
Active Object

An Object Behavioral Pattern for
Concurrent Programming

R. Greg Lavender Douglas C. Schmidt
G.Lavender@isode.com schmidt@cs.wustl.edu
ISODE Consortium Inc. Department of Computer Science

Austin, TX Washington University, St. Louis

An earlier version of this paper appeared in a chapter in
the book “Pattern Languages of Program Design 2” ISBN
0-201-89527-7, edited by John Vlissides, Jim Coplien, and
Norm Kerth published by Addison-Wesley, 1996.

Abstract

This paper describes the Active Object pattern, which decou-
ples method execution from method invocation in order to
simplify synchronized access to an object that resides in its
own thread of control. The Active Object pattern allows one
or more independent threads of execution to interleave their
access to data modeled as a single object. A broad class of
producer/consumer and reader/writer applications are well-
suited to this model of concurrency. This pattern is com-
monly used in distributed systems requiring multi-threaded
servers. In addition, client applications, such as window-
ing systems and network browsers, employ active objects to
simplify concurrent, asynchronous network operations.

1 Intent

The Active Object design pattern decouples method execu-
tion from method invocation to enhance concurrency and
simplify synchronized access to an object that resides in its
own thread of control.

2 Also Known As

Concurrent Object and Actor

3 Example

To illustrate the Active Object pattern, consider the design
of a communication Gateway [1]. A Gateway decouples co-
operating components and allows them to interact without
having direct dependencies among each other [2]. The Gate-
way shown in Figure 1 routes messages from one or more
supplier processes to one or more consumer processes in a
distributed system [3].

WIDE AREA

NETWORK

SATELLITESSATELLITES
TRACKINGTRACKING
STATIONSTATION

PEERSPEERS

STATUS INFO

COMMANDS BULK DATA

TRANSFER

LOCAL AREA NETWORK

GROUND
STATION

PEERS

GATEWAY

Figure 1: Communication Gateway

In our example, the Gateway, suppliers, and consumers
communicate over TCP, which is a connection-oriented pro-
tocol [4]. Therefore, the Gateway software may encounter
flow control from the TCP transport layer when it tries to
send data to a remote consumer. TCP uses flow control to
ensure that fast suppliers or Gateways do not produce data
more rapidly than slow consumers or congested networks
can buffer and process the data.

To improve end-to-end quality of service (QoS) for all
suppliers and consumers, the entire Gateway process must
not block waiting for flow control to abate over any one con-
nection to a consumer. In addition, the Gateway must be
able to scale up efficiently as the number of suppliers and
consumers increase.

An effective way to prevent blocking and to improve per-
formance is to introduce concurrency into the Gateway de-
sign. Concurrent applications allow the thread of control of
an objectO that executes a method to be decoupled from the
threads of control that invoke methods onO. Moreover, us-
ing concurrency in the gateway enables threads whose TCP

1

connections are flow controlled to block without impeding
the progress of threads whose TCP connections are not flow
controlled.

4 Context

Clients that access objects running in separate threads of con-
trol.

5 Problem

Many applications benefit from using concurrent objects to
improve their QoS,e.g., by allowing an application to handle
multiple client requests in parallel. Instead of using single-
threadedpassive objects, which execute their methods in the
thread of control of the client that invoked the methods, con-
current objects reside in their own thread of control. How-
ever, if objects run concurrently we must synchronize access
to their methods and data if these objects are shared by mul-
tiple client threads. In the presence of this problem, three
forces arise:

1. Methods invoked on an object concurrently should not
block the entire process in order to prevent degrading the
QoS of other methods: For instance, if one outgoing TCP
connection to a consumer in our Gateway example becomes
blocked due to flow control, the Gateway process should still
be able to queue up new messages while waiting for flow
control to abate. Likewise, if other outgoing TCP connec-
tions arenot flow controlled, they should be able to send
messages to their consumers independently of any blocked
connections.

2. Synchronized access to shared objects should be sim-
ple: Applications like the Gateway example are often hard
to program if developers must explicitly use low-level syn-
chronization mechanisms, such as acquiring and releasing
mutual exclusion (mutex) locks. In general, methods that are
subject to synchronization constraints should be serialized
transparently when an object is accessed by multiple client
threads.

3. Applications should be designed to transpar-
ently leverage the parallelism available on a hard-
ware/software platform: In our Gateway example, mes-
sages destined for different consumers should be sent in par-
allel by a Gateway over different TCP connections. If the
entire Gateway is programmed to only run in a single thread
of control, however, performance bottlenecks cannot be al-
leviated transparently by running the Gateway on a multi-
processor.

6 Solution

For each object that requires concurrent execution, decou-
ple method invocation on the object from method execution.

This decoupling is designed so the client thread appears to
invoke an ordinary method. This method is automatically
converted into a method request object and passed to another
thread of control, where it is converted back into a method
and executed on the object implementation.

An active object consists of the following components.
A Proxy [5, 2] represents the interface of the object and a
Servant[6] provides the object’s implementation. Both the
Proxy and the Servant run in separate threads so that method
invocation and method execution can run concurrently: the
proxy runs in the client thread, while the servant runs in a dif-
ferent thread. At run-time, the Proxy transforms the client’s
method invocation into aMethod Request, which is stored
in anActivation Queueby aScheduler. The Scheduler runs
continuously in the same thread as the servant, dequeueing
Method Requests from the Activation Queue when they be-
come runnable and dispatching them on the Servant that im-
plements the Active Object. Clients can obtain the results of
a method’s execution via theFuturereturned by the Proxy.

