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Abstract

gperf is a “software-tool generating-tool” designed to au-
tomate the generation of perfect hash functions. This paper
describes the features, algorithms, and object-oriented design
and implementation strategies incorporated ingperf. It also
presents the results from an empirical comparison between
gperf-generated recognizers and other popular techniques
for reserved word lookup. gperf is distributed with the
GNU libg++ library and is used to generate the keyword
recognizers for the GNU C and GNU C++ compilers.

1 Introduction

Perfect hash functions are a time and space efficient imple-
mentation of static search sets, which are ADTs with oper-
ations like initialize, insert, and retrieve. Static search sets
are common in system software applications. Typical static
search sets include compiler and interpreter reserved words,
assembler instruction mnemonics, and shell interpreter built-
in commands. Search set elements are called keywords. Key-
words are inserted into the set once, usually at compile-time.
gperf is a freely available perfect hash function genera-

tor written in C++ that automatically constructs perfect hash
functions from a user-supplied list of keywords. It was de-
signed in the spirit of utilities like flex, lex [1] and yacc
[2] to remove the drudgery associated with constructing time
and space efficient keyword recognizers by hand. gperf
translates an n element user-specified keyword list (called
the keyfile) into source code containing a k element lookup
table and a pair of functions, phash and in word set.
phash uniquely maps keywords in keyfile onto the range
0..k�1, where k � n. If k = n, then phash is considered a
minimal perfect hash function. in word set uses phash
to determine whether a particular string of characters occurs
in the keyfile, using at most one string comparison.
gperf is designed to run quickly for keyword sets up to

approximately 1,000 keys. In addition, the data structures

and algorithms described below enable gperf to operate
on keyword sets containing over 15,000 keywords. gperf
generates efficient ANSI and K&R C, C++, or Ada source
code as output. It has been used to generate reserved keyword
recognizers in lexical analyzers for several production and
research compilers and language processing tools, including
GNU C, GNU C++, GNU Pascal, GNU Modula 3, and GNU
indent [3].

This paper is organized as follows: Section 2 describes
various static search set implementations and compares them
against gperf-generated hash tables; Section 3 presents a
sample input keyfile; Section 4 highlights important design
and implementation issues; Section 5 shows the results from
empirical benchmarks between gperf-generated recogniz-
ers and other popular techniques for reserved word lookup;
Section 6 outlines the limitations with the current version of
gperf; and Section 7 presents concluding remarks.

2 Static Search Set Implementations

There are numerous implementations of static search sets.
Common examples include sorted and unsorted arrays and
linked lists, AVL trees, optimal binary search trees, digi-
tal search tries, deterministic finite-state automata, and vari-
ous hash table schemes, such as open addressing and bucket
chaining [4].

Different implementations offer trade-offs between mem-
ory utilization and search time efficiency. For example, an n
element sorted array is space efficient, though the average-
and worst-case time complexity for retrieval operations using
binary search on a sorted array is proportional to O(logn)
[4]. Conversely, chained hash table implementations locate a
table entry in constant, i.e., O(1), time on the average. How-
ever, they typically impose additional memory overhead for
link pointers and/or unused hash table buckets and also ex-
hibitO(n2) worst-case performance [4].

A minimal perfect hash function is a static search set im-
plementation defined by two properties:

� The Perfect Property : locating a table entry requires
O(1) time, i.e., at most one string comparison is required to
perform keyword recognition within the static search set.
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� The Minimal Property : the memory allocated to store
the keywords is precisely large enough for the keyword set
and no larger.

Minimal perfect hash functions provide a theoretically op-
timal time and space efficient solution for static search sets
[4]. However, several variations are also useful for many
practical hashing applications,especially ones involving hun-
dreds or thousands of keywords:

� Non-Minimal Perfect Hash Functions : These func-
tions do not possess the minimal property, since they return a
range of hash values larger than the total number of keywords
in the table. However, they do possess the perfect property,
since at most one string comparison is required to determine
if a string is in the table. There are two main reasons for
generating non-minimal hash functions:

1. Generating non-minimal perfect functions may be sub-
stantially faster than generating minimal perfect hash
functions [5, 6].

2. Non-minimal perfect hash functions may also execute
faster than minimal ones when searching for elements
that are not in the table. This situationoften occurs when
recognizing reserved words in program source code [7].

�Near-Perfect Hash Functions : Near-perfect hash func-
tions do not possess the perfect property, since they allow
non-unique keyword hash values [8] (they may or may not
possess the minimal property, however). This technique is a
compromise that trades increased generated-code-execution-
time for decreased function-generation-time. Near-perfect
hash functions are useful when main memory is at a premium,
since they tend to produce much smaller lookup tables.

gperf has command-line options that instruct it generate
minimal perfect, non-minimal perfect, and near-perfect hash
functions.

3 Interacting with GPERF

gperf reads a keyword list and optional associated at-
tributes from a keyfile or from the standard input. Keywords
are specified as arbitrary character strings delimited by a
user-specified field separator defaulting to ’,’ (i.e., key-
words may contain spaces and any other ASCII characters).
Associated attributes may be any C literals. For example,
keywords in Figure 1 represent months of the year. Asso-
ciated attributes in this figure include the number of leap
year and non-leap year days in each month, as well as the
months’ ordinal numbers, i.e., january = 1, february = 2, : : : ,
december = 12.
gperf’s input format is structurally similar to the UNIX

utilities lex and yacc. It uses the following input format:

declarations and text inclusions
%%
keywords and optional attributes
%%
auxiliary code

%{
#include <stdio.h>
#include <string.h>
/* Command-line options:

-C -p -a -n -t -o -j 1 -k 2,3
-N is_month */

%}
struct months {
char *name;
int number;
int days;
int leap_days;

