary operating systems support the concurrent ex-
ecution of multiple processes, each containing one or more
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threads. As shown in Figure 1, a process serves as the unit of
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Figure 1: Threads in a Process

protection and resource allocation within a separate hardware-
protected address space. A thread serves as the unit of exe-
cution that runs within a process address space that is shared
with other threads.

Motivation for Multi-threading Object Request
Brokers

The following are common motivations for developing and us-
ing multi-threaded ORBs:

� Simplify program designby allowing multiple servants to
execute independently using conventional programming
abstractions like synchronous CORBA remote method
requests and replies;

� Improve end-to-end throughput and latency performance
by using the parallel processing capabilities of multi-
processor hardware platforms and by overlapping com-
putation with communication;

� Improve perceived response timefor interactive client ap-
plications, such as user interfaces or network manage-
ment tools, by associating separate threads with different
operations so client operations do not block indefinitely.
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Programming applications on CORBA ORBs that lack
multi-threading is hard, particularly for developers of servers
or real-time applications. Without multi-threading capabil-
ities, developers must ensure that requests can be handled
quickly enough that new requests are not starved or unduly de-
layed. In practice, however, many requests cannot be serviced
quickly enough in a single-threaded ORB to avoid starving
clients.

With multiple threads, each request can be serviced in its
own thread, independent of other requests. This way, clients
are not starved by waiting for their requests to be serviced.
Likewise, system resources are conserved since creating a new
thread is typically much less expensive than creating an en-
tirely new process [3].

Sidebar: Overview of the CORBA ORB
Reference Model

CORBA Object Request Brokers (ORBs) [1] allow clients to
invoke operations on distributed objects without concern for:

Object location: CORBA objects can be co-located with the
client or distributed on a remote server, without affecting their
implementation or use.

Programming language: The languages supported by
CORBA include C, C++, Java, Ada95, COBOL, and
Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, includ-
ing Win32, UNIX, MVS, and real-time embedded systems like
VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com-
munication protocols and interconnects that CORBA can run
on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-
ernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from differences
in hardware such as RISC vs. CISC instruction sets.

Figure 2 illustrates the components in the CORBA refer-
ence model, all of which collaborate to provide the portability,
interoperability, and transparency outlined above. Each com-
ponent in the CORBA reference model is outlined below:

Servant: This component implements the operations de-
fined by an OMG Interface Definition Language (IDL) in-
terface. In languages like C++ and Java that support object-
oriented (OO) programming, servants are implemented using
one or more objects. In non-OO languages like C, servants
are typically implemented using functions andstruct s. A
servant is identified by itsobject reference, which uniquely
identifies the servant in a server process.

INTERFACE

REPOSITORY

IMPLEMENTATION

REPOSITORY

IDL
COMPILER

DII ORB
INTERFACE

ORB  CORE

operation()

OBJECT

ADAPTER

in  args

out  args + return  value

CLIENT

GIOP/IIOP

SERVANT

IDL
STUBS

STANDARD  INTERFACE STANDARD  LANGUAGE  MAPPING

ORB-SPECIFIC  INTERFACE STANDARD  PROTOCOL

INTERFACE

REPOSITORY

IMPLEMENTATION

REPOSITORY

IDL
COMPILER

IDL
SKELETON

DSI

Figure 2: Components in the CORBA Reference Model

Client: This program entity performs application tasks by
obtaining object references to servants and invoking opera-
tions on the servants. Servants can be remote or co-located rel-
ative to the client. Ideally, accessing a remote servant should
be as simple as calling an operation on a local object,i.e.,
object !operation(args) . Figure 2 shows the com-
ponents that ORBs use to transmit requests transparently from
client to servant for remote operation invocations.

ORB Core: When a client invokes an operation on a servant,
the ORB Core is responsible for delivering the request to the
servant and returning a response, if any, to the client. For ser-
vants executing remotely, a CORBA-compliant [4] ORB Core
communicates via the Internet Inter-ORB Protocol (IIOP),
which is a version of the General Inter-ORB Protocol (GIOP)
that runs atop the TCP transport protocol. An ORB Core is
typically implemented as a run-time library linked into client
and server applications.