7 Structure

The structure of the Active Object pattern is illustrated in the
following Booch class diagram:

Proxy

Future m1()
Future m2()
Future m3()

Scheduler

dispatch()
enqueue()

INVISIBLE
TO

CLIENTS

VISIBLE
TO

CLIENTS

1

1 2: enqueue(M1)

1: enqueue(new M1)

3: dispatch()

loop {
 m = act_queue_.dequeue()
 if (m.guard()) m.call()
}

Servant
1

m1()
m2()
m3()

Activation
Queue

enqueue()
dequeue()

1

1

n
Method
Request

guard()
call()4: m1()

1 1

M1

M3

M2

There are six key participants in the Active Object pattern:

Proxy

� A Proxy [2, 5] provides an interface that allows clients
to invoke publically accessible methods on an Ac-
tive Object using standard, strongly-typed program-
ming language features, rather than passing loosely-
typed messages between threads. When a client invokes
a method defined by the Proxy, this triggers the con-
struction and queueing of a Method Request object onto
the Scheduler’s Activation Queue, all of which occurs
in the client’s thread of control.

2

Method Request

� A Method Request is used to passcontext information
about a specific method invocation on a Proxy, such
as method parameters and code, from the Proxy to a
Scheduler running in a separate thread. An abstract
Method Request class defines an interface for execut-
ing methods of an Active Object. The interace also
containsguardmethods that can be used to determine
when a Method Request’s synchronization constraints
are met. For every Active Object method offered by
the Proxy that requires synchronized access in its Ser-
vant, the abstract Method Request class is subclassed to
create a concrete Method Request class. Instances of
these classes are created by the proxy when its methods
are invoked and contain the specific context informa-
tion necessary to execute these method invocations and
return any results back to clients.

Activation Queue

� An Activation Queue maintains a bounded buffer of
pending Method Requests created by the Proxy. This
queue keeps track of which Method Requests to exe-
cute. It also decouples the client thread from the servant
thread so the two threads can run concurrently.

Scheduler

� A Scheduler runs in a different thread than its clients,
managing an Activation Queue of Method Requests
that are pending execution. A Scheduler decides which
Method Request to dequeue next and execute on the
Servant that implements this method. This schedul-
ing decision is based on various criteria, such asor-
dering, e.g., the order in which methods are inserted
into the Activation Queue, andsynchronization con-
straints, e.g., the fulfillment of certain properties or the
occurrence of specific events, such as space becoming
available for new elements in a bounded data structure.
A Scheduler typically evaluates synchronization con-
straints by using method request guards.

Servant

� A Servant defines the behavior and state that is be-
ing modeled as an Active Object. Servants implement
the methods defined in the Proxy and the correspond-
ing Method Requests. A Servant method is invoked
when its corresponding Method Request is executed by
a Scheduler; thus, Servants execute in the Scheduler’s
thread of control. Servants may provide other methods
used by Method Requests to implement their guards.

Future

� A Future [7, 8] allows a client to obtain the results of
method invocations after the Servant finishes executing
the method. When a client invokes methods through a

Proxy, a Future is returned immediately to the client.
The Future reserves space for the invoked method to
store its results. When a client wants to obtain these re-
sults, it can “rendezvous” with the Future, either block-
ing or polling until the results are computed and stored
into the Future.

8 Dynamics

The following figure illustrates the three phases of collabo-
rations in the Active Object pattern:

INVOKE

DEQUEUE SUITABLE

 METHOD REQUEST

RETURN RESULT

EXECUTE

Client

Proxy Activation
Queue

M
E

T
H

O
D

 O
B

J
E

C
T

M
E

T
H

O
D

 O
B

J
E

C
T

C
O

N
S

T
R

U
C

T
IO

N
C

O
N

S
T

R
U

C
T

IO
N

S
C

H
E

D
U

L
IN

G
S

C
H

E
D

U
L

IN
G

//
E

X
E

C
U

T
IO

N
E

X
E

C
U

T
IO

N
C

O
M

P
L

E
T

IO
N

C
O

M
P

L
E

T
IO

N

m1()

ServantServant

 Scheduler Scheduler

CREATE METHODCREATE METHOD
REQUESTREQUEST

reply_to_future()

future()RETURN FUTURERETURN FUTURE

INSERT INTOINSERT INTO
 ACTIVATION QUEUE ACTIVATION QUEUE

enqueue(new M1)

dequeue(M1)

enqueue(M1)

M1

call()

dispatch(M1)

m1()

guard()

1. Method Request construction and scheduling: In this
phase, the client invokes a method on the Proxy. This trig-
gers the creation of a Method Request, which maintains the
argument bindings to the method, as well as any other bind-
ings required to execute the method and return its results.
The Proxy then passes the Method Request to the Scheduler,
which enqueues it on the Activation Queue. If the method is
defined as atwo-way[6], a binding to a Future is returned to
the client that invoked the method. No Future is returned if a
method is defined as aoneway, i.e., it has no return values.

2. Method execution: In this phase, the Scheduler runs
continuously in a different thread than its clients. Within this
thread, the Scheduler monitors the Activation Queue and de-
termines which Method Request(s) have become runnable,
e.g., when their synchronization constraints are met. When a
Method Request becomes runnable, the Scheduler dequeues
it, binds it to the Servant, and dispatches the appropriate
method on the Servant. When this method is called, it can
access/update the state of its Servant and create its result(s).

3. Completion: In the final phase, the results, if any, are
stored in the Future and the Scheduler continues to monitor
the Activation Queue for runnable Method Requests. After
a two-way method completes, clients can retrieve its results
by rendezvousing with the Future. In general, any clients
that rendezvous with the Future can obtain its results. The
Method Request and Future are deleted or garbage collected
when they are no longer referenced.

3

9 Implementation

This section explains the steps involved in building a concur-
rent application using the Active Object pattern. The appli-
cation implemented using the Active Object pattern is a por-
tion of the Gateway from Section 3. Figure 2 illustrates the
structure and participants in this example. The example in

MQ_ProxyMQ_Proxy

put (msg)
Future get()

MQMQ
SchedulerScheduler

dispatch()
enqueue()

loop {
 m = act_queue_.dequeue()
 if (m.guard()) m.call()
}

MQMQ
ServantServantINVISIBLEINVISIBLE

TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

1: enqueue(Put)
2: enqueue

 (new Put)

3: dispatch()

put()
get()

ActivationActivation
QueueQueue

enqueue()
dequene()

PutPut

GetGet

MethodMethod
RequestRequest

guard()
call()

nn

11

4: put()

11 11

Figure 2: Implementing a Message Queue as an Active Ob-
ject forConsumer Handler s

this section uses reusable components from the ACE frame-
work [9]. ACE provides a rich set of reusable C++ wrappers
and framework components that perform common commu-
nication software tasks across a wide range of OS platforms.

