
Systems Programming with C++ Wrappers
Encapsulating Interprocess Communication Mechanisms

with Object-Oriented Interfaces

Douglas C. Schmidt
schmidt@ics.uci.edu

Department of Information and Computer Science
University of California, Irvine, CA 92717, (714) 856-4105

An earlier version of this paper appeared in the Septem-
ber/October 1992 issue of the C++ Report.

1 Introduction

This article is the first in a series that describes techniques
for encapsulating operating system (OS) interprocess com-
munication (IPC) mechanisms within object-oriented (OO)
C++ wrappers. These OS mechanisms include support for
both local-host IPC (such as semaphores; message queues;
shared memory; memory-mapped files; named, unnamed,
and STREAM pipes; and BSD UNIX-domain sockets) and
network IPC (such as remote procedure calls (RPC); BSD
Internet-domain sockets; and the System V Transport Layer
Interface (TLI)). The primary motivations for using C++
wrappers are (1) to simplify the development of correct, con-
cise, portable, and efficient applications and (2) to facilitate
the introduction of object-oriented design (OOD) and C++
into software development organizations. In addition to de-
scribing C++ wrappers, this series of articles also clarifies
the semantics of several advanced UNIX and Windows NT
IPC mechanisms.

This introductory article motivates the concept of C++
wrappers, describes the limitations of existing OS interfaces
that wrappers help to overcome, outlines the topics that will
appear in subsequent articles, defines relevant networking
and IPC terms (see Table 1), and summarizes the advantages
and disadvantages of using C++ as a systems programming
language for applications that utilize IPC mechanisms. Sub-
sequent articles examine several IPC mechanisms that ben-
efit from object-oriented encapsulation. For instance, the
next article in this series describes the object-oriented de-
sign and implementation of a network IPC interface known
as IPC SAP, which encapsulates the local and remote IPC
mechanisms available in the BSD socket and System V TLI
APIs. IPC SAP is currently being used in the ADAPTIVE
system, which is a flexible development and evaluation en-
vironment for producing customized lightweight transport-
layer communication protocols [1].

2 Systems Programming and IPC

Systems software programs (such as databases, window-
ing systems, network file servers, compilers, linkers, ed-
itors, and device drivers) typically access and manipulate
operating system resources such as I/O controllers and in-
formation located in data structures residing within an OS
kernel. As distributed computing become more prevalent, an
increasingly important class of OS system mechanisms in-
volve interprocess communication (IPC) withina single host,
as well as across networks and internetworks. IPC mecha-
nisms exchange different types of bytestream-oriented and
message-oriented data between processes that are executing
in different address spaces on the same and/or different host
machines. For example, Figure 1 illustrates a distributed
application that utilizes both local and remote IPC in a multi-
level client/server manner. In this scenario, application pro-
cesses (e.g., P1; P2; andP3) running on the client hostsA and
B send discrete messages to a local client daemon via named
pipes. In turn, each client daemon forwards these messages
to the remote daemon on a designated server host across the
network via TCP stream connections. The server receives the
messages and displays them on one or more output devices
(such as a printer, persistent storage device, or monitoring
console). Subsequent articles will address this client/server
architecture in greater detail using the Reactor I/O-based
and timer-based service multiplexing facility [2, 3].

2.1 Limitations with Existing Operating Sys-
tem Interfaces

Developing communication system software is difficult since
it requires detailed knowledge of many concepts such as (1)
network addressing and remote service identification, (2) cre-
ation, synchronization, and communication mechanisms for
processes and threads, (3) system call Application Program-
matic Interfaces (API)s for local and remote IPC, and (4)
presentation layer conversion techniques. Moreover, appli-
cations are often required to be efficient, functional, correct,
and portable across heterogeneous operating environments.
In addition, popular operating systems like UNIX, VMS,
and MVS were developed well before the advent of object-
oriented design and programming. This becomes evident

