
Transparently Parameterizing Synchronization
into a Concurrent Distributed Application

A Case Study of C++ Design Evolution

Douglas C. Schmidt
schmidt@cs.wustl.edu

Department of Computer Science
Washington University, St. Louis, 63130

An earlier version of this paper appeared in the July/August
1994 issue of the C++ Report.

1 Introduction

Many useful C++ classes have evolved incrementally by
generalizing from solutions to practical problems that arise
during system development. After the interface and imple-
mentation of a class have stabilized, however, this iterative
process of class generalization is often de-emphasized. That
is unfortunate since a major barrier to entry for newcomers
to object-oriented design and C++ is (1) learning and inter-
nalizing the process of how to identify and describe classes
and objects and (2) understanding when and how to apply
(or not apply) C++ features such as templates, inheritance,
dynamic binding, and overloading to simplify and generalize
their programs.

In an effort to capture the dynamics of C++ class de-
sign evolution, the following article illustrates the process by
which object-oriented techniques and C++ idioms were incre-
mentally applied to solve a relatively small, yet surprisingly
subtle problem. This problem arose during the development
of a family of concurrent distributedapplications that execute
efficiently on uni-processor and multi-processor platforms.
This article focuses on the steps involved in generalizing
from existing code by using templates and overloading to
transparently parameterize synchronization mechanisms into
a concurrent application. Some of the infrastructure code is
based on components in the freely available ADAPTIVE Ser-
vice eXecutive (ASX) framework described in [1, 2, 3, 4, 5].

2 Motivation

The following C++ code illustrates part of the main event-
loop of a typical distributed application (such as an object
location broker [6] or a multi-threaded network file server):

Example 1

typedef unsigned long COUNTER;
COUNTER request_count; // At file scope

void *

run_svc (void *)
{
Message_Block *mb;

while (get_next_request (mb) > 0) {
// Keep track of number of requests
request_count++;

// Identify request and
// perform service processing here...

}
return 0;

}

This code waits for messages to arrive from clients,
dequeues the messages from a message queue using
get next request, and performs some type of process-
ing (e.g., database query, file update, etc.) depending on the
type of message that is received.

This code works fine as long as run svc runs in a single
thread of control. However, incorrect results will occur on
many multi-processor platforms when run svc is executed
simultaneously by multiple threads of control running on dif-
ferent CPUs. The problem here is that the auto-increment
operation on the global variable request count contains
a race condition where different threads may increment ob-
solete versions of the request count variable stored in
their per-CPU data caches.

The remainder of this Section illustrates this phenomenon
by executing the following C++ code example on a shared
memory multi-processor running the SunOS 5.x operating
system. SunOS 5.x is a version of UNIX that allows multiple
threads of control to execute in parallel on a shared memory
multi-processor [7]. This code is a greatly simplified version
of the original distributed application.

// Manage a group of threads atomically
Thr_Manager thr_manager;

typedef unsigned long COUNTER;
COUNTER request_count; // At file scope

void *
run_svc (int iterations)
{
Thr_Cntl t (&thr_manager);

for (int i = 0; i < iterations; i++)

1

request_count++; // Count # of requests

return t.exit ((void *) i);
}

int
main (int argc, char *argv[])
{
int n_threads =

argc > 1 ? atoi (argv[1]) : 4;
int n_iterations =

argc > 2 ? atoi (argv[2]) : 1000000;

// Divide iterations evenly among threads
int iterations = n_iterations / n_threads;

// Spawn off N threads to run in parallel
thr_manager.spawn_n (n_threads, &run_svc,

(void *) iterations,
THR_BOUND | THR_SUSPENDED);

// Start executing all the threads together
thr_manager.resume_all ();

// Wait for all the threads to exit
thr_manager.wait ();

cout << n_iterations << " = iterations\n"
<< request_count << " = request_count"
<< endl;

return 0;
}

Thr Manager is a class from the ASX framework. It con-
tains a set of mechanisms for managing groups of threads
that collaborate to implement collective actions (such as a
pool of threads that render different portions of a large im-
age in parallel). The Thr Manager::spawn n method
creates n new threads of control. In the SunOS imple-
mentation of Thr Manager, the spawn n method calls
the thr create thread library routine to create a new
thread. In this example, each newly created thread will
execute the function run svc, which iterates n iterations

n threads

times. Each thread is spawned using the THR BOUND
and THR SUSPENDED flags. THR BOUND indicates to
the SunOS thread run-time library that each thread may
run in parallel on a separate CPU in a multi-processor
system. The THR SUSPENDED flag creates each thread
in the “suspended” state, which ensures that all threads
are completely initialized before starting the tests with
Thr Manager::resume all.