1. Implement the Servant: A Servant defines the behav-
ior and state that is being modeled as an Active Object. The
methods a Servant implements are accessible by clients via a
Proxy. In addition, a Servant may contain other methods that
Method Requests can use to implement guards that allow a
Scheduler to evaluate run-time synchronization constraints.
These constraints determine the order in which a Scheduler
dispatches Method Requests.

In our Gateway example, the Servant is a message queue
that buffers messages that are pending delivery to con-
sumers. For each remote consumer, there is aConsumer
Handler that contains a TCP connection to the consumer
process. In addition, aConsumer Handler contains a
message queue model as an Active Object and implemented
with anMQServant . EachConsumer Handler ’s Ac-
tive Object message queue stores messages passed from sup-
plier to the Gateway while they are waiting to be sent to their
remote consumer. The following class provides an interface
for this Servant:

class MQ_Servant
{
public:

MQ_Servant (size_t mq_size);

// Message queue implementation operations.
void put_i (const Message &msg);
Message get_i (void);

// Predicates.
bool empty_i (void) const;
bool full_i (void) const;

private:
// Internal Queue representation, e.g., a
// circular array or a linked list, etc.

};

Theput i andget i methods implement the insertion
and removal operations on the queue, respectively. In ad-
dition, the servant defines twopredicates, empty i and
full i , that distinguish three internal states: (1) empty, (2)
full, and (3) neither empty nor full. These predicates are used
in the implementation of the Method Requestguard meth-
ods, which allow the Scheduler to enforce run-time synchro-
nization constraints that dictate the order in whichput i
andget i methods are called on a Servant.

Note how theMQServant class is designed so that syn-
chronization mechanisms remain external to the Servant.
For instance, in our Gateway example, the methods in the
MQServant class do not include any code that imple-
ments synchronization. This class only provides methods
that implement the Servant’s functionality and check its in-
ternal state. This design avoids theinheritance anomaly
[10, 11, 12, 13] problem, which inhibits the reuse of Servant
implementations if subclasses require different synchroniza-
tion policies. Thus, a change to the synchronization con-
straints of the Active Object need not affect its servant im-
plementation.

2. Implement the Proxy and Method Requests: The
Proxy provides clients with an interface to the Servant’s
methods. For each method invocation by a client, the Proxy
creates a Method Request. A Method Request is an abstrac-
tion for the context1 of a method. This context typically in-
cludes the method parameters, a binding to the Servant the
method will be applied to, a Future for the result, and the
code for the Method Request’scall method.

In our Gateway example, theMQProxy provides an ab-
stract interface to theMQServant defined in Step 1. This
message queue is used by aConsumer Handler to queue
messages for delivery to consumers, as shown in Figure 2. In
addition, theMQProxy is a factory that constructs instances
of Method Requests and passes them to a Scheduler, which
queues them for subsequent execution in a separate thread.
The C++ implementation ofMQProxy is shown below:

class MQ_Proxy
{
public:

// Bound the message queue size.
enum { MAX_SIZE = 100 };

MQ_Proxy (size_t size = MAX_SIZE)
: scheduler_ (new MQ_Scheduler (size)),

servant_ (new MQ_Servant (size)) {}

// Schedule <put> to execute on the active object.
void put (const Message &m) {

Method_Request *method_request =

1This context is often called aclosure.

4

new Put (servant_, m);
scheduler_->enqueue (method_request);

}

// Return a Message_Future as the ‘‘future’’
// result of an asynchronous <get>
// method on the active object.
Message_Future get (void) {

Message_Future result;

Method_Request *method_request =
new Get (servant_, result);

scheduler_->enqueue (method_request);
return result;

}

// ... empty() and full() predicate implementations ...

protected:
// The Servant that implements the
// Active Object methods.
MQ_Servant *servant_;

// A scheduler for the Message Queue.
MQ_Scheduler *scheduler_;

};

Each method of anMQProxy transforms its invoca-
tion into a Method Request and passes the request to its
MQScheduler , which enqueues it for subsequent acti-
vation. A Method Request base class defines virtual
guard and call methods that are used by its Scheduler
to determine if a Method Request can be executed and to
execute the Method Request on its Servant, respectively, as
follows:

class Method_Request
{
public:

// Evaluate the synchronization constraint.
virtual bool guard (void) const = 0;

// Implement the method.
virtual void call (void) = 0;

};

The methods in this class must be defined by subclasses, one
subclass for each method defined in the Proxy. The ratio-
nale for defining these two methods is to provide Sched-
ulers with a uniform interface to evaluate and execute con-
creteMethod Request s. Thus, Schedulers can be decou-
pled from specific knowledge of how to evaluate the syn-
chronization constraints or trigger the execution of concrete
Method Request .

For instance, when a client invokes theput method on
the Proxy in our Gatway example, this method is trans-
formed into an instance of thePut subclass, which inher-
its from Method Request and contains a pointer to the
MQServant , as follows:

class Put : public Method_Request
{
public:

Put (MQ_Servant *rep,
Message arg)

: servant_ (rep), arg_ (arg) {}

virtual bool guard (void) const {

// Synchronization constraint: only allow
// <put_i> calls when the queue is not full.
return !servant_->full_i ();

}

virtual void call (void) {
// Insert message into the servant.
servant_->put_i (arg_);

}

private:
MQ_Servant *servant_;
Message arg_;

};

Note how theguard method uses theMQServant ’s
full i predicate to implement a synchronization constraint
that allows the Scheduler to determine when thePut method
request can execute. When aPut method request can be ex-
ecuted, the Scheduler invokes itscall hook method. This
call hook uses its run-time binding to theMQServant
to invoke the Servant’sput i method. This method is ex-
ecuted in the context of that Servant and does not require
any explicit serialization mechanisms since the Scheduler
enforces all the necessary synchronization constraints via the
Method Requestguard s.