};
%%
january, 1, 31, 31
february, 2, 28, 29
march, 3, 31, 31
april, 4, 30, 30
may, 5, 31, 31
june, 6, 30, 30
july, 7, 31, 31
august, 8, 31, 31
september, 9, 30, 30
october, 10, 31, 31
november, 11, 30, 30
december, 12, 31, 31
%%
/* Auxiliary code goes here... */
#ifdef DEBUG
int main () {
char buf[BUFSIZ];
while (gets (buf)) {

struct months *p = is_month (buf, strlen (buf));
printf ("%s is%s a month\n",

p ? p->name : buf, p ? "" : " not");
}

}
#endif

Figure 1: An Example Keyfile for Months of the Year

A pair of consecutive% symbols in the first column separate
declarations from the list of keywords and their optional
attributes. C, C++, or Ada source code and comments are
included verbatim into the generated output file by enclosing
the text inside%{ %} delimiters (which are stripped off when
the output file is generated), e.g.:

%{
#include <stdio.h>
#include <string.h>
/* Command-line options:

-C -p -a -n -t -o -j 1 -k 2,3
-N is_month */

%}

An optional user-supplied struct declaration may be
placed at the end of the declaration section, just before the%%
separator. This feature enables typed attribute initialization.
In Figure 1, for example, struct months is defined to
have four fields that correspond to the initializer values given
for the month names and their respective associated values,
e.g.:

struct months {
char *name;
int number;
int days;
int leap_days;

};
%%
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Lines containing keywords and associated attributes ap-
pear in the “keywords and optional attributes” section of the
keyfile. The first field of each line always contains the key-
word itself, left-justified against the first column and with-
out surrounding quotation marks. Any additional attribute
fields follow the keyword. Attributes are separated from the
keyword and from each other by field separators, and they
continue up to the “end-of-line marker” (which is the newline
character (’\n’) by default). The attribute field values are
used to initialize components of the user-supplied struct
appearing at the end of the declaration section, e.g.:

january, 1, 31, 31
february, 2, 28, 29
march, 3, 31, 31
...

As with lex and yacc, it is legal to omit the initial
declaration section entirely. In this case, the keyfile begins
with the first non-comment line (lines beginning with a ‘#’
character are treated as comments and ignored). This format
style is useful for building keyword set recognizers that do not
possess any associated attributes. For example, a perfect hash
function for “frequently occurring English words” efficiently
filters out uninformative words such as “the,” “as,” and “this,”
etc. from consideration in a “key-word-in-context” indexing
application [4].

Again, as with lex and yacc, all text in the optional
third “auxiliary code” section is included verbatim into the
generated output file, starting immediately after the final %%
and extending to the end of the keyfile. It is the user’s
responsibility to ensure that the inserted code is valid (e.g.,
C, C++, Ada, etc.). In Figure 1 example, this “auxiliary”
code provides a test driver that is conditionally compiled if
the DEBUG symbol is enabled when compiling the generated
C or C++ code.

4 Design and Implementation Issues

Many articles describe perfect hashing [9, 6, 10, 11] and
minimal perfect hashing algorithms [7, 12, 5, 13, 14]. Few
articles, however, describe the design and implementation
of a general-purpose perfect hashing generator tool in detail
[15]. This section describes the data structures, algorithms,
output format, and reusable components.
gperf is written in approximately 4,500 lines of C++

source code. C++ was chosen as the implementation lan-
guage since it supports data abstraction and information hid-
ing better than C, while still maintaining C’s efficiency and
expressiveness [16].
gperf’s three main phases for generating a perfect or

near-perfect hash function are:

1. Process command-line options, read keywords and at-
tributes (the input format is described in Section 3),
and initialize internal data structures (described in Sec-
tion 4.1).

2. Perform a non-backtracking, heuristically guided search
for a perfect hash function (described in Section 4.2.1
and Section 4.2.2 below).

3. Generate formatted C, C++, or Ada code according to
the command-line options (output format is described
in Section 4.3 below).

The followingsection outlinesgperf’s perfect hash func-
tion generation algorithms and internal data structures, ex-
amines its generated source code output, describes several
reusable class components, and discusses the program’s cur-
rent limitations.

4.1 Internal Data Structures

gperf’s implementation involves two important internal
data structures: keyword signatures and the associated values
array.

4.1.1 Keyword Signatures

Every user-specified keyword and its attributes are read from
the keyfile and stored in a node on a linked list. gperf
only considers a subset of each keywords’ characters while
searching for a perfect hash function solution. The subset
is called the “keyword signature,” or keysig. The keysig
represents the particular subset of characters used by the
automatically generated recognition function to compute a
keyword’s hash value. Keysigs are created and cached in
each linked list node when the keyfile is initially processed.

4.1.2 Associated Values Array

The associated values array is a data structure closely re-
lated to keysigs. In fact, it is indexed by keysig charac-
ters. The array is constructed internally by gperf and
referenced frequently during gperf’s execution. During
the generation process an ASCII representation of the as-
sociated array is output in the generated hash function as
a static local array. This array is declared as u int
asso values[MAX ASCII SIZE]. When searching for
a perfect hash function solution,gperf repeatedly reassigns
different values to certain asso values elements speci-
fied by keysig entries. At every step during the search for the
perfect hash function solution, the asso values array’s
contents represent the current associated values’ configura-
tion.