The Thr Manager::wait method blocks the execu-
tion of the main thread until all the threads that are run-
ning run svc have exited. When all the other threads
have exited, the main thread prints out the total number of
iterations and the final value of request count.

Compiling this code into an executable a.out file and
running it on 1 thread for 10,000,000 iterations produces the
following:

% a.out 1 10000000
10000000 = iterations
10000000 = request_count

However, when executed on 4 threads for 10,000,000 itera-
tions on a 4 CPU machine, the program prints:

% a.out 4 10000000
10000000 = iterations
5000000 = request_count

Clearly, something is wrong since the value of the global
variable request count is only one-half the total num-
ber of iterations! The problem here is that auto-increments
on variable request count are not being serialized prop-
erly. In particular, run svc will produce incorrect results
when executed in parallel on shared memory multi-processor
platforms that do not provide strong sequential order cache
consistency models. To enhance performance, many shared
memory multi-processors employ “weakly-ordered” cache
consistency semantics. For example, the SPARC V.8 and
V.9 multi-processor family provides both total store order
and partial store order memory cache consistency seman-
tics. With total store order semantics, reading a variable that
is being accessed by threads on different CPUs may not be
serialized with simultaneous writes to the same variable by
threads on other CPUs. Likewise, with partial store order se-
mantics, writes may also not be serialized with other writes.
In either case, expressions that require more than a single
load and store of a memory location (such as foo++ or i
= i � 10) may produce inconsistent results due to cache
latencies across CPUs. To ensure that reads and writes of
variables shared between threads are updated correctly, pro-
grammers must manually enforce the order that changes to
these variables become globally visible.

A common technique for enforcing a strong sequential
order on a total store order or partial store order shared
memory multi-processor is to protect the increment of the
request count variable by using some type of synchro-
nization mechanism, such as a mutex (short for “mutual ex-
clusion”) [8]. Mutexes are used to protect the integrity of a
shared resource that may be accessed concurrently by mul-
tiple threads of control. A mutex serializes the execution of
multiple threads by defining a critical section where only one
thread executes its code at a time.

One of the simplest and most efficient types of mu-
tual exclusion mechanisms is a non-recursive mutex (this
and other types of mutexes are discussed further in Sec-
tion 4). SunOS 5.x implements non-recursive mutexes via
the mutex t data type and its corresponding mutex lock
and mutex unlock functions. On SunOS 5.x, a thread
may enter a critical section by invoking the mutex lock
function on a mutex t variable. A call to this function will
block until the thread that currently owns the lock has left the
critical section. To leave a critical section, a thread invokes
the mutex unlock function on the same mutex t vari-
able. Calling mutex unlock enables another thread that is
blocked on the mutex to enter the critical section.

On SunOS 5.x, operations on mutex variables are imple-
mented via adaptive spin-locks that ensure mutual exclusion
by using an atomic hardware instruction. An adaptive spin-
lock operates by polling a designated memory location using

2

the atomic hardware instruction until (1) the value at this lo-
cation is changed by the thread that currently owns the lock
(signifying that the lock has been released by the previous
owner and may now be acquired) or (2) the thread that is
holding the lock goes to sleep (at which point the thread that
is spinningalso goes to sleep to avoid needless polling). On a
multi-processor, the system overhead incurred by a spin-lock
is relatively minor since polling affects only the local CPU
cache of the thread that is spinning. A spin-lock is a simple
and efficient synchronization mechanism for certain types of
short-lived resource contention such as auto-incrementing the
global request count variable illustrated in the example
above.

The followingcode illustrates how SunOS mutex variables
may be used to solve the auto-increment serialization problem
we observed earlier with request count:

Example 2

typedef unsigned long COUNTER;
COUNTER request_count; // At file scope
mutex_t m; // mutex protecting request_count

// initialized to zero...

void *
run_svc (void *)
{

Thr_Cntl t (&thr_manager);

for (int i = 0; i < iterations; i++) {
mutex_lock (&m);
request_count++; // Count # of requests
mutex_unlock (&m);

}

return t.exit ((void *) i);
}

Although it solves the original synchronization problem,
this approach is somewhat inelegant and error-prone since
(1) it mixes C functions with C++ objects, (2) it leaves open
the possibility that the programmer will forget to initialize
the mutex variable,1 or (3) forget to call mutex unlock,
and (4) it requires obtrusive changes to the code (in a larger
system, managing these types of changes becomes a serious
maintenance headache...).