The Proxy also transforms theget method into an in-
stance of theGet class, which is defined as follows:

class Get : public Method_Request
{
public:

Get (MQ_Servant *rep,
const Message_Future &f)

: servant_ (rep), result_ (f) {}

bool guard (void) const {
// Synchronization constraint:
// cannot call a <get_i> method until
// the queue is not empty.
return !servant_->empty_i ();

}

virtual void call (void) {
// Bind the dequeued message to the
// future result object.
result_ = servant_->get_i ();

}

private:
MQ_Servant *servant_;

// Message_Future result value.
Message_Future result_;

};

For every two-way method in the Proxy that returns a
value, such as theget i method in our Gateway example, a
Message Future is returned to the client thread that calls
it, as shown in implementation Step 4 below. The client may
choose to evaluate theMessage Future ’s value immedi-
ately, in which case the client blocks until the method request
is executed by the scheduler. Conversely, the evaluation of
a return result from a method invocation on an Active Ob-
ject can be deferred, in which case the client thread and the
thread executing the method can proceed asynchronously.

3. Implement the Activation Queue: Each Method Re-
quest is enqueued on an Activation Queue. This is typically

5

implemented as a thread-safe bounded-buffer that is shared
between the client threads and the thread where the Sched-
uler and Servant run. An Activation Queue also provides an
iterator that allows the Scheduler to traverse its elements in
accordance with the Iterator pattern [5].

The follow-
ing C++ code illustrates how theActivation Queue is
used in the Gateway:

class Activation_Queue
{
public:

// Block for an "infinite" amount of time
// waiting for <enqueue> and <dequeue> methods
// to complete.
const int INFINITE = -1;

// Define a "trait".
typedef Activation_Queue_Iterator

iterator;

// Constructor creates the queue with the
// specified high water mark that determines
// its capacity.
Activation_Queue (size_t high_water_mark);

// Insert <method_request> into the queue, waiting
// up to <msec_timeout> amount of time for space
// to become available in the queue.
void enqueue (Method_Request *method_request,

long msec_timeout = INFINITE);

// Remove <method_request> from the queue, waiting
// up to <msec_timeout> amount of time for a
// <method_request> to appear in the queue.
void dequeue (Method_Request *method_request,

long msec_timeout = INFINITE);

private:
// Synchronization mechanisms, e.g., condition
// variables and mutexes, and the queue
// implementation, e.g., an array or a linked
// list, go here.
// ...

};

Theenqueue anddequeue methods provide a “bounded-
buffer producer/consumer” concurrency model that al-
lows multiple threads to simultaneously insert and remove
Method Request s without corrupting the internal state of
anActivation Queue. One or more client threads play
the role of producers, enqueueingMethod Request s via a
Proxy. The Scheduler thread plays the role of consumer, de-
queueingMethod Request s when theirguard s evaluate
to “true” and invoking theircall hooks to execute Servant
methods.

The Activation Queue is designed as a bounded-
buffer using condition variables and mutexes [14]. There-
fore, the Scheduler thread will block formsec timeout
amount of time when trying to removeMethod Requests
from an emptyActivation Queue. Likewise, client
threads will block for up tomsec timeout amount of time
when they try to insert onto a fullActivation Queue,
i.e., a queue whose currentMethod Request count equals
its high water mark. If anenqueue method times out, con-
trol returns to the client thread and the method is not exe-
cuted.

4. Implement the Scheduler: A Scheduler maintains the
Activation Queue and executes pending Method Requests
whose synchronization constraints are met. The public in-
terface of a Scheduler typically provides one method for
the Proxy to enqueue Method Requests into the Activation
Queue and another method that dispatches method requests
on the Servant. These methods run in separate threads,i.e.,
the Proxy runs in different threads than the Scheduler and
Servant, which run in the same thread.

In our Gateway example, we define anMQScheduler
class, as follows:

class MQ_Scheduler
{
public:

// Initialize the Activation_Queue to have the
// specified capacity and make the Scheduler
// run in its own thread of control.
MQ_Scheduler (size_t high_water_mark);

// ... Other constructors/destructors, etc.,

// Insert the Method Request into
// the Activation_Queue. This method
// runs in the thread of its client, i.e.,
// in the Proxy’s thread.
void enqueue (Method_Request *method_request) {

act_queue_->enqueue (method_request);
}

// Dispatch the Method Requests on their Servant
// in the Scheduler’s thread.
virtual void dispatch (void);

protected:
// Queue of pending Method_Requests.
Activation_Queue *act_queue_;

// Entry point into the new thread.
static void *svc_run (void *arg);

};

The Scheduler executes itsdispatch method in a dif-
ferent thread of control than its client threads. These client
threads make the Proxy enqueueMethod Request s in
the Scheduler’sActivation Queue. The Scheduler
monitors itsActivation Queue in its own thread, se-
lecting a Method Request whose guard evaluates to
“true,” i.e., whose synchronization constraints are met. This
Method Request is then executed by invoking itscall
hook method. Note that multiple client threads can share
the same Proxy. The Proxy methods need not be thread-
safe since the Scheduler and Activation Queue handle con-
currency control.