By default, gperf searches for an associated values con-
figuration that maps all n keysigs onto non-duplicated hash
values. A perfect hash function is produced when gperf
finds a configuration that assigns each keysig to a unique loca-
tion within the generated lookup table. The resulting perfect
hash function returns an unsigned int value in the range
0::(k� 1), where k = (maximum keyword hash value +

1). When k = n a minimal perfect hash function is pro-
duced; for k larger than n, the lookup table’s load factor is
n

k
(number of keywords

total table size
).
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Keyword Keysig Hash Value
january an 3
february be 9
march ar 4
april pr 2
may ay 8
june nu 1
july lu 6
august gu 7
september ep 0
october ct 10
november ov 11
december ce 5

Table 1: Keywords, Keysigs, and Hash Values for the Months
Example

A keyword’s hash value is computed by combining the
associated values of its keysig with its length (the ‘-n’
option instructsgperf not include the length of the keyword
when computing the hash function). By default, the hash
function adds the associated value of a keyword’s first index
position plus the associated value of its last index position to
its length, i.e.:

hash_value =
asso_values[keyword[0]]
+ asso_values[keyword[length - 1]]
+ length;

Other combinations are often necessary in practice. For ex-
ample, using this default scheme for C++ causes a collision
between the delete and double reserved words. Resolv-
ing this collision and generating a perfect hash function for
C++ reserved words requires adding an additional charac-
ter to the keysig via the ‘-k’ command-line option with
parameters

hash_value =
asso_values[keyword[0]]
+ asso_values[keyword[1]]
+ asso_values[keyword[length - 1]]
+ length;

Users use the ‘-k’ option to control the generated hash
function’s contents by explicitly specifying the keyword in-
dex positions to use as keysig elements. The default is ‘-k
1,$’, where the ’$’ represents the keyword’s final char-
acter. Keysigs are multisets since they may contain multiple
occurrences of certain characters. This approach differs from
other perfect hash function methods, where only the key-
word’s first and last characters, plus its length, are examined
when computing the hash value [7].

The generated hash function properly handles keywords
shorter than a specified index position by skipping characters
that exceed the keyword’s length. Users may also instruct
gperf to include all of a keyword’s characters in its keysig
via the ‘-k*’ option. Table 1 shows the keywords, keysigs,
and hash value for each month shown in the Figure 1 keyfile.

for i  1 to n loop
if phash (ith key) collides with any phash (1st key ... (i� 1)st key)
then

modify disjoint union of associated values to resolve collisions
based upon certain collision resolution heuristics

end if
end loop

Figure 2: Gperf’s Main Algorithm

4.2 Perfect Hash Function Generation

This subsection gives a detailed description of gperf’s non-
backtracking search algorithm.

4.2.1 Main Algorithm

gperf iterates sequentially through the list of i keywords
(1 � i � n), where n equals the total number of keywords.
During each iteration gperf attempts to extend the set of
uniquely mapped keywords by 1. It succeeds if the hash value
computed for keyword i does not collide with the previous
i� 1 uniquely hashed keywords, as shown in Figure 2.
The algorithm terminates and generates a perfect hash func-
tion when i = n and no unresolved hash collisions remain.
The best-case asymptotic time-complexity for this algorithm
is linear in the number of keywords, i.e., Ω(n).

4.2.2 Collision Resolution Strategies

Disjoint Union As outlined in Figure 2 above, gperf
attempts to resolve keyword hash collisions by modifying
certain associated values. To avoid performing unnecessary
work, gperf is selective when changing associated values.
It only considers characters comprising the disjoint union of
the colliding keywords’ keysigs. The disjoint union of two
keysigs fAg and fBg is defined as fA [ Bg � fA \ Bg.
Note that no other associated values will resolve the collision
at this point.

For instance, the keywords january and march
have the keysigs ‘an’ and ‘ar’, respectively (see Ta-
ble 1). A collision occurs during gperf’s execution
when asso values[’a’], asso values[’n’], and
asso values[’r’] all equal 0 (note that since the ‘-n’
option is used, the different keyword lengths are not consid-
ered in the resulting hash function). When gperf resolves
this collision it only considers changing the associated values
for ’n’ and/or ’r’. Changing ’a’ by any increment will
not resolve the collision, since ’a’ occurs the same number
of times in each keysig.

By default, all asso values are initialized to 0, and
when a collision is detected gperf increments the se-
lected associated value by 5. The command-line option
‘-j’ may be used to increment by a random amount
or by any fixed amount. In the months example, the
‘-j 1’ option was used, so gperf quickly resolves the
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Keysig Associated Frequency of
Characters Values Occurrence

’a’ 2 3
’b’ 9 1
’c’ 5 2
’e’ 0 3
’g’ 7 1
’l’ 6 1
’n’ 1 2
’o’ 1 1
’p’ 0 2
’r’ 2 2
’t’ 5 1
’u’ 0 3
’v’ 0 1
’y’ 6 1

Table 2: Associated Values and Occurrences for Keysig Char-
acters

collision between january and march by incrementing
asso value[’n’] by 1 (which also turns out to be its
final value, as shown in Table 1).

Heuristics As a heuristic, characters in the disjoint union
are sorted by increasing frequency of occurrence, so that
less frequently used characters are changed before more fre-
quently used characters. The assumption here is that chang-
ing less frequently used characters first decreases the negative
impact on keywords that are already uniquely hashed with
respect to each other. Table 2 shows the associated values
and frequency of occurrences for all the keysig characters in
the months example.

A perfect hash function is achieved if the systematic
changes to the associated values configuration described in
the previous paragraph eliminate all keyword collisions upon
reaching the end of the keyword list. The worst-case asymp-
totic time-complexity for this algorithm is O(n3l), where l

is the number of characters in the largest disjoint union be-
tween colliding keyword keysigs. After experimenting with
gperf on many keyfiles it appears that such worst-case be-
havior occurs rarely in practice.

Many perfect hash function generation algorithms are sen-
sitive to the order that keywords are considered [5, 6]. If
the‘-o’ command-line option is enabled, gperfmitigates
this effect by optionally reordering the keywords before in-
voking the main algorithm. This reordering is done in a two
stage pre-pass that applies two common heuristics described
by Cichelli. First, the keyword list is sorted by decreas-
ing frequency of keysig characters’ occurrence. The second
reordering pass then places keys with “already determined
keysig values” earlier in the keylist.