ORB Interface: An ORB is a logical entity that may be im-
plemented in various ways,e.g., one or more processes or a
set of libraries. To decouple applications from implementation
details, the CORBA specification defines an abstract interface
for an ORB. This ORB interface provides standard operations
that (1) initialize and shutdown the ORB, (2) convert object
references to strings and back, and (3) creates argument lists
for requests made through the Dynamic Invocation Interface
(DII) described below.

OMG IDL Stubs and Skeletons: IDL stubs and skeletons
serve as a “glue” between the client and servants, respectively,
and the ORB. Stubs provide a strongly-typed,static invoca-
tion interface (SII) that marshals application data into a com-
mon packet-level representation. Conversely, skeletons de-
marshal the packet-level representation back into typed data
that is meaningful to an application.
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IDL Compiler: An IDL compiler automatically transforms
OMG IDL definitions into an application programming lan-
guage like C++ or Java. In addition to providing language
transparency, IDL compilers eliminate common sources of
network programming errors and provide opportunities for au-
tomated compiler optimizations [5].

Dynamic Invocation Interface (DII): The DII allows
clients to generate requests at run-time. This flexibility is use-
ful when an application has no compile-time knowledge of the
interface it is accessing. The DII also allows clients to make
deferred synchronouscalls, which decouple the request and
response portions of twoway operations to avoid blocking the
client until the servant responds. In contrast, SII stubs support
only twoway, i.e., request/response, andoneway, i.e., request
only operations.1

Dynamic Skeleton Interface (DSI): The DSI is the server’s
analogue to the client’s DII. The DSI allows an ORB to deliver
requests to a servant that has no compile-time knowledge of
the IDL interface it is implementing. Clients making requests
need not know whether the server ORB uses static skeletons or
dynamic skeletons. Likewise, servers need not know if clients
use the DII or SII to invoke requests.

Object Adapter: An Object Adapter associates a servant
with an ORB, demultiplexes incoming requests to the ser-
vant, and dispatches the appropriate operation upcall on that
servant. Recent CORBA portability enhancements [4] define
the Portable Object Adapter (POA), which supports multiple
nested POAs per ORB. Object Adapters make it possible for
an ORB to support various types of servants that possess sim-
ilar requirements. This architecture results in a small and sim-
ple ORB that can still support a wide range of object gran-
ularities, lifetimes, policies, implementation styles, and other
properties.

Interface Repository: The Interface Repository provides
run-time information about IDL interfaces. Using this infor-
mation, it is possible for a program to encounter an object
whose interface was not known when the program was com-
piled, yet, be able to determine what operations are valid on
the object and make invocations on it. In addition, the In-
terface Repository provides a common location to store ad-
ditional information associated with interfaces ORB objects,
such as stub/skeleton type libraries.

Implementation Repository: The Implementation Reposi-
tory contains information that allows the ORB to locate and
activate servants. Most of the information in the Implemen-
tation Repository is specific to an ORB or operating environ-
ment. In addition, the Implementation Repository provides

1The OMG has recently standardized an asynchronous method invocation
interface, as well.

a common location to store information associated with ser-
vants, such as administrative control, resource allocation, and
security.

Evaluating Multi-threading Architectures for
Object Request Brokers

This section describes and evaluates common ORB multi-
threading architectures that are used by one or more CORBA
implementations. Each architecture is evaluated in terms of its
ability to support the aggregate processing capacity of ORB
endsystem components and application operations in one or
more threads.

There are a variety of strategies for structuring the multi-
threading architecture in an ORB. Below, we describe a num-
ber of alternative ORB Core multi-threading architectures, fo-
cusing on server-side multi-threading.