For instance, in our Gateway example, the constructor of
MQScheduler initializes theActivation Queue and
spawns a new thread of control to run theMQScheduler ’s
dispatch method, as follows:

MQ_Scheduler (size_t high_water_mark)
: act_queue_ (new Activation_Queue

(high_water_mark))
{

// Spawn a separate thread to dispatch
// method requests.
Thread_Manager::instance ()->spawn (svc_run,

this);
}

6

This new thread executes thesvc run static method, which
is simply an adapter that calls thedispatch method, as
follows:

void *
MQ_Scheduler::svc_run (void *args)
{

MQ_Scheduler *this_obj =
reinterpret_cast<MQ_Scheduler *> (args);

this_obj->dispatch ();
}

Thedispatch method determines the order thatPut and
Get method requests are processed based on the underly-
ing MQServant predicatesempty i andfull i . These
predicates reflect the state of the Servant, such as whether
the message queue is empty, full, or neither. By evaluating
these predicate constraints via the Method Requestguard
methods, the Scheduler can ensure fair shared access to the
MQServant , as follows:

virtual void
MQ_Scheduler::dispatch (void)
{

// Iterate continuously in a
// separate thread.
for (;;) {

Activation_Queue::iterator i;

// The iterator’s <begin> call blocks
// when the <Activation_Queue> is empty.
for (i = act_queue_->begin ();

i != act_queue_->end ();
i++) {

// Select a Method Request ‘mr’
// whose guard evaluates to true.
Method_Request *mr = *i;

if (mr->guard ()) {
// Remove <mr> from the queue first
// in case <call> throws an exception.
act_queue_->dequeue (mr);
mr->call ();
delete mr;

}
}

}
}

In our Gateway example, thedispatch implementation
of theMQScheduler class continuously executes the next
Method Request whoseguard evaluates to true. Sched-
uler implementations can be more sophisticated, however,
and may contain variables that represent the synchronization
state of the Servant. For example, to implement a multiple-
readers/single-writer synchronization policy several counter
variables can be stored in the Scheduler to keep track of the
number of read and write requests. The Scheduler can use
these counts to determine when a single writer can proceed,
that is, when the current number of readers is 0 and no other
writer is currently running. Note that the counter values are
independent of the Servant’s state since they are only used by
the Scheduler to enforce the correct synchronization policy
on behalf of the Servant.

5. Determine rendezvous and return value policies: The
rendezvous policy determines how clients obtain return val-
ues from methods invoked on active objects. A rendezvous
policy is required since Active Object servants do not execute
in the same thread as clients that invoke their methods. Im-
plementations of the Active Object pattern typically choose
from the following rendezvous and return value policies:

1. Synchronous waiting– Block the client thread syn-
chronously in the Proxy until the Method Request is
dispatched by the Scheduler and the result is computed
and stored in the future.

2. Synchronous timed wait– Block only for a bounded
amount of time and fail the result of a two-way call
is not returned within the allocated time period. If the
timeout is zero the client thread “polls,”i.e., it returns to
the caller without queueing the Method Request if the
Scheduler cannot dispatch it immediately.

3. Asynchronous– Queue the Method Request and return
control to the client thread immediately. If the method
is a two-way call that produces a result then some form
of Future mechanism must be used to provide synchro-
nized access to the value (or to the error status if the
method call fails).

The Future construct allows two-way asynchronous invo-
cations that return a value to the client. When a Servant com-
pletes the method execution, it acquires a write lock on the
Future and updates the Future with a result value. Any client
threads that are currently blocked waiting for the result value
are awakened and may access the result value concurrently.
A Future object can be garbage collected after the writer and
all readers no longer reference the Future. In languages like
C++, which do not support garbage collection natively, the
Future objects can be reclaimed when they are no longer in
use via idioms like Counter Pointer [2].

In our Gateway example, theget method invoked on the
MQProxy ultimately results in theGet::call method
being dispatched by theMQScheduler , as shown in Step
2 above. Since theMQProxy get method returns a value, a
Message Future is returned when the client calls it. The
Message Future is defined as follows:

class Message_Future
public:

// Copy constructor binds <this> and <f> to the
// same <Message_Future_Rep>, which is created if
// necessary.
Message_Future (const Message_Future &f);

// Constructor that initializes <Message_Future> to
// point to <Message> <m> immediately.
Message_Future (const Message &m);

// Assignment operator that binds <this> and <f>
// to the same <Message_Future_Rep>, which is
// created if necessary.
void operator= (const Message_Future &f);

// ... other constructors/destructors, etc.,

// Type conversion, which blocks

7

// waiting to obtain the result of the
// asynchronous method invocation.
operator Message ();

};

TheMessage Future is implemented using the Counted
Pointer idiom [2]. This idiom simplifies memory manage-
ment for dynamically allocated C++ objects by using a refer-
ence countedMessage Future Rep bodythat is accessed
solely through theMessage Future handle.

In general, a client can obtain theMessage result value
from aMessage Future object in either of the followings
ways:

� Immediate evaluation: The client may choose to
evaluate theMessage Future ’s value immediately. For
example, a GatewayConsumer Handler running in a
separate thread may choose to block until new messages ar-
rive from suppliers, as follows:

MQ_Proxy mq;
// ...

// Conversion of Message_Future from the
// get() method into a Message causes the
// thread to block until a message is
// available.
Message msg = mq.get ();

// Transmit message to the consumer.
send (msg);

� Deferred evaluation: The evaluation of a return re-
sult from a method invocation on an Active Object can
be deferred. For example, if messages are not avail-
able immediately, aConsumer Handler can store the
Message Future return value frommqand perform other
“bookkeeping” tasks, such as exchangingkeep-alive mes-
sagesto ensure its consumer is still active. When the
Consumer Handler is done with these tasks it can block
until a message arrives from suppliers, as follows:

// Obtain a future (does not block the client).
Message_Future future = mq.get ();

// Do something else here...

// Evaluate future in the conversion operator;
// may block if the result is not available yet.
Message msg = Message (future);

10 Example Resolved

Internally, the Gateway software containsSupplier and
Consumer Handler s that act as local proxies [2, 5] for
remote suppliers and consumers, respectively. As shown in
Figure 3,Supplier Handlers receive messages from
remote suppliers, inspect address fields in the messages, and
use the address as a key into aRouting Table that iden-
tifies which remote consumer should receive the message.
The Routing Table maintains a map ofConsumer

GATEWAYGATEWAY

 Supplier Supplier
HandlerHandler

 Consumer Consumer
HandlerHandler

 Message Message
QueueQueue

OUTGOING

MESSAGES

 Routing Routing
TableTable

INCOMING

MESSAGES

OUTGOING

MESSAGES

2: find_route (msg)2: find_route (msg)
3: put (msg)

CONSUMERCONSUMER

SUPPLIERSUPPLIER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

 Consumer Consumer
HandlerHandler

 Message Message
QueueQueue

INCOMING

MESSAGES

 Supplier Supplier
HandlerHandler

1: recv (msg)1: recv (msg)

Figure 3: Communication Gateway

Handler s, each of which is responsible for delivering mes-
sages to its remote consumer over a separate TCP connec-
tion.