3 C++ Solutions

C++ offers a number of language features that may be em-
ployed to solve the serialization problem more elegantly.
This section illustrates a progression of C++ solutions, each
one building upon insights from prior design iterations. As
you read the examples, you might consider the point at which
you would be satisfied with the solution and not contemplate
any further enhancements.

1In SunOS 5.x, a zero’d mutex t variable is considered to be implic-
itly initialized. However, other systems (such as Windows NT) do not
make these guarantees, and all synchronization objects must be initialized
explicitly.

3.1 An Initial C++ Solution

A somewhat more elegant solution to the original problem is
to encapsulate the existing SunOS mutex t operations with
a C++ wrapper, as follows:

class Mutex
{
public:
Mutex (void) {
mutex_init (&this->lock, USYNC_THREAD, 0);

}
˜Mutex (void) {
mutex_destroy (&this->lock);

}
int acquire (void) {
return mutex_lock (&this->lock);

}
int release (void) {
return mutex_unlock (&this->lock);

}

private:
// SunOS 5.x serialization mechanism
mutex_t lock;

};

One advantage of defining a C++ wrapper interface to mutual
exclusion mechanisms is that our code now becomes more
portable across OS platforms. For example, the following
code is an implementation of the Mutex class interface based
on mechanisms in the Windows NT WIN32 API [9]:

class Mutex
{
public:
Mutex (void) {
InitializeCriticalSection (&this->lock);

}
˜Mutex (void) {
DeleteCriticalSection (&this->lock);

}
int acquire (void) {
EnterCriticalSection (&this->lock);
return 0;

}
int release (void) {
LeaveCriticalSection (&this->lock);
return 0;

}

private:
// Win32 serialization mechanism
CRITICAL_SECTION lock;

};

The use of the Mutex C++ wrapper class cleans up the
original code somewhat and ensures that initialization occurs
automatically when a Mutex object is defined, as shown in
the code fragment below:

Example 3

typedef unsigned long COUNTER;
COUNTER request_count; // At file scope

3

Mutex m; // mutex protecting request_count

void *
run_svc (void *)
{

Thr_Cntl t (&thr_manager);

for (int i = 0; i < iterations; i++) {
m.acquire ();
request_count++; // Count # of requests
m.release ();

}

return t.exit ((void *) i);
}

However, the C++ wrapper approach does not solve the prob-
lem of forgetting to release the mutex (which still requires
manual intervention by programmers) and it still requires
obtrusive changes to the original source code.

3.2 Another C++ Solution

A straight-forward way to ensure the lock will be released is
to leverage off the semantics of C++ class constructors and
destructors to automate the acquisition and release of a mutex
by supplying the following helper class for class Mutex:

class Guard
{
public:

Guard (Mutex &m): lock (m) {
this->lock.acquire ();

}
˜Guard (void) {

this->lock.release ();
}

private:
Mutex &lock;

}

The Guard class defines a “block” of code over which a
Mutex is acquired and then automatically released when the
block is exited. It employs a C++ idiom (described in [10])
that uses the constructor of a Guard class to acquire the lock
on the Mutex object automatically when an object of the
class is created. Likewise, the Guard class destructor auto-
matically unlocks theMutex object when the object goes out
of scope. By defining the lock data member as a reference
to a Mutex object, we avoid the overhead of creating and
destroying an underlying SunOS mutex t variable every
time the constructor and destructor of a Guard are executed.

By making a slight change to the code, we now guarantee
that a Mutex is automatically acquired and released:

Example 4

void *
run_svc (void *)
{

Thr_Cntl t (&thr_manager);

for (int i = 0; i < iterations; i++) {

{
// Automatically acquire the mutex
Guard monitor (m);
request_count++;
// Automatically release the mutex

}
// Remainder of service processing omitted

}

return t.exit ((void *) i);
}

However, this solution still has not fixed the problem with
obtrusive changes to the code. Moreover, adding the extra
’f’ and ’g’ curly brace delimiter block around the Guard is
inelegant and error-prone since a maintenance programmer
might misunderstand the importance of the curly braces and
remove them, yielding the following erroneous code:

for (int i = 0; i < iterations; i++) {
Guard monitor (m);
request_count++;
// Remainder of service processing omitted

}

Unfortunately, this “curly-brace elision” has the side-effect
of eliminating all concurrent execution within the system by
serializing the main event-loop. Therefore, if computations
may execute in parallel within that section of code, they will
be serialized unnecessarily.