These two heuristics potentially prune the search space
by handling inevitable collisions early in the generation pro-
cess. gperf will run faster on many keyword sets and
often decrease the perfect hash function range if it is able

to resolve these collisions quickly by changing the appro-
priate associated values. On the other hand, if the number
of keywords is large and the user wishes to generate a near-
perfect hash function, this reordering sometimes increases
gperf’s execution time, since collisions begin earlier and
frequently persist throughout the remainder of keyword pro-
cessing. Additional details and rationalizations for these
reordering heuristics are discussed in [7, 8].

4.3 Output Format

Figure 3 depicts the C code produced from the gperf-
generated minimal perfect hash function corresponding to the
keyfile depicted in Figure 1. Execution time was negligible
on a Sun 4/260, i.e., 0.0 user and 0.0 system time. The
following section uses portions of this code as a working
example to illustrate various aspects of gperf’s output.

4.3.1 Generated Symbolic Constants

gperf’s output contains seven symbolic constants that sum-
marize the results of applying the algorithm in Figure 3 to
the keyfile, e.g.:

enum {
TOTAL_KEYWORDS = 12,
MIN_WORD_LENGTH = 3,
MAX_WORD_LENGTH = 9,
MIN_HASH_VALUE = 0,
MAX_HASH_VALUE = 11,
HASH_VALUE_RANGE = 12,
DUPLICATES = 0

};

gperf produces a minimal perfect hash function
when HASH VALUE RANGE = TOTAL KEYWORDS and
DUPLICATES = 0. A non-minimal perfect hash function
occurs when DUPLICATES = 0 and HASH VALUE RANGE
> TOTAL KEYWORDS. Finally, a near-perfect hash func-
tion occurs when DUPLICATES > 0 and DUPLICATES�
TOTAL KEYWORDS.

4.3.2 The Generated Lookup Table

When given a keyfile as input, gperf attempts to generate a
perfect hash function that uses at most one string comparison
to recognize keywords in the lookup table. gperf produces
a lookup table called asso values, shown in the phash
function in Figure 3. The asso values array is used by
the two generated functions that compute hash values and
perform table lookup.

The lookup table is implemented by either an array or
a switch statement (note, the generated Ada code uses a
case statement rather than a switch statement). An ar-
ray is generated by default, emphasizing run-time speed over
minimal memory utilization. However, there are command-
line options that allow trading-off memory for execution-
time. For example, expanding the range of hash values pro-
duces a sparser lookup table. This generally yields faster
keyword searches but requires additional memory.
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#include <stdio.h>
#include <string.h>
/* Command-line options:

-C -p -a -n -t -o -j 1 -k 2,3
-N is_month */

struct months {
char *name;
int number;
int days;
int leap_days;

};

enum {
TOTAL_KEYWORDS = 12,
MIN_WORD_LENGTH = 3,
MAX_WORD_LENGTH = 9,
MIN_HASH_VALUE = 0,
MAX_HASH_VALUE = 11,
HASH_VALUE_RANGE = 12,
DUPLICATES = 0

};

static unsigned int
phash (const char *str, int len)
{
static const unsigned char asso_values[] =
{
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 2, 9, 5,
12, 0, 12, 7, 12, 12, 12, 12, 6, 12,
1, 11, 0, 12, 2, 12, 5, 0, 0, 12,

12, 6, 12, 12, 12, 12, 12, 12,
};
return asso_values[str[2]] + asso_values[str[1]];

}

const struct months *
is_month (const char *str, int len)
{
static const struct months wordlist[] =
{
{"september", 9, 30, 30},
{"june", 6, 30, 30},
{"april", 4, 30, 30},
{"january", 1, 31, 31},
{"march", 3, 31, 31},
{"december", 12, 31, 31},
{"july", 7, 31, 31},
{"august", 8, 31, 31},
{"may", 5, 31, 31},
{"february", 2, 28, 29},
{"october", 10, 31, 31},
{"november", 11, 30, 30},

};
if (len <= MAX_WORD_LENGTH

&& len >= MIN_WORD_LENGTH) {
int key = phash (str, len);
if (key <= MAX_HASH_VALUE

&& key >= MIN_HASH_VALUE) {
char *s = wordlist[key].name;
if (*str == *s

&& !strcmp (str + 1, s + 1))
return &wordlist[key];

}
}
return 0;

}

Figure 3: Minimal Perfect Hash Function Generated by
gperf

The array-based method works best when the
HASH VALUE RANGE is not considerably larger than the
TOTAL KEYWORDS. When there are a large number of key-
words, and an even larger range of hash values, however, the
wordlist array in is month function in Figure 3 may
become extremely large. Several problems arise in this case:

� The time to compile the sparsely populated array is
excessive;

� The array size may be too large to store in main memory;

� A large array may lead to increased thrashing in virtual
memory environments.

To handle these problems, gperf can also generate one
or more switch statements to implement the lookup table.
Depending on the underlying compiler’s switch optimiza-
tion capabilities, the switch-based method may produce
smaller and faster code, compared with the large, sparsely
filled array. Note that more than one switch statement may
be required, since many C compilers do not generate correct
code for extremely large switch statements e.g., greater
than 10,000 cases. Figure 4 shows how the switch state-
ment code appears if the months example is generated with
gperf’s ‘-S 1’ option.

Since the months example is somewhat contrived, the
trade-off between the array and switch approach is not
particularly obvious. However, a good compiler may gener-
ate assembly code implementing a “binary-search-of-labels”
scheme if the switch statement’s case labels are sparse
compared to the range between the smallest and largest case
labels [3]. This technique saves a great deal of space by not
emitting unnecessary empty array locations or jump-table
slots. The exact time and space savings of this approach
varies according to the underlying compiler’s optimization
strategy.
gperf generates source code that constructs the array

or switch statement lookup table at compile-time. There-
fore, initializing the keywords and any associated attributes
requires little additional execution-time overhead when the
recognizer function is run, since the “initialization” is auto-
matically performed as the program’s binary image is loaded
from disk into main memory.