To handle flow control over various TCP connections,
eachConsumer Handler contains aMessage Queue
implemented using the Active Object described in Section 9.
TheConsumer Handler class is defined as follows:

class Consumer_Handler
{
public:

Consumer_Handler (void);

// Put the message into the queue.
void put (const Message &msg) {

message_queue_.put (msg);
}

private:
// Proxy to the Active Object.
MQ_Proxy message_queue_;

// Connection to the remote consumer.
SOCK_Stream connection_;

// Entry point into the new thread.
static void *svc_run (void *arg);

};

Supplier Handler s running in their
own threadsput messages into the appropriateConsumer
Handler ’s Message Queue , as follows:

Supplier_Handler::route_message (const Message &msg)
{

// Locate the appropriate consumer based on the
// address information in the Message.
Consumer_Handler *ch =

routing_table_.find (msg.address ());

// Put the Message into the Consumer Handler’s queue.
ch->put (msg);

};

8

To process the messages placed into its message queue,
each Consumer Handler spawns a separate thread of
control in its constructor, as follows:

Consumer_Handler::Consumer_Handler (void)
{

// Spawn a separate thread to get messages
// from the message queue and send them to
// the consumer.
Thread_Manager::instance ()->spawn (svc_run,

this);
}

This new thread executes thesvc run method, which
gets the messages placed into the queue bySupplier
Handler threads and sends them to the consumer over the
TCP connection, as follows:

void *
Consumer_Handler::svc_run (void *args)
{

Consumer_Handler *this_obj =
reinterpret_cast<Consumer_Handler *> (args);

for (;;) {
// Conversion of Message_Future from the
// get() method into a Message causes the
// thread to block until a message is
// available.
Message msg = this_obj->message_queue_.get ();

// Transmit message to the consumer.
this_obj->connection_.send (msg);

}
}

Since the message queue is implemented as an Ac-
tive Object thesend operation can block in any given
Consumer Handler object without affecting the quality
of service of otherConsumer Handler s.

11 Variants

The following are variations of the Active Object pattern.

Integrated Scheduler: To reduce the number of compo-
nents needed to implement the Active Object pattern, the
roles of the Proxy and Servant are often integrated into the
Scheduler component, though servants still execute in a dif-
ferent thread than the proxies. Moreover, the transformation
of the method call into a Method Request can also be inte-
grated into the Scheduler. For instance, the following is an-
other way to implement the Message Queue example using
an integrated Scheduler:

class MQ_Scheduler
public:

MQ_Scheduler (size_t size)
: act_queue_ (new Activation_Queue (size))

{}

// ... other constructors/destructors, etc.,

void put (const Message &msg) {
Method_Request *method_request =

// The <MQ_Scheduler> is the servant.
new Put (this, msg);

act_queue_->enqueue (method_request);
}

Message_Future get (void) {
Message_Future result;

Method_Request *method_request =
// The <MQ_Scheduler> is the servant.
new Get (this, result);

act_queue_->enqueue (method_request);
return result;

}

// ...
private:

// Message queue servant operations.
void put_i (const Message &msg);
Message get_i (void);

// Predicates.
bool empty_i (void) const;
bool full_i (void) const;

Activation_Queue *act_queue_;
// ...

};

By centralizing where Method Requests are generated, the
pattern implementation can be simplified since there are
fewer components. The drawback, of course, is that the
Scheduler must know the type of the Servant and Proxy,
which makes it hard to reuse a Scheduler for different types
of Active Objects.

Message passing: A further refinement of the integrated
Scheduler variant is to remove the Proxy and Servant alto-
gether and use directmessage passingbetween the client
thread and the Scheduler thread, as follows:

class Scheduler
public:

Scheduler (size_t size)
: act_queue_ (new Activation_Queue (size))

{}

// ... other constructors/destructors, etc.,

// Enqueue a Message Request in the thread of
// the client.
void enqueue (Message_Request *message_request) {

act_queue_->enqueue (message_request);
}

// Dispatch Message Requests in the thread of
// the Scheduler.
virtual void dispatch (void) {

Message_Request *mr;

// Block waiting for next request to arrive.
while (act_queue_->dequeue (mr)) {

// Process the message request <mr>.
}

}
}

protected:
Activation_Queue *act_queue_;
// ...

};

In this design, there is no Proxy, so clients sim-
ply create an appropriate type ofMessage Request

9

and call enqueue , which inserts the request into the
Activation Queue. Likewise, there is no Servant, so
thedispatch method running in theScheduler ’s thread
simply dequeues the nextMessage Request and pro-
cesses the request according to its type.

In general, it is easier to develop a message passing mech-
anism than it is to develop an Active Object since there are
fewer components to develop. However, message passing
is typically more tedious and error-prone since application
developers are responsible for programming the Proxy and
Servant logic, rather than letting the Active Object develop-
ers write this code.

Polymorphic futures: A Polymorphic Future [15] allows
parameterization of the eventual result type represented by
the Future and enforces the necessary synchronization. In
particular, a Polymorphic Future result value provides write-
once, read-many synchronization. Whether a client blocks
on a future depends on whether or not a result value has
been computed. Hence, a Polymorphic Future is partly a
reader-writer condition synchronization pattern and partly a
producer-consumer synchronization pattern.