3.3 Yet Another C++ Solution

To solve the remaining problems in a transparent, unobtru-
sive, and efficient manner requires the use of two additional
C++ features: parameterized types and operator overloading.
We may use these features to provide a template class called
Atomic Op, a portion of which is shown below:

template <class TYPE>
class Atomic_Op
{
public:
Atomic_Op (void) { this->count = 0; }
Atomic_Op (TYPE c) { this->count = c; }
TYPE operator++ (void) {
Guard m (this->lock);
return ++this->count;

}
TYPE operator== (const TYPE i) {
Guard m (this->lock);
return this->count == i;

}
void operator= (const Atomic_Op &ao) {
// Check for identify to avoid deadlock!
if (this != &ao) {
Guard m (this->lock);
this->count = ao.count;

}
}
operator TYPE () {
Guard m (this->lock);
return this->count;

}

4

// Other arithmetic operations omitted...

private:
Mutex lock;
TYPE count;

};

The Atomic Op class transparently redefines the normal
arithmetic operations (such as ++, --, +=, etc.) on built-
in data types to make these operations work atomically. In
general, any class that defines the basic arithmetic operators
will work with the Atomic Op class due to the “deferred
instantiation” semantics of C++ templates.

Since theAtomic Op class uses the mutual exclusion fea-
tures of the Mutex class, arithmetic operations on objects of
instantiated Atomic Op classes now work correctly on a
multi-processor. Moreover, C++ features such as templates
and operator overloading allow this technique to work trans-
parently on a multi-processor. In addition, all the method
operations in Atomic Op are defined as inline functions.
Therefore, a highly optimizing C++ compiler should be able
to generate code that ensures the run-time performance of
this approach is no greater than using the mutex lock and
mutex unlock function calls directly.

Using the Atomic Op class, we can now write the fol-
lowing code, which is almost identical to the original non-
thread safe code (in fact, only the typedef of COUNTER has
changed):

Example 5

typedef Atomic_Op <unsigned long> COUNTER;
COUNTER request_count; // At file scope

void *
run_svc (void *)
{

Thr_Cntl t (&thr_manager);

for (int i = 0; i < iterations; i++) {
// Actually calls Atomic_Op::operator++()
request_count++;

}

return t.exit ((void *) i);
}

By combining the C++ constructor/destructor idiom for
acquiring and releasing the Mutex automatically, together
with the use of templates and overloading, we have produced
a simple, yet expressive parameterized class abstraction that
operates correctly and atomically on an infinite family of
types that require atomic operations. For example, to pro-
vide the same thread-safe functionality for other arithmetic
types we simply instantiate new objects of the Atomic Op
template class as follows:

Atomic_Op <double> atomic_double;
Atomic_Op <Complex> atomic_complex;

4 Extending Atomic Op by Parameter-
izing the Type of Mutual Exclusion
Mechanism

Although the design of the Atomic Op and Guard classes
described above yielded correct and transparently thread-
safe programs, there is still room for improvement. In par-
ticular, note that the type of the Mutex data member is
hard-coded into the Atomic Op class. Since templates are
available in C++, this design decision represents an unnec-
essary restriction that is easily overcome by parameterizing
Guard and adding another type parameter to the template
class Atomic Op, as follows:

template <class MUTEX>
class Guard
{
// Basically the same as before...

private:
MUTEX &lock; // new data member change

};

template <class MUTEX, class TYPE>
class Atomic_Op
{
TYPE operator++ (void) {
Guard<MUTEX> m (this->lock);
return ++this->count;

}
// ...

private:
TYPE count;
MUTEX lock; // new data member

};

Using this new class, we can make the following simple
change at the beginning of the file:

typedef Atomic_Op <Mutex, unsigned long> COUNTER;
COUNTER request_count; // At file scope

// ... same as before

Before making this change, however, it is worthwhile to
analyze the reasons why using templates to parameterize the
type of mutual exclusion mechanism used by a program is
beneficial. After all, just because templates exist does not
necessarily make them useful in all circumstances. In fact,
parameterizing and generalizing the problem space via tem-
plates without clear and sufficient reasons may increase the
difficulty of understanding and reusing a class.