1

P1

P2

P3

LOCAL IPC
CLIENT

LOGGING

DAEMON

P1

P2

P3

LOCAL IPC
CLIENT

LOGGING

DAEMON

NETWORK
STORAGE

DEVICE

HOST A HOST BA B

SERVER LOGGING

DAEMON

SERVERCLIENT
HOST

A

REMOTE IPC

HOST
B

R
EM

O
TE

 IP
C

CLIENT

CONSOLE

PRINTER

Figure 1: A Local and Remote Interprocess Communication Scenario

after examining the format of system calls and standard li-
brary routines that comprise existing OS APIs for local and
remote IPC such as BSD sockets, System V Transport Layer
Interface (TLI), STREAM pipes and FIFOs. In general, these
APIs share several common problems:

� Lack of Type-Security: the UNIX and Windows NT
system call API identifies particular instances of I/O devices
(such as files, sockets, and terminals) using a common name-
space consisting of unsigned integer I/O descriptors. This
common descriptor name space is often considered a UNIX
“feature” since it increases application flexibility and inter-
operability. For example, application code that performs a
read() may be written identically regardless of whether
the underlying device is a disk file or a network connec-
tion. However, this degree of flexibility also allows subtle
errors to occur at run-time. For instance, I/O descriptors
are “weakly-typed” in the sense that disk file descriptors are
not syntactically distinguished from network connection de-
scriptors. Therefore, it is easy to use the wrong descriptors
in the wrong circumstances by accident. Moreover, while
I/O operations on devices may look superficially equivalent,
there may be additional semantics that have subtle differences
(such as the occurrence of “short reads” from network con-

nections due to flow control and/or OS buffering). Accidental
misuse of descriptors would be detected at compile-time if
the UNIX network IPC API enforced stronger type-checking.

� Steep Learning Curve: Many operating systems support
multiple protocol suites (such as TCP/IP and OSI protocols).
Moreover, the application-level APIs for these IPC mech-
anisms possess a general-purpose “one-size-fits-all” design
that uses the same interface for each protocol suite. This
results in a complex API that requires significant effort to
learn and use effectively. One consequence of this complex-
ity is that there is no clear association between certain related
system calls. For example, the BSD socket interface consists
of numerous system calls (e.g., socket(), listen(),
accept(), connect(), etc.). Since these system calls
do not follow any standard naming convention, however, it
is not immediately obvious that they are members of the same
related abstraction. Moreover, conventional OS APIs have
“linear,” single-level interfaces. This lack of hierarchical
structuring makes it difficult to determine which system calls
are naturally grouped together (such as which socket calls
are intended for client-side operations and which are used for
server-side operations).

2

Figure 2: Relationship of C++ Wrappers to Other Operating
System Components

� Non-Portability: It is often difficult to write portable
code that uses OS IPC mechanisms since there are several
competing “standards” to choose from, (i.e., BSD sockets
and System V UNIX TLI). This increases the complexity
of developing and maintaining application source code. For
example, achieving portability may require the use of con-
ditional compilation that is parameterized by the host OS
type.

On UNIX, the BSD socket and System V TLI APIs are se-
mantically similar since they both offer connection-oriented
and connectionless interfaces to the same protocol suites.
However, they are lexically and syntactically incompatible
since they possess different system call names that use differ-
ent calling interfaces. This often forces developers to either
(1) choose between the two APIs (which decreases applica-
tion portability between different variants of BSD and System
V UNIX) or (2) use conditional compilation that is param-
eterized by the host OS type (which increases the complex-
ity of developing and maintaining application source code).
This problem is solved to some extent in System V Release 4
since it supports both the System V and BSD APIs. However,
there are many operating system vendors and OS platforms
that have not upgraded.

� Non-Extensibility: Another limitation with existing OS
APIs is that it is difficult to specialize or generalize their func-
tionality without writing new code and/or modifying existing
application code. On the other hand, APIs that use object-
oriented features such as inheritance and dynamic binding
are typically easy to extended transparently [3]. Extensibil-
ity becomes particularly important when dealing with C++
wrapper that provide more complex semantics (such as event
multiplexing and multi-processing).

2.2 The C++ Wrapper Alternative

Switching to a consistently designed, strongly-typed, object-
oriented operating system (such as the Choices OS from Uni-
versity of Illinois [4]) helps ameliorate some of the problems
described in the preceding section. However, adopting a
completely different OS is often impractical, due to factors
such as the lack of application portability, platform avail-
ability, and user and developer familiarity. A more realistic
alternative is to develop object-oriented interfaces that en-
capsulate existing OS mechanisms.