The Thread-per-Request Architecture

The thread-per-request architecture [6] handles each request
from a client in a separate thread of control. As shown in Fig-
ure 3, the components in the thread-per-request architecture
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1: select()1: select()
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4: dispatch upcall()4: dispatch upcall()

2: read()2: read()

3: spawn_thread()3: spawn_thread()

5: thread_exit()5: thread_exit()

Figure 3: Server-side Thread-per-Request Multi-threading Ar-
chitecture

include an I/O thread and one or more dynamically spawned
threads. The I/O threadselect s (1) on the socket endpoints,
reads (2) new client requests, and (3) spawns a new thread
for each request. The newly spawned thread dispatches the
operation upcall (4) and exits when the upcall completes (5).

The main advantage of thread-per-request is that it is
straightforward to implement. This architecture is particu-
larly useful for ORBs that handle long-duration requests, such
as database queries, from multiple clients. The disadvantage
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with thread-per-request is that it can consume a large number
of OS resources if many clients make requests simultaneously.
Moreover, it is inefficient for short-duration requests because it
incurs excessive thread creation overhead. In addition, thread-
per-request architectures are not suitable for real-time appli-
cations since the overhead of spawn a thread for each request
can be non-deterministic.

The HP ORBPlus ORB uses the thread-per-request architec-
ture. MT-Orbix can be configured to use thread-per-request.

The Thread-per-Connection Architecture

The thread-per-connectionarchitecture is a variation of thread-
per-request that amortizes the cost of spawning the thread
across multiple requests from the same client process. As
shown in Figure 4, the components in the thread-per-
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Figure 4: Server-side Thread-per-Connection Multi-threading
Architecture

connection architecture are a set of connection threads, each
of which is dedicated to handle a separate client for the du-
ration of its connection. Each connection threadread s (1) a
new request directly from its socket endpoint, dispatches the
upcall (2), and then returns toread the next request from its
connection.

Like thread-per-request, thread-per-connection is straight-
forward to implement. It is well suited for ORBs that perform
long-duration conversations with multiple clients. Its primary
disadvantage is that it does not support load balancing effec-
tively. Moreover, for clients that make only a single request to
each server, thread-per-connection is equivalent to the thread-
per-request architecture.

VisiBroker from Inprise, the TAO ORB [2], and SunSoft
IIOP implement the thread-per-connection architecture.

The Thread-per-Servant Architecture

The thread-per-servant architecture2 associates a thread for
each servant,e.g., a video-on-demandsession, registered in the
ORB’s Object Adapter. As shown in Figure 5, the components
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Figure 5: Server-side Thread-per-Servant Multi-threading Ar-
chitecture

in the thread-per-servant architecture are an I/O thread and a
set of threads each of which is dedicated to handle a separate
servant,e.g.,S1, S2, andS3. The I/O threadselects (1) and
read s (2) a new request from a socket endpoint and passes the
request to the Object Adapter. The Object Adapter then (3) in-
serts the request into a queue associated with a servant and the
servant’s thread. This thread will dequeue requests from its
queue (4) and dispatch the upcall on the servant (5).

Thread-per-servant is useful for programmers who want to
minimize the amount of rework required to multi-thread ex-
isting single-threaded servants. So long as all methods in a
servant only access servant-specific state there is no need for
explicit synchronization operations. The primary disadvantage
with thread-per-servant is that it does not support load balanc-
ing effectively. Therefore, if one servant receives considerably
more requests than others it can become a performance bottle-
neck.

MT-Orbix can be configured to support thread-per-servant.

Thread Pool Architectures

A thread pool [8] is another variation of the thread-per-
request architecture that amortizes thread creation costs by
pre-spawning a pool of threads. A thread pool architecture

2This architecture is also known as “thread-per-object” [7].

4



is useful for ORBs that want to bound the number of OS re-
sources they consume. Client requests can be executed con-
currently until the number of simultaneous requests exceeds
the number of threads in the pool. At this point, additional
requests must be queued until a thread becomes available.