The following class illustrates a polymorphic future tem-
plate in C++:

template <class T>
class Future
{

// This class implements a ‘single write, multiple
// read’ pattern that can be used to return results
// from asynchronous method invocations.

public:
// Constructor.
Future (void);

// Copy constructor that binds <this> and <r> to
// the same <Future> representation
Future (const Future<T> &r);

// Destructor.
˜Future (void);

// Assignment operator that binds <this> and
// <r> to the same <Future>.
void operator = (const Future<T> &r);

// Cancel a <Future>. Put the future into its
// initial state. Returns 0 on success and -1
// on failure.
int cancel (void);

// Type conversion, which obtains the result
// of the asynchronous method invocation.
// Will block forever until the result is
// obtained.
operator T ();

// Check if the result is available.
int ready (void);

private:
Future_Rep<T> *future_rep_;
// Future representation implemented using
// the Counted Pointer idiom.

};

A client can use a polymorphic future as follows:

// Obtain a future (does not block the client).
Future<Message> future = mq.get ();

// Do something else here...

// Evaluate future in the conversion operator;
// may block if the result is not available yet.
Message msg = Message (future);

Distributed Active Object: In this variant, a distribution
boundary exists between the Proxy and the Scheduler, rather
than a threading boundary, as with the conventional Ac-
tive Object pattern. Therefore, the client-side Proxy plays
the role of astub, which is responsible for marshaling the
method parameters into a Method Request format that can
be transmitted across a network and executed by a Servant in
a separate address space. In addition, this variant also typ-
ically introduces the notion of a server-sideskeleton, which
performs demarshaling on the Method Request parameters
before they are passed to a Servant method in the server.

Thread pool: A thread pool is a generalization of Ac-
tive Object that supports multiple Servants per Active Ob-
ject. These Servants can offer the same services to increase
throughput and responsiveness. Every Servant runs in its
own thread and actively ask the Scheduler to assign a new
request when it is ready with its current job. The Scheduler
then assigns a new job as soon as one is available.

12 Known Uses

The following are specific known uses of the Active Object
pattern:

CORBA ORBs: The Active Object pattern has been used
to implement concurrent ORB middleware frameworks, such
as CORBA [6] and DCOM [16]. For instance, the TAO
ORB [17] implements the Active Object pattern for its de-
fault concurrency model [18]. In this design, CORBA
stubs correspond to the Active Object pattern’s Proxies,
which transform remote operation invocations into CORBA
Request s. The TAO ORB Core’sReactor is the Sched-
uler and the socket queues in the ORB Core correspond to the
Activation Queues. Developers create Servants that execute
the methods in the context of the server. Clients can either
make synchronous two-way invocations, which block the
calling thread until the operation returns, or they can make
asynchronous method invocations, which return a Poller fu-
ture object that can be evaluated at a later point [19].

ACE Framework: Reusable implementations of the
Method Request , Activation Queue , andFuture
components in the Active Object pattern are provided in the
ACE framework [9]. These components have been used to
implement many production distributed systems.

Siemens MedCom: The Active Object pattern is used in
the Siemens MedCom framework, which provides a black-
box component-oriented framework for electronic medical
systems [20]. MedCom employ the Active Object pattern

10

in conjunction with the Command Processor pattern to sim-
plify client windowing applications that access patient infor-
mation on various medical servers.

Siemens Call Center management system:This system
uses the thread pool variant of the Active Object pattern.

Actors: The Active Object pattern has been used to imple-
ment Actors [21]. An Actor contains a set of instance vari-
ables and behaviors that react to messages sent to an Actor
by other Actors. Messages sent to an Actor are queued in the
Actor’s message queue. In the Actor model, messages are
executed in order of arrival by the “current” behavior. Each
behavior nominates a replacement behavior to execute the
next message, possibly before the nominating behavior has
completed execution. Variations on the basic Actor model
allow messages in the message queue to be executed based
on criteria other than arrival order [22]. When the Active Ob-
ject pattern is used to implement Actors, the Scheduler cor-
responds to the Actor scheduling mechanism, Method Re-
quest correspond to the behaviors defined for an Actor, and
the Servant is the set of instance variables that collectively
represent the state of an Actor [23]. The Proxy is simply a
strongly-typed mechanism used to pass a message to an Ac-
tor.

13 Consequences

The Active Object pattern provides the following benefits:

Enhance application concurrency and simplify synchro-
nization complexity: Concurrency is enhanced by allow-
ing client threads and asynchronous method executions to
run simultaneously. Synchronization complexity is simpli-
fied by the Scheduler, which evaluates synchronization con-
straints to guarantee serialized access to Servants, depending
on their state.

Transparently leverage available parallelism: If the
hardware and software platforms support multiple CPUs ef-
ficiently, this pattern can allow multiple active objects to ex-
ecute in parallel, subject to their synchronization constraints.

Method execution order can differ from method invoca-
tion order: Methods invoked asynchronously are executed
based on their synchronization constraints, which may differ
from their invocation order.

However, the Active Object pattern has the following liabil-
ities:

Performance overhead: Depending on how the Scheduler
is implemented,e.g., in user-space vs. kernel-space, con-
text switching, synchronization, and data movement over-
head may occur when scheduling and executing active object
method invocations. In general, the Active Object pattern is
most applicable on relatively coarse-grained objects. In con-
trast, if the objects are very fine-grained, the performance
overhead of active objects can be excessive, compared with
other concurrency patterns such as Monitors.

Complicated debugging: It may be difficult to debug pro-
grams containing active objects due to the concurrency and
non-determinism of the Scheduler. Moreover, many debug-
gers do not support concurrent applications adequately.

14 See Also

The Monitor pattern ensures that only one method at a time
executes within a Passive Object, regardless of the number of
threads that invoke this object’s methods concurrently. Mon-
itors are generally more efficient than Active Objects since
they incur less context switching and data movement over-
head. However, it is harder to add a distribution boundary
between client and server threads using the Monitor pattern.

The Reactor pattern [24] is responsible for demultiplexing
and dispatching of multiple event handlers that are triggered
when it is possible to initiate an operation without blocking.
This pattern is often used in lieu of the Active Object pattern
to schedule callback operations to passive objects. It can
also be used in conjunction of the Active Object pattern to
form the Half-Sync/Half-Async pattern described in the next
paragraph.