Due to the efficiency and availability of C++, it makes
sense to encapsulate these existing interfaces within C++
classes and inheritance hierarchies. Developing distributed
applications based upon C++ wrappers helps improve soft-
ware quality factors such as correctness, ease of learning
and ease of use, portability, and extensibility. In addition, it
also serves as an effective method for introducing C++ and
object-oriented design (OOD) into software development or-
ganizations.

OS KERNEL

PROTOCOL MECHANISMS

(TCP/IP, OSI, ETC.)

USER

SPACE

DISTRIBUTED

APPLICATION 1
APPLICATION1 DISTRIBUTED

APPLICATION 3
APPLICATION3DISTRIBUTED

APPLICATION 2
APPLICATION2

KERNEL

SPACE

BSD SOCKET

API

COMMON INTERFACE

(PARAMETERIZED TYPES)

BSD SOCKET

API

SOCK_SAP

BSD SOCKET

API

SYSTEM V

TLI API

TLI_SAP

NETWORK

INTERFACE

Figure 3: Using C++ Wrappers to Increase Portability

Figure 2 illustrates how C++ wrappers interact with (1)
user applications and (2) the OS system call interfaces and
kernel mechanisms (such as local and remote IPC, various
types of file systems, and other I/O devices, etc.). In this
approach, applications use C++ wrappers to access these
mechanisms via type-secure, object-oriented class interfaces,
rather than through the weakly-typed C language API. As
shown in the figure, it is still possible to access the underlying
API directly if necessary (e.g., when interfacing application
code with existing “non-wrapped” C library routines and
system calls).

In general, C++ wrappers are designed to reduce the com-
plexity of systems software development without compro-
mising application performance. For example, the wrappers
discussed in this series are implemented using C++ language
features (such as inline functions) that minimize or even elim-
inate the performance overhead incurred by this additional
“object-oriented layer of abstraction.” In particular, inline
functions avoid making an extra function call for each access
to an underlying OS system call or library routine.

2.3 Benefits of C++ Wrappers

My Ph.D. research project focuses on a framework for de-
veloping and experimenting with alternative process archi-
tectures for shared memory, symmetric multi-processor plat-
forms [5]. One portion of this project is the ADAPTIVE
Communication Environment (ACE) [6], which is a collec-
tion of C++ wrappers that encapsulate existing OS mecha-
nisms for local and remote IPC such as sockets, select(),
message queues, shared memory, semaphores, and remote
procedure calls. The ACE C++ wrappers improve several
software quality factors:

� Correctness: Wrappers improve the type-security of
higher-level system programs and application code. For in-

3

stance, applications need not access the weakly-typed, lower-
level C system call interfaces directly. Instead, they may use
the strongly-typed OO wrapper interfaces that detect type
errors at compile-time rather than run-time. This, in turn,
reduces a common source of subtle system programming er-
rors.

� Ease of Learning and Ease of Use: Wrappers may be
used to impose a hierarchical structure over an existing non-
hierarchical API such as BSD sockets. Hierarchical APIs are
typically easier to learn since their structure indicates closely
related operations (such as client vs. server operations or
local vs. remote operations). In addition, wrappers encap-
sulate many subtle and error-prone network programming
details (such as network byte-ordering and host/service ad-
dressing) by (1) utilizing default values to simplify the inter-
faces for common usage patterns and (2) combining multiple
functions that commonly occur together to form a single en-
try point. Providing simpler and more compact interfaces
allows developers to concentrate on designing and imple-
menting applications, instead of wrestling with the low-level
details of the underlying networking code.

� Portability: Wrappers also improve application portabil-
ity. For example, Figure 3 depicts how the IPC SAP API
(described in [7]) provides a portable veneer for many ser-
vices offered in common by both BSD sockets and System V
TLI. Application programs may then be written using a sin-
gle object-oriented API, which is mapped transparently onto
the appropriate system calls that access the particular under-
lying OS mechanisms. Note that a consistent API alone does
not guarantee interoperability in an environment consisting
of heterogeneous hosts and networks. In particular, interop-
erability is primarily a function of the underlying protocols
and the semantics of the OS communication mechanisms.
However, as shown in Figure 3, the core OS kernel protocol
mechanisms such as TCP/IP are semantically compatible.
Therefore, the primary interoperability problems arise from
the lexical and syntactic diversity of the various APIs.