Thread pool is a common architecture for structuring ORB
multi-threading, particularly for real-time ORBs [2]. Below,
we describe and evaluate several common thread pool archi-
tectures.

The Worker Thread Pool Architecture

As shown in Figure 6, the components in a worker thread pool
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Figure 6: Server-side Worker Thread Pool Multi-threading Ar-
chitecture

include an I/O thread, a request queue, and a pool of worker
threads. The I/O threadselect s (1) on the socket endpoints,
reads (2) new client requests, and (3) inserts them into the
tail of the request queue. A worker thread in the pool dequeues
(4) the next request from the head of the queue and dispatches
it (5).

The chief advantage of the worker thread pool multi-
threading architecture is its ease of implementation. In par-
ticular, the request queue provides a straightforward pro-
ducer/consumer design. The disadvantages of this model stem
from the excessive context switching and synchronization re-
quired to manage the request queue, as well as request-level
priority inversion caused by connection multiplexing.

The Expersoft CORBAplus ORB uses the worker thread
pool architecture.

The Leader/Follower Thread Pool Architecture

The leader/follower thread pool architecture is an optimization
of the worker thread pool model. As shown in Figure 7, a pool
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Figure 7: Server-side Leader/Follower Multi-threading Archi-
tecture

of threads is allocated and a leader thread is chosen toselect
(1) on connections for all servants in the server process. When
a request arrives, this thread reads (2) it into an internal buffer.
If this is a valid request for a servant, a follower thread in the
pool is released to become the new leader (3) and the leader
thread dispatches the upcall (4). After the upcall is dispatched,
the original leader thread becomes a follower and returns to the
thread pool. New requests are queued in socket endpoints until
a thread in the pool is available to execute the requests.

Compared with the worker thread pool design, the chief
advantage of the leader/follower thread pool architecture is
that it minimizes context switching overhead incurred by in-
coming requests. Overhead is minimized since the request
need not be transferred from the thread that read it to another
thread in the pool that processes it. The disadvantages of the
leader/follower architecture are largely the same as with the
worker thread design. In addition, it is harder to implement
the leader/follower model.

Sun’s miniCOOL ORB uses the leader/follower thread pool
architecture.

Hybrid Architectures

Several architectures for structuring ORB concurrency com-
bine a number of the other multi-threading architectures de-
scribed above.

Threading Framework Architecture

A very flexible way to implement an ORB multi-threading ar-
chitecture is to allow application developers to customize hook
methods provided by athreading framework. One way of
structuring this framework is shown in Figure 8. This design
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Figure 8: Server-side Thread Framework Multi-threading Ar-
chitecture

is based on the MT-Orbix thread filter framework, which is a
variant of the Chain of Responsibility pattern [9].

In MT-Orbix, an application can install a thread filter at the
top of a chain of filters. Filters are application-programmable
hooks that can perform a number of tasks. Common tasks in-
clude intercepting, modifying, or examining each request sent
to and from the ORB.

In the thread framework architecture, a connection thread
in the ORB Coreread s (1) a request from a socket endpoint
and enqueues the request on a request queue in the ORB Core
(2). Another thread then dequeues the request (3) and passes
it through each filter in the chain successively. The topmost
filter, i.e., the thread filter, determines the thread to handle this
request. In thethread-poolmodel, the thread filter enqueues
the request into a queue serviced by a thread with the appropri-
ate priority. This thread then passes control back to the ORB,
which performs operation demultiplexing and dispatches the
upcall (4).

The main advantage of a threading framework is its flexibil-
ity. The thread filter mechanism can be programmed by server
developers to support various multi-threading strategies. For
instance, to implement a thread-per-request strategy, the filter
can spawn a new thread and pass the request to this new thread.
Likewise, the MT-Orbix threading framework can be config-
ured to implement other multi-threading architectures such as
thread-per-servant and thread-per-connection. The disadvan-
tage with a threading framework is that its generality can sig-
nificantly increase locking overhead. For instance, locks must
be acquired to insert requests into the queue of the appropriate
thread of a thread pool. The overhead from locking can greatly

reduce throughput and increase latency [2].