The Half-Sync/Half-Async pattern [25] is an architectural
pattern that decouples synchronous I/O from asynchronous
I/O in a system to simplify concurrent programming effort
without degrading execution efficiency. This pattern typi-
cally uses the Active Object pattern to implement the Syn-
chronous task layer, the Reactor pattern [24] to implement
the Asynchronous task layer, and a Producer/Consumer pat-
tern to implement the Queueing layer.

The Command Processor pattern [2] is similar to the Ac-
tive Object pattern. Its intent is to separate the issuing of
requests from their execution. A command processor, which
corresponds to the scheduler, maintains pending service re-
quests, which are implemented as Commands [5]. These are
executed on suppliers, which correspond to servants. The
Command Processor pattern does not focus on concurrency,
however, and clients, the command processor, and suppli-
ers reside in the same thread of control. Thus, there are no
proxies that represent the servants to clients. Clients create
commands and pass them directly to the command processor.

The Broker pattern [2] has many of the same components
as the Active Object pattern. In particular, clients access Bro-
kers via Proxies and servers implement remote objects via
Servants. The primary difference between the Broker pat-
tern and the Active Object pattern is that there’s a distribution
boundary between proxies and servants in the Broker pattern
vs. a threading boundary between proxies and servants in the
Active Object pattern.

The Mutual Exclusion (Mutex) pattern [26] is a simple
locking pattern that is often used in lieu of Active Objects
when implementing concurrent Passive Objects, also known
as Monitors. The Mutex pattern can occur in slightly differ-
ent forms, such as a spin lock or a semaphore. The Mutex
pattern can have various semantics, such as recursive mu-
texes and priority inheritance mutexes.

11

Acknowledgements

The genesis for the Active Object pattern originated with
Greg Lavender. Thanks to Frank Buschmann, Hans Rohn-
ert, Martin Botzler, Michael Stal, Christa Schwanninger, and
Greg Gallant for extensive comments that greatly improved
the form and content of this version of the pattern descrip-
tion.

References
[1] D. C. Schmidt, “Acceptor and Connector: Design Patterns for

Initializing Communication Services,” inPattern Languages
of Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal,Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[3] D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,”The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2,
no. 1, 1996.

[4] W. R. Stevens,TCP/IP Illustrated, Volume 1. Reading, Mas-
sachusetts: Addison Wesley, 1993.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[6] Object Management Group,The Common Object Request
Broker: Architecture and Specification, 2.2 ed., Feb. 1998.

[7] R. H. Halstead, Jr., “Multilisp: A Language for Concur-
rent Symbolic Computation,”ACM Trans. Programming Lan-
guages and Systems, vol. 7, pp. 501–538, Oct. 1985.

[8] B. Liskov and L. Shrira, “Promises: Linguistic Support for
Efficient Asynchronous Procedure Calls in Distributed Sys-
tems,” inProceedings of the SIGPLAN’88 Conference on Pro-
gramming Language Design and Implementation, pp. 260–
267, June 1988.

[9] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[10] P. America, “Inheritance and Subtyping in a Parallel Object-
Oriented Language,” inECOOP’87 Conference Proceedings,
pp. 234–242, Springer-Verlag, 1987.

[11] D. G. Kafura and K. H. Lee, “Inheritance in Actor-Based Con-
current Object-Oriented Languages,” inECOOP’89 Confer-
ence Proceedings, pp. 131–145, Cambridge University Press,
1989.

[12] S. Matsuoka, K. Wakita, and A. Yonezawa, “Analysis of
Inheritance Anomaly in Concurrent Object-Oriented Lan-
guages,”OOPS Messenger, 1991.

[13] M. Papathomas, “Concurrency Issues in Object-Oriented
Languages,” inObject Oriented Development(D. Tsichritzis,
ed.), pp. 207–245, Centre Universitaire D’Informatique, Uni-
versity of Geneva, 1989.

[14] W. R. Stevens,UNIX Network Programming, Second Edition.
Englewood Cliffs, NJ: Prentice Hall, 1997.

[15] R. G. Lavender and D. G. Kafura, “A Polymorphic Fu-
ture and First-Class Function Type for Concurrent Object-
Oriented Programming in C++,” inForthcoming, 1995.
http://www.cs.utexas.edu/users/lavender/papers/futures.ps.

[16] D. Box, Essential COM. Addison-Wesley, Reading, MA,
1997.

[17] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Com-
puter Communications, vol. 21, pp. 294–324, Apr. 1998.

[18] D. C. Schmidt, “Evaluating Architectures for Multi-threaded
CORBA Object Request Brokers,”Communications of the
ACM special issue on CORBA, vol. 41, Oct. 1998.

[19] Object Management Group,CORBA Messaging Specifica-
tion, OMG Document orbos/98-05-05 ed., May 1998.

[20] P. Jain, S. Widoff, and D. C. Schmidt, “The Design and Per-
formance of MedJava – Experience Developing Performance-
Sensitive Distributed Applications with Java,”IEE/BCS Dis-
tributed Systems Engineering Journal, 1998.

[21] G. Agha,A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[22] C. Tomlinson and V. Singh, “Inheritance and Synchronization
with Enabled-Sets,” inOOPSLA’89 Conference Proceedings,
pp. 103–112, Oct. 1989.

[23] D. Kafura, M. Mukherji, and G. Lavender, “ACT++: A Class
Library for Concurrent Programming in C++ using Actors,”
Journal of Object-Oriented Programming, pp. 47–56, Octo-
ber 1992.

[24] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design(J. O.
Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading, MA:
Addison-Wesley, 1995.

[25] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current I/O,” in Proceedings of the2nd Annual Conference
on the Pattern Languages of Programs, (Monticello, Illinois),
pp. 1–10, September 1995.

[26] Paul E. McKinney, “A Pattern Language for Parallelizing Ex-
isting Programs on Shared Memory Multiprocessors,” inPat-
tern Languages of Program Design(J. O. Coplien, J. Vlis-
sides, and N. Kerth, eds.), Reading, MA: Addison-Wesley,
1996.

12