� Extensibility: When combined with C++ language fea-
tures (such as inheritance, dynamic binding, and templates),
the wrappers methodology also helps improve the extensi-
bility of the existing OS interfaces. This is accomplished by
carefully separating application policies from the network-
ing and operating system mechanisms. The goal is to allow
applications to extend the original APIs without modifying
the design or implementation of the existing wrapper infras-
tructure [3].

This series of articles on C++ wrappers is intended to (1)
increase software developers’ knowledge of available UNIX
IPC mechanisms, (2) describe an object-oriented method-
ology for designing and implementing distributed applica-
tions, and (3) present a strategy for organizations to migrate
to OOD and C++. Many developers are not fluent with ad-
vanced UNIX IPC mechanisms such as System V IPC (i.e.,
shared memory, message queues, and semaphores), the BSD

socket interface to Internet- and UNIX-domain communica-
tion mechanisms, System V Transport Layer Interface (TLI),
and Sun’s RPC mechanisms. One reason for this general
lack of fluency stems from the difficulty of understanding
and using the advanced IPC mechanisms properly. Diffi-
culties arise both from inadequate documentation, as well
as from the complexity of the existing non-object-oriented
IPC system call interfaces. For example, it is difficult to
understand and use System V semaphores correctly since the
API is quite general and sparsely documented [8]. The C++
wrapper semaphore interface developed for the ACE, on the
other hand, shields developers from a myriad of unnecessary
details. In particular, it is far more intuitive and simple to use
the C++ wrapper version for applications that only require
the standard P (wait) and V (signal) semaphore operations.

3 Integrating OOD and C++ into an
Organization

Many software development organizations are planning to
migrate their projects and products to use OOD and C++ in
the near future. Their objective is typically to improve soft-
ware quality factors such as portability, reusability, correct-
ness, extensibility, and maintainability. However, there are
several challenges to consider when making this transition.
For example, designers and programmers must learn to use
object-oriented methods and C++ effectively. The difficulty
of this transition depends on the developers’ prior level of
expertise and the organization’s commitment to training and
education. Another challenge is to determine how to leverage
off the large base of existing non-object-oriented library code
and system software. For example, it is often impractical to
rewrite all the existing code (which is often written in C) in
C++. In addition, an organization must carefully select a suit-
able environment that enables portable development of C++
applications. This is particular important if multiple plat-
forms (such as PCs and various workstation vendors) must
be supported.

Based on my experience as a OOD/C++ developer and
trainer during the past several years, I have found that de-
vising C++ wrappers for existing OS mechanisms is an ef-
fective way to address all these challenges. In general, cre-
ating wrappers helps developers gain experience with OOD
principles and techniques and C++ language features in an
incremental, evolutionary manner. For example, a daunting
challenge facing many novice object-oriented designers is
determining how to decompose a particular problem domain
intoa suitable class hierarchy (e.g., how to structure the linear
BSD socket interface into a hierarchically structured object-
oriented API). A wrapper-based training methodology helps
to refine developers’ skills by teaching them how to identify
related classes of behavior and reorganize existing system
components into more modular C++ class hierarchies.

In addition to helping developers gain confidence in their
object-oriented abilities, C++ wrappers also leverage off the

4

existing base of library code and systems software. By di-
rectly reusing implementations of non-object-oriented APIs
and mechanisms, developers avoid becoming mired in com-
plex, lower-level implementation details. Instead, they are
free to concentrate on higher-level object-oriented design
principles and class composition/decomposition issues.

Finally, developing C++ wrappers produces a suite of
reusable abstractions that provide a solid foundation for sub-
sequent projects. These projects may then use the evolving
object-oriented infrastructure as the basis for writing applica-
tions entirely in C++. Moreover, if the wrappers are carefully
designed and implemented, it is possible to port them be-
tween different C++ development environments with a min-
imal amount of effort.