One motivation for parameterizing the type of mutual ex-
clusion mechanism is to increase portability across OS plat-
forms. Templates decouple the formal parameter class name
“MUTEX” from the actual name of the class used to provide
mutual exclusion. This is useful for platforms that already
use the symbol Mutex to denote an existing type or function.
By using templates, theAtomic Op class source code would
not require any changes when porting to such platforms.

5

However, a more interesting motivation arises from the
observation that there are actually several different flavors of
mutex semantics one might want to use (either in the same
program or across a family of related programs). Each of
these mutual exclusion flavors share the same basic protocol
(i.e., acquire/release), but they possess different seri-
alization and performance properties. Five flavors of mutual
exclusion mechanisms that I have found useful in practice
are described below.

� Non-Recursive Mutexes: Non-recursive mutexes pro-
vide an efficient form of mutual exclusion. They define a
critical section in which only a single thread may execute at
a time. They are non-recursive since the thread that currently
owns a mutex may not reacquire the mutex without releas-
ing it first. Otherwise, deadlock will occur immediately.
SunOS 5.x provides support for non-recursive mutexes via
its mutex t type. The ASX framework provides theMutex
C++ wrapper shown above to encapsulate the mutex t se-
mantics.

� Readers/Writer Mutexes: Readers/writer mutexes help
to improve performance for situations where an object pro-
tected by the mutex is read far more often than it is written.
Multiple threads may acquire the mutex simultaneously for
reading, but only one thread may acquire the mutex for writ-
ing. SunOS 5.x provides support for readers/writer mutexes
via its rwlock t type. The ASX framework provides a C++
wrapper called RW Mutex that encapsulates the rwlock t
semantics.

� Recursive Mutexes: Recursive mutexes are a simple ex-
tension to non-recursive mutexes. A recursive mutex allows
calls toacquire to be nested as long as the thread that owns
the Mutex is the one that re-acquires it. For example, if an
Atomic Op counter is called by multiple nested function
calls within the same thread, a recursive mutex will prevent
deadlock from occurring.

Recursive mutexes are particularly useful for callback-
driven C++ frameworks [11, 3, 4], where the framework
event-loop performs a callback to arbitrary user-defined code.
Since the user-defined code may subsequently re-enter frame-
work code via a method entry point, recursive mutexes may
be necessary to prevent deadlock from occurring on locks
held within the framework during the callback. The mutual
exclusion mechanisms in the Windows NT WIN32 subsys-
tem provide recursive mutex semantics.

The following C++ class implements recursive mutexes for
SunOS 5.x, whose native mutex mechanisms do not provide
recursive mutex semantics:2

class Recursive_Mutex
{
public:
// Initialize a recursive mutex.
Recursive_Mutex (const char *name = 0

void *arg = 0);

// Implicitly release a recursive mutex.

2Note that POSIX Pthreads and Win32 provide recursive mutexes in their
native thread libraries.

˜Recursive_Mutex (void);

// Explicitly release a recursive mutex.
int remove (void);

// Acquire a recursive mutex (will increment
// the nesting level and not deadmutex if
// owner of the mutex calls this method more
// than once).
int acquire (void) const;

// Conditionally acquire a recursive mutex
// (i.e., won’t block).
int try_acquire (void) const;

// Releases a recursive mutex (will not
// release mutex until nesting level == 0).
int release (void) const;

thread_t get_thread_id (void);
// Return the id of the thread that currently
// owns the mutex.

int get_nesting_level (void);
// Return the nesting level of the recursion.
// When a thread has acquired the mutex for the
// first time, the nesting level == 1. The nesting
// level is incremented every time the thread
// acquires the mutex recursively.

private:
void set_nesting_level (int d);
void set_thread_id (thread_t t);

Mutex nesting_mutex_;
// Guards the state of the nesting level
// and thread id.

Condition<Mutex> lock_available_;
// This is the condition variable that actually
// suspends other waiting threads until the
// mutex is available.

int nesting_level_;
// Current nesting level of the recursion.

thread_t owner_id_;
// Current owner of the lock.