4.3.3 The Generated Functions

gperf generates a hash function and a lookup function. By
default, they are called phash and in word set, although
a different name may be given for in word set using the
‘-N’ command-line option. Both functions require two
arguments, a pointer to a NUL-terminated (’\0’) array of
characters, const char *str, and a length parameter,
int len.

� The Generated Hash Function (phash): Figure 3
shows the phash function generated from the input keyfile
shown in Figure 1. Since the command-line option ‘-k 2,
3’ was enabled, phash returns an unsigned int value
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{
const struct months *rw;

switch (key)
{
case 0: rw = &wordlist[0]; break;
case 1: rw = &wordlist[1]; break;
case 2: rw = &wordlist[2]; break;
case 3: rw = &wordlist[3]; break;
case 4: rw = &wordlist[4]; break;
case 5: rw = &wordlist[5]; break;
case 6: rw = &wordlist[6]; break;
case 7: rw = &wordlist[7]; break;
case 8: rw = &wordlist[8]; break;
case 9: rw = &wordlist[9]; break;
case 10: rw = &wordlist[10]; break;
case 11: rw = &wordlist[11]; break;
default: return 0;

}
if (*str == *rw->name

&& !strcmp (str + 1, rw->name + 1))
return rw;

return 0;
}

Figure 4: The switch-based Lookup Table

calculated by indexing the keysig characters (in this case
ASCII values of the second and third characters) from its
str argument into the local static array asso values
(C arrays start at 0, so str[1] is actually the second char-
acter). The two resulting numbers are added together to
compute str’s hash value. The asso values array is
constructed by gperf; it maps the user-defined keywords
onto unique hash values (additional details are described in
Section 4.1.2).

Note that all asso values array entries with values
greater than MAX HASH VALUE (i.e., all the “12’s” in the
asso values array in Figure 3) represent ASCII charac-
ters that do not occur as either the second or third characters
in the months of the year. This information is used by the
is month function shown in Figure 3 to quickly eliminate
input strings that cannot possibly be month names.

� Generated Lookup Function (in word set): The
in word set function is the interface to the perfect hash
lookup routines (the phash function is declared static
and is not directly invoked by application programs). If the
function’s first parameter,char *str, is a valid user-define
keyword then in word set returns a pointer to the corre-
sponding record containing each keyword and its associated
attributes, otherwise a NULL pointer is returned.

Figure 3 also shows the in word set func-
tion, renamed to is month for the current ex-
ample via the ‘-N’ command-line option. Note
how gperf checks the len parameter and result-
ing phash function return value against the symbolic
constants for MAX WORD LENGTH, MIN WORD LENGTH,
MAX HASH VALUE, and MIN HASH VALUE. This quickly
eliminates many non-month names from further considera-
tion. If users know in advance that all input strings are valid
keywords, gperf will suppress this addition checking with
the ‘-O’ option.

KKEYEY

LLISTIST

GGENEN

PPERFERF

OOPTIONSPTIONS

GLOBALGLOBAL

BBOOLOOL

AARRAYRRAY

RREADEAD

BBUFFERUFFER
HHASHASH

TTABLEABLE

Figure 5: gperf’s Inheritance Hierarchy

If gperf is instructed to generate an array-based lookup
table the generated code is quite concise, i.e., once it is deter-
mined that the hash value lies within the proper range the code
is simply (filling in the /* ... see text ... */
comment from Figure 3):

{
char *s = wordlist[key];
if (*s == *str

&& !strcmp (str + 1, s + 1))
return s;

}

The‘*s == *str’ expression quickly detects when the
computed hash value indexes into a “null” table slot, since
‘*s’ is the NUL character (’\0’) in this case. This is
useful when searching a sparse keyword lookup table, where
there is a higher probability of locating a null entry. If a
null entry is located, there is no need to perform a full string
comparison (note that since the months example generates a
minimal perfect hash function null enties never appear; the
check is still useful, however, since it avoids calling the string
comparison routine when thestr’s first letter does not match
any of the keywords in the lookup table).

4.4 Reusable Components

Figure 5 illustrates gperf’s overall program structure.
gperf is constructed from reusable components that also
serve as base-classes in a “forest”-style library [17]. Each of
these classes evolved “bottom-up” from special-purpose util-
ities into reusable software components. Several noteworthy
reusable classes include the following abstract data types:

� Bool Array: Earlier versions of gperf were instru-
mented with a run-time code profiler. The results showed
that gperf spent approximately 90 to 99 percent of its time
in a single routine when performing the algorithm in Fig-
ure 2 on large input keyfiles that evoke many collisions.
This one routine, Gen Perf::affects previous, de-
termines how changes to associated values affect previously
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hashed keywords. In particular, it identifies duplicate hash
values that occur during program execution.

Since this routine is called so frequently, it is impor-
tant that it exhibits minimal execution overhead. gperf
employs a novel boolean array abstract data type called
Bool Array to expedite this process. The C++ interface
for the Bool Array class is depicted in Figure 6. All class
data and member functions are declared with storage class
static, since only one copy of Bool Array is required
(this reduces run-time overhead since no “this” pointer is
passed during function calls).

Class member function Bool Array::in set effi-
ciently detects duplicate keyword hash values for a given
associated values configuration, returning non-zero if a value
is already in the set and zero otherwise. Whenever a dupli-
cate is detected, Bool Array::reset is called to reset all
the array elements back to “empty” for ensuing iterations of
the search process.

If many hash collisions occur, Bool Array::reset is
executed frequently during the duplicate detection and elim-
ination process. Processing large keyfiles, e.g., containing
more than 1,000 keywords, tends to require a maximum hash
value k that is often much larger than n, the total number of
keywords. Due to the large range, it becomes expensive to
explicitly reset all elements in Bool Array::array back
to empty, especially when the number of keywords actually
checked for duplicate hash values is comparatively small.

To address this issue, gperf uses a technique called gen-
eration numbering, which optimizes the search process by
not explicitly reinitializing the entire array. Generation num-
bering operates as follows:

1. The class constructor dynamically allocates space
for k unsigned short integers and points
Bool Array::array at the allocated memory. All
k array elements in Bool Array::array are ini-
tially assigned 0 (representing “empty”) and the
Bool Array::generation number counter is
set to 1.