4 Definitions and Future Directions

Table 1 defines key OS and networking terms used
throughout the series of articles. The followingis a list of top-
ics that will be used to illustrate the C++ wrapper technique
during upcoming issues of the C++ Report:

� Local and remote connection-oriented and connection-
less IPC primitives such as socket-based and TLI-based
network IPC

� I/O-based and timer-based event-driven port multiplex-
ing and service dispatching mechanisms such as BSD
select() and System V poll()

� Message-Oriented UNIX IPC mechanisms such as
System V message queues, named pipes, and
STREAM pipes

� Shared memory mechanisms such as System V shared
memory and the BSD mmap() family of functions that
support shared memory via a “memory-mapped file”
abstraction.1

� System V Semaphores

� Remote Procedure Calls (RPCs)

� Explicit dynamic linking [9] facilities that enable the
development of dynamically configured, multi-service
network daemons

� The ADAPTIVE Service eXecutive (ASX), which pro-
vides a framework for developing and configuring con-
current stackable subservices

� The “distributed rwho” (drwho) integration frame-
work, which extends and improves the functionality of
the rwhod family of monitoring services (e.g., rwho,
rusers, and ruptime)

In general, appropriate candidates for C++ wrapper en-
capsulation are those OS mechanisms that are accessed via
a “family” of system calls. In a certain sense, the existing

1This abstraction exports the OS kernel’s virtual memory mechanisms
to application programs, allowing them to map files residing in secondary
storage into one or more process address spaces.

system calls in a given family already represent the “member
functions.” However, using C++ wrappers helps to clarify
the relationship between the various system calls.

5 Design Principles

Several general design principles guide the development of
all the C++ wrappers presented in the subsequent articles:

1. Make it easy to use the underlying OS IPC mechanisms
correctly, hard to use them incorrectly, but not impos-
sible to use them in ways the class designers did not
anticipate originally.

2. Provide developers with precisely the service interfaces
they need, without burdening them with overly-general
interfaces that contain many extraneous features their
applications do not require. However, build the object-
oriented API with extensibility and compatibility in
mind.

3. Avoid adding extra performance overhead to the original
C API. For example, the extra layer of abstraction added
by C++ wrappers should not result in increased function
call overhead. Developers are more likely to utilize the
type-secure, well-structured OO abstractions if they do
not impose any measurable performance overhead.

Accomplishing this latter performance goal involves the lib-
eral use of inline functions. Since each member function in
a wrapper class is generally quite short this does not lead
to a significant amount of “code bloat.” In addition, vir-
tual functions are used sparingly in certain wrapper designs,
since they typically incur additional run-time overhead. This
is particularly important for wrappers such as IPC SAP that
provide only a “thin” OO veneer over the existing system
call APIs. More sophisticated wrappers typically supply a
sufficient amount of additional functionality that the amount
of performance degradation may be insignificant by compar-
ison.

6 Advantages and Disadvantages of
C++

Each article also addresses certain advantages and disadvan-
tages of using C++ as a systems programming language.
While it is possible to develop portable wrappers for many
of the IPC mechanisms described above using the C pro-
gramming language, several distinct advantages accrue from
using C++:

� Classes encourage modular APIs that simplify the de-
velopment of portable and type-secure code.

� Parameterized types increase the reusability of the C++
class components.

� Inheritance and dynamic binding increases sharing,
reusability, and extensibility of API components.

5

Term Definition

API (Application An abstract interface used by applications to access the services and protocols provided by
Programmatic Interface) the underlying operating system and standard system libraries.
BSD Socket Layer The API between user applications and the BSD networking subsystem in the OS kernel.
Daemon An OS process that runs continuously “in the background” performing various services for clients.
Gateway A hardware or software device that routes packets between networks.
Host An addressable computer “end-system” attached to a network
Internetwork A “network of potentially heterogeneous networks.”
Internet A network of interconnected networks using TCP/IP
Internet Protocol A network layer (i.e., OSI layer 3) protocol that performs segmentation, reassembly,
(IP) and routing of packets.
IPC (Interprocess A set of mechanisms that exchange data and control information between separate processes
Communication) on local and/or remote hosts.
Network A collection of host computers and the transmission media connecting the computers.
Operating System A collection of basic operating system services (e.g., process management, virtual memory,
Kernel and low-level IPC).
PDU A “protocol data unit,” (often called a “packet”) exchanged via IPC
Process A program that is being executed by a host computer.
Protocol A set of rules governing how two or more processes cooperate to exchange data.
Protocol Stack An abstraction expressing hierarchical relations between protocols in one or more protocol suites
Protocol Suite A collection of related protocols (e.g., the Internet or OSI protocol suite).
rwhod Services Programs utilizing the rwhod database to monitor and report remote host and user status.
Service A collection of related operations that are exported to user applications and/or higher-layer services
Subnet A logical or physical subcomponent of a larger network. Subnets are often created to simplify