The Reactor-per-Thread-Priority Architecture

TheReactor -per-thread-priority architecture is based on the
Reactor pattern [10], which integrates transport endpoint de-
multiplexing and the dispatching of the corresponding event
handlers. This threading architecture associates a group of
Reactor s with a group of threads running at different prior-
ities. As shown in Figure 9, the components in theReactor -
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Figure 9: Server-side Reactor-per-Thread-Priority Multi-
threading Architecture

per-thread-priority architecture include multiple pre-allocated
Reactor s, each of which is associated with its own real-time
thread of control for each priority level in the ORB. For in-
stance, avionics mission computing systems [11] commonly
execute their tasks in fixed priority threads corresponding to
therates, e.g., 20 Hz, 10 Hz, 5 Hz, and 1 Hz, at which opera-
tions are called by clients.

Within each thread, theReactor demultiplexes (1) all in-
coming client requests to the appropriate connection handler,
i.e., connect1, connect2, etc. The connection handlerread s
(2) the request and dispatches (3) it to a servant that executes
the upcall at its thread priority.

EachReactor in an ORB server thread is also associated
with an Acceptor [12]. The Acceptor is a factory that
listens on a particular port number for clients to connect to that
thread and creates a connection handler to process the GIOP
requests. In the example in Figure 9, there is a listener port for
each priority level.

The advantage of theReactor -per-thread-priority ar-
chitecture is that it minimizes priority inversion and non-
determinism. Moreover, it reduces context switching and syn-
chronization overhead by requiring the state of servants to be
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locked only if they interact across different thread priorities. In
addition, this multi-threading architecture supports scheduling
and analysis techniques that associate priority with rate, such
as Rate Monotonic Scheduling (RMS) and Rate Monotonic
Analysis (RMA) [13, 14].

The disadvantage with theReactor -per-thread-priority
architecture is that it serializes all client requests for each
Reactor within a single thread of control, which can re-
duce parallelism. To alleviate this problem, a variant of this
architecture can associate apool of threads with each priority
level. Though this will increase potential parallelism, it can in-
cur greater context switching overhead and non-determinism,
which may be unacceptable for certain types of real-time ap-
plications.

The TAO real-time ORB uses theReactor -per-thread-
priority architecture.

Concluding Remarks

It is hard to program multi-threaded applications, particularly
servers, since developers must ensure that access to shared
data is serialized properly. Moreover, the techniques re-
quired to control and terminate threads are complicated, non-
portable, and non-intuitive. In addition, not all platforms pro-
vide good support for threads or thread-aware debuggers.

When the complexities of concurrency control and synchro-
nization are handled by an ORB, however, the benefits of
multi-threading often outweigh the disadvantages. In particu-
lar, multi-threaded ORBs can yield simpler servant implemen-
tations than single-threaded ORBs. Much of this simplicity
derives from the fact that request scheduling and operation dis-
patching are handled by the ORB, rather than the application.
Therefore, servers need not be concerned with the duration of
each operation they execute.

In addition, when designed and used properly, multi-
threaded ORBs can improve the efficiency and predictabil-
ity of client and server applications. For instance, multiple
client requests can be serviced simultaneously by one or more
CORBA servants. Each servant can be processed in a separate
thread of control, which can be mapped to CPU and executed
in parallel on multi-processor platforms.

An increasing number of commercial and research CORBA
ORBs implement one or more of the multi-threading archi-
tectures described in this article. By evaluating the prop-
erties of each architecture, CORBA developers can make
better choices for their distributed applications. Empirical
benchmarks are ultimately the best way to determine how
well ORBs implement these architectures perform in prac-
tice. An ORB benchmarking test suite is freely available at
www.cs.wustl.edu/ �/schmidt/TAO.html .
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