2. The Bool Array::in set member function is used
to detect duplicate keyword hash values. If the num-
ber stored at the phash(keyword) index position in
Bool Array::array is not equal to the current gen-
eration number, then that hash value is not already in
the set. In this case, the current generation number is
immediately assigned to the phash(keyword) array
location, thereby marking it as a duplicate if it is subse-
quently referenced during this particular iteration of the
search process.

3. If Bool Array::array [phash(keyword)] is
equal to the generation number, a duplicate exists and the
algorithm must try modifying certain associated values
to resolve the collision.

4. If a duplicate is detected, the Bool Array::array
elements are reset to empty for subsequent iterations of
the search process. Bool Array::reset simply in-

class Bool_Array
{
public:
// Allocate a k element dynamic array.
Bool_Array (int k);

// Returns dynamic memory to free store.
˜Bool_Array (void);

// Checks if ‘value’ is a duplicate.
int in_set (int value);

// Reinitializes all set elements to FALSE.
void reset (void);

private:
// Current generation count.
u_short generation_number;

// Dynamically allocated storage buffer.
u_short *array;

// Length of dynamically allocated array.
int size;

};

Figure 6: Boolean Array Abstract Data Type

crements Bool Array::generation number by
1. The entire k array locations are only reinitialized to
0 when the generation number exceeds the range of an
unsigned short integer (this occurs infrequently in
practice).

A design principle employed throughout gperf’s imple-
mentation is “first determine a clean set of operations and
interfaces, then successively tune the implementation.” In
the case of generation numbering, this policy of optimiz-
ing performance, without compromising program clarity, de-
creased gperf’s execution-time by an average of 25 percent
for large keyfiles, compared with the previous method that
explicitly “zeroed out” the entire boolean array’s contents on
every reset.

� Read Buffer: Each line in gperf’s input contains a
single keyword followed by any optional associated at-
tributes, ending with a newline character (’\n’). The
Read Buffer::read member function copies an arbi-
trarily long ’\n’-terminated string of characters from the
input into a dynamically allocated buffer. A recursive auxil-
iary function, ‘Read Buffer::rec read, insures only
one call is made to the free store allocator per input line read,
i.e., there is no need for reallocating and resizing buffers dy-
namically. This class has been incorporated into the GNU
libg++ stream library [17] and the ACE network program-
ming tookit [18].

� Hash Table: This class provides a search set imple-
mented via double hashing [4]. During program initialization
gperf uses an instance of this class to detect keyfile entries
that are guaranteed to produce duplicate hash values. These
duplicates occur whenever keywords possess both identical
keysigs and identical lengths, e.g., thedouble and delete
collision described in Section 4.1.2. Unless the user speci-
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Input File Identifiers Keywords Total
ET++.in 624,156 350,466 974,622
NIH.in 209,488 181,919 391,407
g++.in 278,319 88,169 366,488
idraw.in 146,881 74,744 221,625
cfront.in 98,335 51,235 149,570
libg++.in 69,375 50,656 120,031

Table 4: Total Identifiers and Keywords for Each Input File

fies that a near-perfect hash function is desired, attempting to
generate a perfect hash function for keywords with duplicate
keysigs and identical lengths is an exercise in futility!

5 Empirical Results

Tool-generated recognizers are useful from a software engi-
neering perspective, since they reduce development time and
decrease the likelyhood of development errors. However,
they are not necessarily advantageous for production-quality
applications unless the resulting executable code speed is
competitive with typical alternative implementations. In fact,
it has been argued that there are no circumstances where per-
fect hashing proves worthwhile, compared with other com-
mon static search set methods [19].

To compare the efficacy of the gperf-generated perfect
hash functions against other common static search set im-
plementations, seven test programs were developed and exe-
cuted on six large input files. Each test program implemented
the same function: a recognizer for the 71 GNU g++ reserved
words. The function returns 1 if a given input string is iden-
tified as a reserved word and 0 otherwise.

The seven test programs are described below. They are
listed by increasing order of execution time, as shown in Ta-
ble 3. The input files used for the test programs are described
in Table 4. Table 5 shows the number of bytes for each
test program’s compiled object file, listed by increasing size
(both patricia.o and chash.o use dynamic memory,
so their overall memory usage depends upon the underlying
free store mechanism).

� trie.exe: a program based upon an automatically gen-
erated table-driven search trie created by the trie-gen
utility included with the GNU libg++ distribution.

� flex.exe: a flex-generated recognizer created with the
‘-f’ (no table compaction) option. Note that both
the flex.exe and trie.exe are uncompacted, determinis-
tic finite automata (DFA)-based recognizers. Not using
compaction maximizes speed in the generated recog-
nizer, at the expense of much larger tables. For example,
the uncompacted flex.exe program is almost 5 times
larger than the compacted comp-flex.exe program,
i.e., 117,808 bytes versus 24,416 bytes.

� gperf.exe: a gperf-generated recognizer created with
the‘-a -D -S 1 -k 1,$’ options. These options

Object Byte Count
File text data bss dynamic total
control.o 88 0 0 0 88
binary.o 1,008 288 0 0 1,296
gperf.o 2,672 0 0 0 2,672
chash.o 1,608 304 8 1,704 3,624
patricia.o 3,936 0 0 2,272 6,208
comp-flex.o 7,920 56 16,440 0 24,416
trie.o 79,472 0 0 0 79,472
flex.o 3,264 98,104 16,440 0 117,808

Table 5: Size of Object Files in Bytes

mean “generate ANSI C prototypes (‘-a’), handle du-
plicate keywords (‘-D’), via a single switch statement
(‘-S 1’), and make the keysig be the first and last
character of each keyword.”