network administration, security, and/or routing.
Transmission Control A connection-oriented transport protocol that reliably exchanges byte-streams of data in-order
Protocol and un-duplicated between a local and remote process.
User Datagram An unreliable, connectionless transport protocol that exchanges datagrams between local and
Protocol (UDP) remote processes.

Table 1: Definitions for Common Networking and IPC Terms

� Default values simplify the calling interfaces for com-
mon API usage patterns.

� Inline functions eliminate overhead and enhance both
abstraction and efficiency.

� The “external linkage” feature (i.e., extern "C")
greatly improves inter-language interoperability and
reuse of object code.

There are several disadvantages with using C++ (as it is
currently defined). One is its lack of support for exception
handling. This would be very useful for dealing with initial-
ization failures in constructors. Without exception handling,
it is difficult to propagate constructor failures up to an ob-
ject’s instantiation (since C++ constructors are not permitted
to return error codes). A short-term workaround for the lack
of exception handling is to (1) use default constructors that
perform no work and (2) define and use open() member
functions, which do return error codes if problems arise dur-
ing initialization. However, this solution compromises type-
security, since member functions may be called by mistake
before the object is constructed properly. A widely-available,
standardized exception handling mechanism should help this
problem considerably.

Another annoying development problem is the amount of
time that most C++ compilers require to instantiate templates.
Template instantiationoccurs at link-timeand generally more
than doubles or triples build time for large projects. More-
over, combining templates with shared libraries on certain
OS platforms is rather tricky. A final problem is the lack
of a standard language definition. When combined with the

general lack of portability at the systems programming level,
this make it difficult to easily port C++ code between OS
platforms.

7 Summary

Developing C++ wrappers for existing OS IPC mecha-
nisms helps to simplify the development of correct, con-
cise, portable, and efficient distributed applications. C++
wrappers are also an effective method for introducing object-
oriented design (OOD) and C++ into software development
organizations. Subsequent articles will discuss examples of
C++ wrappers in greater detail.

References

[1] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Flex-
ible and Adaptive Transport System Architecture to Support
Lightweight Protocols for Multimedia Applications on High-
Speed Networks,” in Proceedings of the 1st Symposium on
High-Performance Distributed Computing (HPDC-1), (Syra-
cuse, New York), pp. 174–186, IEEE, September 1992.

[2] D. C. Schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX I/O Multiplexing (Part 1 of 2),” C++
Report, vol. 5, February 1993.

[3] D. C. Schmidt, “The Object-Oriented Design and Implementa-
tion of the Reactor: A C++ Wrapper for UNIX I/O Multiplexing
(Part 2 of 2),” C++ Report, vol. 5, September 1993.

6

[4] R. Campbell, V. Russo, and G. Johnson, “The Design of a Mul-
tiprocessor Operating System,” in Proceedings of the USENIX
C++ Workshop, pp. 109–126, USENIX Association, Novem-
ber 1987.

[5] D. C. Schmidt and T. Suda, “ADAPTIVE: A Framework for Ex-
perimenting with High-Performance Transport System Process
Architectures,” in Proceedings of the 2nd International Con-
ference on Computer Communication Networks, (San Diego,
California), ISCA, June 1993.

[6] D. C. Schmidt, “The ADAPTIVE Communication Environ-
ment: An Object-Oriented Network Programming Toolkit for
Developing Communication Software,” in Proceedings of the
12th Annual Sun Users Group Conference, (San Jose, CA),
pp. 214–225, SUG, Dec. 1993.

[7] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[8] W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[9] W. W. Ho and R. Olsson, “An Approach to Genuine Dynamic
Linking,” Software: Practice and Experience, vol. 21, pp. 375–
390, Apr. 1991.

7