};

The following code illustrates the implementation of the
methods in the Recursive Mutex class:

Recursive_Mutex::Recursive_Mutex
(const char *name, void *arg)
: nesting_level_ (0),

owner_id_ (0),
nesting_mutex (name, arg),
lock_available_ (nesting_mutex_, name, arg)

{
}

// Acquire a recursive lock (will increment
// the nesting level and not deadlock if
// owner of lock calls method more than once).

int
Recursive_Mutex::acquire (void) const
{
thread_t t_id = Thread::self ();

Guard<Mutex> mon (nesting_mutex_);

// If there’s no contention, just
// grab the lock immediately.
if (nesting_level_ == 0)

{
set_thread_id (t_id);
nesting_level_ = 1;

}
// If we already own the lock,
// then increment the nesting level

6

// and proceed.
else if (t_id == owner_id_)
nesting_level_++;

else
{
// Wait until the nesting level has dropped to
// zero, at which point we can acquire the lock.
while (nesting_level_ > 0)
lock_available_.wait ();

set_thread_id (t_id);
nesting_level_ = 1;

}

return 0;
}

// Releases a recursive lock.

int
Recursive_Mutex::release (void) const
{
thread_t t_id = Thread::self ();

// Automatically acquire mutex.
Guard<Mutex> mon (nesting_mutex_);

nesting_level_--;
if (nesting_level_ == 0)
// Inform waiters that the lock is free.
lock_available_.signal ();

return 0;
}

� Intra-Process vs. Inter-Process Mutexes: To opti-
mize performance, many operating systems provide differ-
ent mutex mechanisms for serializing (1) threads that ex-
ecute within the same process (i.e., intra-process serializa-
tion) vs. (2) threads that execute in separate processes
(i.e., inter-process serialization). For example, in Windows
NT, the CriticalSection operations define a mutual
exclusion mechanism that is optimized to serialize threads
within a single process. In contrast, the Windows NT mu-
tex operations (e.g., CreateMutex) define a more general,
though less efficient, mechanism that allows threads in sep-
arate processes to serialize their actions. In SunOS 5.x, the
USYNC THREAD flag to the mutex init function cre-
ates a mutex that is valid only within a single processes,
whereas the USYNC PROCESS flag creates a mutex that is
valid in multiple processes. By combining C++ wrappers
and templates, we can create a highly-portable, platform-
independent mutual exclusion class interface that does not
impose arbitrary syntactic constraints on our use of different
synchronization mechanisms.

� The Null Mutex: There are also cases where mutual ex-
clusion is simply not needed (e.g., we may know that a partic-
ular program or service will always run in a single thread of
control and/or will not contend with other threads for access
to shared resources). In this case, it is useful to parame-
terize the Atomic Op class with a “Null Mutex.” The
Null Mutex class in the ASX framework implements the
acquire and release methods as “no-op” inline func-
tions that may be removed completely by a compiler opti-
mizer.

Often, selecting a mutual exclusion mechanism with the
appropriate semantics depends on the context in which a class

is being used. For instance, consider the following methods
in a C++ search structure container class that maps exter-
nal identifiers (such as network port numbers) onto internal
identifiers (such as pointers to control blocks):

template <class EX_ID, class IN_ID, class MUTEX>
class Map_Manager
{
public:
int bind (EX_ID ex_id, const IN_ID *in_id) {
Guard<MUTEX> monitor (this->lock);
// ...

}

int unbind (EX_ID ex_id) {
Guard<MUTEX> monitor (this->lock);
// ...

}

int find (EX_ID ex_id, IN_ID &in_id) {
Guard<MUTEX> monitor (this->lock);

if (this->locate_entry (ex_id, in_id)
/* ex_id is successfully located */
return 0;

else
return -1;

}

private:
MUTEX lock;
// ...

};

One advantage to this approach is that theMutex lock will be
released regardless of which execution path exits a method.
For example,this->lock is released properly if either arm
of the if/else statement returns from the find method.
In addition, this “constructor as resource acquisition” idiom
also properly releases the lock if an exception is raised during
processing in the definition of the locate entry helper
method. The reason for this is that the C++ exception han-
dling mechanism is designed to call all necessary destructors
upon exit from a block in which an exception is thrown. Note
that had we written the definition of find using explicit calls
to acquire and release the Mutex, i.e.:

int find (EX_ID ex_id, IN_ID &in_id) {
this->lock.acquire ();

if (this->locate_entry (ex_id, in_id) {
/* ex_id is successfully located */
this->lock.release ();
return 0;

}
else {
this->lock.release ();
return -1;

}
}

that not only would the find method logic have been
more contorted, but there would be no guarantee that

7

this->lock was released if an exception was thrown in
the locate entry method.