� chash.exe: a dynamic chained hash table lookup routine
similar to the one that recognizes reserved words for
AT&T’s cfront 2.0 C++ compiler. The table’s load
factor is 0.39, the same as it is in cfront 2.0, i.e. 71

181
for chash.exe versus 48

123 for cfront 2.0.

� patricia.exe: a PATRICIA trie recognizer, where PA-
TRICIA stands for “Practical Algorithm to Retrieve
Information Coded in Alphanumeric.” A complete
PATRICA trie implementation is available in the GNU
libg++ class library distribution [17].

� binary.exe: a carefully coded binary search routine that
minimizes the number of complete string comparisons.

� comp-flex.exe: a flex-generated recognizer created
with the default ‘-cem’ options, providing the high-
est degree of table compression. Note the obvi-
ous time/space trade-off between the uncompacted
flex.exe (which is faster and larger) and the com-
pacted comp-flex.exe (which is smaller and much
slower).

In addition to these seven test programs, a simple C++
program called control.exe measures and controls for
I/O overhead, i.e.:

int main (void) {
char buf[BUFSIZ];

while (gets (buf))
printf ("%s", buf);

}

All of the above reserved word recognizer programs were
compiled by the GNU g++ 2.7.2 compiler with the ‘-O
-fstrength-reduce -finline-functions
-fdelayed-branch’ options enabled. They were then
tested on an otherwise idle SPARCstation 20 model 712 with
128 megabytes of RAM.

All six input files used for the tests contained a large
number of words, both user-defined identifiers and g++ re-
served words, organized with one word per line (this for-
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Executable Input File
Program ET++.in NIH.in g++.in idraw.in cfront.in libg++.in
control.exe 38.8 j 1.00 15.4 j 1.00 15.2 j 1.00 8.9 j 1.00 5.7 j 1.00 4.5 j 1.00
trie.exe 59.1 j 1.52 23.8 j 1.54 23.8 j 1.56 13.7 j 1.53 8.6 j 1.50 7.0 j 1.55
flex.exe 60.5 j 1.55 23.9 j 1.55 23.9 j 1.57 13.8 j 1.55 8.9 j 1.56 7.1 j 1.57
gperf.exe 64.6 j 1.66 26.0 j 1.68 25.1 j 1.65 14.6 j 1.64 9.7 j 1.70 7.7 j 1.71
chash.exe 69.2 j 1.78 27.5 j 1.78 27.1 j 1.78 15.8 j 1.77 10.1 j 1.77 8.2 j 1.82
patricia.exe 71.7 j 1.84 28.9 j 1.87 27.8 j 1.82 16.3 j 1.83 10.8 j 1.89 8.7 j 1.93
binary.exe 72.5 j 1.86 29.3 j 1.90 28.5 j 1.87 16.4 j 1.84 10.8 j 1.89 8.8 j 1.95
comp-flex.exe 80.1 j 2.06 31.0 j 2.01 32.6 j 2.14 18.2 j 2.04 11.6 j 2.03 9.2 j 2.04

Table 3: Raw and Normalized CPU Processing Time

mate was automatically created by running the UNIX com-
mand “tr -cs A-Za-z_ ’\012’” on the preprocessed
source code for several large C++ systems. These systems
included the ET++ windowing toolkit (ET++.in), the NIH
class library (NIH.in), the GNU g++ 2.7.2 C++ compiler
(g++.in), the idraw figure drawing utility from the Inter-
Views 2.6 distribution (idraw.in), the AT&T cfront 2.0
C++ compiler (cfront.in), and the GNU libg++ 2.8 C++
class library (libg++.in). Table 4 shows the relative num-
ber of identifiers and keywords for the test input files.

Table 3 depicts the amount of time each search set im-
plementation spent executing the test programs, listed by
increasing execution time. The first number in each col-
umn represents the user-time CPU seconds for each recog-
nizer. The second number is “normalized execution time,”
i.e., the ratio of user-time CPU seconds divided by the
control.exe program execution time. The normalized
execution time for each technique is very consistent across
the input test file suite, illustrating that the timing results are
representative for different source code inputs.

Several conclusions result from these empirical bench-
marks:

� The uncompacted, DFA-based trie (trie.exe and flex
(flex.exe) implementations are both the fastest and
the largest implementations, illustrating the time/space
trade-off dichotomy. Applications where saving time is
more important than conserving space may benefit from
these approaches.

� While the trie.exe and flex.exe recognizers
allow programmers to trade-off space for time, the
gperf-generated perfect hash function gperf.exe
is comparatively time and space efficient. Empiri-
cal support for this claim may be calculated from the
data for the programs that did not allocate dynamic
memory, i.e., trie.exe, flex.exe, gperf.exe,
binary.exe, and comp-flex.exe. The num-
ber of identifiers scanned per second per byte of exe-
cutable program overhead was 5.6 for gperf.exe,
but less than 1.0 for trie.exe, flex.exe, and
comp-flex.exe.

Since gperf generates a stand-alone recognizer, it is eas-

ily incorporated into an otherwise hand-coded lexical ana-
lyzer, such as the ones found in the GNU C and GNU C++
compiler. It is more difficult, on the other hand, to partially
integrateflex or lex into a lexical analyzer, since they are
generally used in an “all or nothing” fashion. Furthermore,
neither flex nor lex are capable of generating recognizers
for the 15,400 line MEDLINE keyfile input, because the size
of the state machine is too large for their internal DFA state
tables.

6 Limitations

6.1 Current Compromises

Several other hash function generation algorithms utilize
some form of backtracking when searching for a perfect or
minimal perfect solution [5, 7, 8]. For example, Cichelli’s
algorithm recursively attempts to find an associated values
configuration that uniquely maps all n keywords to distinct
integers in the range 1::n. In his scheme, the algorithm
“backs up” if computing the current keyword’s hash value
exceeds the minimal perfect table size constraint at any point
during program execution. Cichelli’s algorithm then pro-
ceeds by undoing selected hash table entries, reassigning
different associated values, and continuing to search for a so-
lution. Unfortunately, the exponential growth rate associated
with the backtracking search process is simply too time con-
suming for large keyfiles, since even “intelligently-guided”
exhaustive search quickly becomes impractical for more than
several hundred keywords.

To simplify the algorithm in Figure 2, and to improve
average-case performance, gperf does not backtrack when
keyword hash collisions occur. gperf may process the
entire keyfile input, therefore, without finding a unique asso-
ciated values configuration for every keyword, even if one
exists. If a unique configuration is not found, users have two
choices: (1) they may either run gperf again, enabling dif-
ferent options in search of a perfect hash function, or (2) they
may guarantee a solution by instructing gperf to generate
an near-perfect hash function.

Near-perfect hash functions permit gperf to operate on
keyword sets that it otherwise could not handle, e.g., if the
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{
char *rw;
...
switch (phash (str, len)) {
...
case 46:
rw = "delete";
if (*str == *rw

&& !strcmp (str + 1, rw + 1, len - 1))
return rw;

rw = "double";
if (*str == *rw

&& !strcmp (str + 1, rw + 1, len - 1))
return rw;

return 0;
case 47:
rw = "default"; break;

case 49:
rw = "void"; break;

...
}
if (*str == *rw

&& !strcmp (str + 1, rw + 1, len - 1))
return rw;

return 0;
}

Figure 7: The Near-Perfect Lookup Table Fragment

keyfile contains duplicates or there are a very large number of
keywords. Although the resulting hash function is no longer
“perfect,” it handles keyword membership queries efficiently
since only a small number of duplicates usually remain (the
exact number depend on the keyword set and the command-
line options).

Both duplicate keyword entries and unresolved keyword
collisions are handled by generalizing the switch-based
scheme described in Section 3. gperf treats duplicate key-
words as members of an equivalence class and generates
switch statement code containing cascading if-else
comparisons within a case label to handle non-unique key-
word hash values.

For example, if gperf is run with the default keysig
selection command-line option‘-k 1,$’ on a keyfile con-
taining C++ reserved words, a hash collision occurs between
the delete and double keywords, thereby preventing a
perfect hash function. Using the ‘-D’ option produces a
near-perfect hash function, that allows at most one string
comparison for all keywords except double, which is rec-
ognized after two comparisons. Figure 7 shows the relevant
fragment of the generated near-perfect hash function code.

A simple linear search is performed on duplicate keywords
that hash to the same location. Linear search is effective
since most keywords still require only one string compari-
son. Support for duplicate hash values is useful in several
circumstances, such as large input keyfiles (e.g., dictionar-
ies), highly similar keyword sets (e.g., assembler instruction
mnemonics), and secondary keys. In the latter case, if the
primary keywords are distinguishableonly via secondary key
comparisons, the user may edit the generated code by hand
or via an automated script to completely disambiguate the
search key.

6.2 Enhancements and Extensions

Fully automating the perfect hash function generation process
is gperf’s most significant unfinished extension. One ap-
proach is to replacegperf’s current algorithm with more ex-
haustive approaches [8, 6]. Due to gperf’s object-oriented
program design, such modifications will not disrupt the over-
all program structure. The perfect hash function generation
module, class Gen Perf, is independent from other pro-
gram components; it represents only about 10 percent of
gperf’s overall lines of source code.

A more comprehensive, albeit computationally expensive,
approach could switch over to a backtracking strategy when
the initial, computationally less expensive, non-backtracking
first pass fails to generate a perfect hash function. For many
common uses, where the search sets are relatively small, the
program will run successfully without incurring backtracking
overhead. In practice, the utility of these proposed modifica-
tions remains an open question.

Another potentially worthwhile feature is enhancing
gperf to automatically select the keyword index positions.
This would assist users in generating time or space efficient
hash functions quickly and easily. Currently, the user must
use the default behavior or explicitly select these positions
via command-line arguments. Finally, gperf’s output rou-
tines may be extended to generate code for other languages,
e.g., Java, Smalltalk, Module 3, Eiffel, etc.

7 Concluding Remarks

gperfwas originally designed to automate the construction
of keyword recognizers for compilers and interpreter reserved
word sets. The various features described in this paper enable
it to achieve its goal, as evidenced by its use in the GNU
compilers. In addition, gperf has also been used in the
following applications:

� A hash function for 15,400 “Medical Subject Headings”
used to index journal article citations in MEDLINE, a
large bibliographic database of the biomedical literature
maintained by the National Library of Medicine. Gener-
ating this hash function takes approximately 16 minutes
of CPU time on a 16 MHz Sun 4/260.

� The GNU indent C code reformatting program, where
the inclusion of perfect hashing sped up the program by
an average of 10 percent.

� Hash functions for assembly mnemonics in the 80x86,
680x0, Z8000, and MIPS RISC instruction sets.

� A public domain program converting double precision
FORTRAN source code to/from single precision uses
gperf to modify subroutine names that depend on the
types of their arguments, e.g., replacing sgefa with
dgefa in the LINPACK benchmark. Each name corre-
sponding to a subroutine is recognized via gperf and
substituted with the version for the appropriate preci-
sion.
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� A speech synthesizer system, where there is a cache
between the synthesizer and a larger, disk-based dictio-
nary. A word is hashed using gperf, and if the word is
already in the cache it is not looked up in the dictionary.

Since automatic static search set generators perform well in
practice and are widely and freely available, there seems little
incentive to code keyword recognition functions by hand for
most applications.
gperf is distributed along with the GNU libg++ li-

brary and the ACE network programming toolkit at
http://www.cs.wustl.edu/˜schmidt/ACE.html.
The distribution includes keyfiles for Ada, C, Pascal, C++,
Modula 2, and Modula 3 reserved keywords. A highly
portable, functionally equivalent K&R C version of gperf
is archived in volume 20 of comp.sources.unix.
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