The type of MUTEX that the Map Manager template
class is instantiated with depends upon the particular structure
of parallelism in the program code when it is used. For
example, in some situations it is useful to be able to declare:

typedef Map_Manager <Addr, TCB, Mutex>
MAP_MANAGER;

and have all calls to find, bind, and unbind automati-
cally serialized. In other situations, it is useful to turn off
synchronization without touching any existing library code
by using the Null Mutex class:

typedef Map_Manager <Addr, TCB, Null_Mutex>
MAP_MANAGER;

In yet another situation, it may be the case that calls to find
are far more frequent than bind or unbind. In this case, it
may make sense to use the Readers/Writer Mutex:

typedef Map_Manager <Addr, TCB, RW_Mutex>
MAP_MANAGER;

By using templates to parameterize the type of locking, little
or no application code must change to accommodate new
synchronization semantics.

5 Discussion

I frequently encounter several questions when discussing the
use of templates in the Atomic Op class. The first is “what
is the run-time performance penalty for all the added abstrac-
tion?” The second is “aren’t you obscuring the synchroniza-
tion properties of the program by using templates and over-
loading?” The third question is “instead of templates, why
not use inheritance and dynamic binding to emphasize uni-
form mutex interface and to share common code?” Several
of these questions are related and I’ll discuss my responses
in this section.

The primary reason why templates are used for the
Atomic Op class involve efficiency. Once expanded by
an optimizing C++ compiler during template instantiation,
the additional amount of run-time overhead is minimal. In
contrast, inheritance and dynamic binding often incur more
overhead at run-time in order to dispatch virtual method calls.

Figure 1 illustrates the performance exhibited by the mu-
tual exclusion techniques used in Examples 2 through 5
above.3 This figure depicts the number of seconds required
to process 10 million iterations, divided into 2.5 million it-
erations per-thread. The test examples were compiled using
the -O4 optimization level of the Sun C++ 3.0.1 compiler.
Each test was executed 10 times on an otherwise idle 4 CPU

3Example 1 is the original erroneous implementation that did not use
any mutual exclusion operations. Although it operates extremely efficiently
(approximately 0.09 seconds to process 10,000,000 iterations), it produces
results that are totally incorrect!

2 3 4 5
0

10

20

30

40

50

60

70

80

90

N
um

be
r

of
 S

ec
on

ds

Example

Figure 1: Number of Seconds Required to Process
10,000,000 Iterations

Example usecs per operation Ratio

Ex. 2 2.76 1
Ex. 3 2.35 0.85
Ex. 4 4.24 1.54
Ex. 5 3.39 1.29

Table 1: Serialization Time for Different Examples

Sun SPARCserver 690MP. The results were averaged to re-
duce the amount of spurious variation (which proved to be
insignificant).

Example 2 uses the SunOS mutex t functions directly.
Example 3 uses the C++Mutex class wrapper interface. Sur-
prisingly, this implementation consistently performed better
than Example 2, which used direct calls to the underly-
ing SunOS mutex functions. Example 4 uses the Guard
helper class inside of a nested curly brace block to ensure
that the Mutex is automatically released. This version re-
quired the most time to execute. Finally, Example 5 uses the
Atomic Op template class, which is only slightly less effi-
cient than using the SunOS mutex functions directly. More
aggressively optimizing C++ compilers would likely reduce
the amount of variation in the results.

Table 1 indicates the number of micro-seconds (usecs)
incurred by each mutual exclusion operation for Examples
2 through 5. Recall that each iteration requires 2 mutex
operations (i.e., one to acquire the lock and one to release the
lock). Example 2 is used as the base-line value since it uses
the underlying SunOS primitives directly. The third column
of Examples 3 through 5 are normalized by dividing their
values by Example 2.

An argument I have heard against using templates to pa-
rameterize synchronization is that it hides the mutual exclu-
sion semantics of the program. However, whether this is a
problem or not depends on how one believes that concurrency
and synchronization should be integrated into a program. For
class libraries that contain basic building-block components
(such as theMap Manager described above), allowing syn-

8

chronization semantics to be parameterized is often desirable
since this enables developers to precisely control and specify
the concurrency semantics that they want. The alternatives to
this strategy are (1) don’t use class libraries if multi-threading
is used (which obviously limits functionality), (2) do all the
locking outside the library (which may be inefficient or un-
safe), or (3) hard-code the locking strategy into the library
implementation (which is also inflexible and potentially in-
efficient). All these alternatives are antithetical to principles
of reuse in object-oriented software systems.

An appropriate synchronization strategy for designing a
class library depends on several factors. For example, cer-
tain library users may welcome simple interfaces that hide
concurrency control mechanisms from view. In contrast,
other library users may be willing to accept more compli-
cated interfaces in return for additional control and increased
efficiency. A layered approach to class library design may
be quite useful to satisfy both groups of library users. In
such an approach, the lowest layers of the class library would
export most or all of the parameterized types as template
arguments. The higher layers would provide reasonable de-
fault type values and provide an easier-to-use application
developer’s programming interface.

The new “default template argument” feature recently
adopted by the ANSI C++ committee will facilitate the de-
velopment of class libraries that satisfy both types of library
users. This feature allows library developers to specify rea-
sonable default types as arguments to template class and
function definitions. For example, the following modifica-
tion to template class Atomic Op provides it with typical
default template arguments:

template <class MUTEX = Mutex,
class TYPE = unsigned long>

class Atomic_Op
{
// Same as before
};

// ...

#if defined (MT_SAFE)
// default is Mutex and unsigned long
Atomic_Op request_count;
#else /* don’t serialize */
Atomic_Op<Null_Mutex> request_count;
#endif /* MT_SAFE */

Due to the complexity that arises from incorporating con-
currency into applications, I’ve found the C++ template fea-
ture to be quite useful for reducing redundant development
effort. However, as with any other language feature, it is
possible to misuse templates and needlessly complicate a
system’s design and implementation. Currently, the heuris-
tic I use to decide when to parameterize based on types is
to keep track of when I’m about to duplicate existing code
by only modifying the data types it uses. If I can think of
another not-too-far-fetched scenario that would require me
to make yet a third version that only differs according to the

types involved, I typically generalize my original code to use
templates.

6 Concluding Remarks

The example described in this paper was derived from a much
larger distributedapplication that runs on a high-performance
shared memory multi-processor. The Atomic Op class
and Mutex-related classes are some of the components
available in the ADAPTIVE Communication Environment
(ACE), which is a freely available object-oriented toolkit
designed to simplify the development of distributed ap-
plications on shared memory multi-processor platforms
[12]. ACE may be obtained via anonymous ftp from
ics.uci.edu in the file gnu/C++ wrappers.tar.Z and
gnu/C++ wrappers doc.tar.Z. This distributioncon-
tains complete source code and documentation for the C++
components and examples described in this article. Compo-
nents in ACE have been ported to both UNIX and Windows
NT and are currently being used in a number of commercial
products including the AT&T Q.port ATM signaling software
product, the Ericsson EOS family of PBX monitoring appli-
cations, and the network management portion of the Motorola
Iridium mobile communications system.

References
[1] D. C. Schmidt, “ACE: an Object-Oriented Framework for

Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[2] D. C. Schmidt and P. Stephenson,“An Object-Oriented Frame-
work for Developing Network Server Daemons,” in Proceed-
ings of the 2nd C++ World Conference, (Dallas, Texas), SIGS,
Oct. 1993.

[3] D. C. Schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX I/O Multiplexing (Part 1 of 2),” C++
Report, vol. 5, February 1993.

[4] D. C. Schmidt, “The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX I/O Multi-
plexing (Part 2 of 2),” C++ Report, vol. 5, September 1993.

[5] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[6] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 1.2 ed., 1993.

[7] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[8] A. D. Birrell, “An Introduction to Programming with
Threads,” Tech. Rep. SRC-035, Digital Equipment Corpo-
ration, January 1989.

[9] H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[10] G. Booch and M. Vilot, “Simplifying the Booch Components,”
C++ Report, vol. 5, June 1993.

[11] M. A. Linton and P. R. Calder, “The Design and Implemen-
tation of InterViews,” in Proceedings of the USENIX C++
Workshop, November 1987.

9

[12] D. C. Schmidt, “The ADAPTIVE Communication Environ-
ment: An Object-Oriented Network Programming Toolkit for
Developing Communication Software,” in Proceedings of the
12th Annual Sun Users Group Conference, (San Jose, CA),
pp. 214–225, SUG, Dec. 1993.

10

