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1 Introduction

This article is part of a continuingseries that describes object-
oriented techniques for developing reusable, extensible, and
efficient communication software. The current topic exam-
ines the Acceptor pattern. This design pattern enables the
tasks performed by network services to evolve independently
of the strategies used to passively initialize the services. By
decoupling service initialization from service processing, this
pattern enables the creation of reusable, extensible, and ef-
ficient network services. When used in conjunction with
related patterns like the Reactor [1] and the Connector [2],
this pattern enables the creation of highly extensible and ef-
ficient communication software frameworks [3].

A companion article [2] examines the Connector pattern,
which is the “dual” of the Acceptor pattern. The Connector
pattern decouples the active establishment of a connection
from the service performed once the connection is estab-
lished. Although these two patterns address similar forces
they are described separately since their structure differs
somewhat due to the asymmetry of connection establish-
ment protocols. In addition, the Connector pattern addresses
additional forces by using asynchrony to actively establish
connections with a large number of peers efficiently.

This article is organized as follows: Section 2 describes
the two primary connection roles (active and passive) used
to establish connections and explains how these roles can
be decoupled from the communication roles performed once
connections are established; Section 3 motivates the Accep-
tor pattern by applying it to a connection-oriented, multi-
service, application-levelGateway; Section 4 describes the
Acceptor pattern in detail and illustrates how to implement
it flexibly and efficiently by combining existing design pat-
terns [4] and C++ language features, and Section 5 presents
concluding remarks.

2 Background
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Figure 1: Active and Passive Connection roles

Connection-orientedprotocols (such as TCP, SPX, or TP4)
reliably deliver data between two or more endpoints of com-
munication. Establishing connections between endpoints in-
volves the following two roles:

� Passive role – which initializes an endpoint of commu-
nication at a particular address and waits passively for
the other endpoint(s) to connect with it;

� Active role – which actively initiates a connection to one
or more endpoints that are playing the passive role.

Figure 1 illustrates how these connection roles behave and
interact when a connection is established between an active
client and a passive server using the socket network program-
ming interface [5] and the TCP transport protocol [6]. In this
figure the server plays the passive role and the client plays
the active role.1

One goal of the Acceptor and Connector patterns is to de-
couple the passive and active connection roles, respectively,
from the services performed once a connection is established.

1It is important to recognize that traditional distinctions between “client”
and “server” refer to communication roles, not necessarily to connection
roles. Although clients often take the active role in establishing connections
with a passive server these connection roles can be reversed, as shown in
Section 3.
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These patterns are motivated by observing that the service
processing performed on messages exchanged between con-
nected endpoints is largely independent of the following:

� Which endpoint initiated the connection – connection
establishment is inherently asymmetrical since the pas-
sive endpoint waits and the active endpoint initiates the
connection. Once the connection is established, how-
ever, data may be transferred between services at the
endpoints in any manner that obeys the application’s
communication protocol (e.g., peer-to-peer, request-
response, oneway streaming, etc.). This is illustrated
in Figure 1 by the peer-to-peer send/recv commu-
nication between client and server once a connection is
established.

� The network programming interfaces and underlying
protocols used to establish the connection – different
network programming interfaces (such as sockets [7]
or TLI [8]) provide different library calls to establish
connections using various underlying transport proto-
cols (such as TCP, TP4, or SPX). Once a connection
is established, however, data may be transferred be-
tween endpoints using standard read/write system
calls that obey the protocols used to communicate be-
tween separate endpoints in a distributed application.

� The creation, connection, and concurrency strategies
used to initialize and execute the service – the processing
tasks performed by a service typically do not depend
on the strategies used to create a service, connect the
service to one or more peers, and execute the service in
one or more threads or processes. Explicitly decoupling
these initialization strategies from the service behavior
itself increases the potential for reusing and extending
the service in different environments.

3 Motivation

To illustrate the Acceptor and Connector patterns, consider
the multi-service, application-level Gateway shown in Fig-
ure 2. This Gateway routes several types of data (such as
status information, bulk data, and commands) between ser-
vices running on Peers located throughout a wide area and
local area network. The Gateway routes several types of
data (such as status information, bulk data, and commands)
that are exchanged between services running on the Peers.
These Peers are located throughout local area networks
(LANs) and wide-area networks (WANs) and are used to
monitor and control a satellite constellation.

The Gateway is a Mediator [4] that coordinates interac-
tions between its connected Peers. From the Gateway’s
perspective, these Peer services differ solely by their mes-
sage framing formats and payload types. TheGateway uses
a connection-oriented interprocess communication (IPC)
mechanism (such as TCP) to transmit data between its con-
nected Peers. Using a connection-oriented protocol sim-
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Figure 2: A Connection-oriented, Multi-service Application-
level Gateway

plifies application error handling and enhances performance
over long-delay WANs.

Each communication service in the Peers sends and re-
ceives status information, bulk data, and commands to and
from the Gateway using separate TCP connections. Each
connection is bound to a unique address (e.g., an IP address
and port number). For example, bulk data sent from a ground
station Peer through the Gateway is connected to a differ-
ent port than status information sent by a tracking station peer
through the Gateway to a ground station Peer. Separat-
ing connections in this manner allows more flexible routing
strategies and more robust error handling when connections
fail.

One way to design the Peers and Gateway is to des-
ignate the connection roles a priori. For instance, the
Gateway could be hard-coded to actively initiate the con-
nections for all its services. To accomplish this, it could
iterate through a list of Peers and synchronously connect
with each of them. Likewise, Peers could be hard-coded
to passively accept the connections and initialize their ser-
vices. Moreover, the active and passive connection code
for the Gateway and Peers, respectively, could be imple-
mented with conventional network programming interfaces
(such as sockets or TLI). In this case, a Peer could call
socket, bind, listen, and accept to initialize a
passive-mode listener socket and the Gateway could call
socket and connect to actively initiate a data-mode con-
nection socket. Once the connections were established, the
Gateway could route data for each type of service it pro-
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vided.
However, the approach outlined above has several draw-

backs:

� Limited extensibility and reuse of the Gateway and
Peer software. For example, the type of routing ser-
vice (e.g., status information, bulk data, or commands)
performed by theGateway is independent of the mech-
anisms used to establish the connection. Moreover,
these services tend to change more frequently than the
connection mechanisms. Therefore, tightly coupling the
software that implements connection establishment with
the software that implements the service makes it hard
to reuse existing services or to extend the Gateway
by adding new routing services and enhancing existing
services.

� Error-prone network programming interfaces – low-
level network programming (such as sockets or TLI)
do not provide adequate type-checking since they uti-
lize low-level I/O handles [9]. It is surprisingly easy to
accidentally misuse these interfaces in ways that cannot
be detected until run-time.

� Lack of scalability – If there are a large number of
Peers the synchronous connection establishment strat-
egy of the Gateway will not take advantage of the
parallelism inherent in the network and Peers.

Therefore, a more flexible and efficient way to design the
Peers and Gateway is to use the Acceptor and Connector
patterns. These patterns resolve the following forces for
network clients and servers that explicitly use connection-
oriented communication protocols:

� How to enable flexible strategies for executing network
services concurrently – Once a connection is estab-
lished, peer applications use the connection to exchange
data to perform some type of service (e.g., remote lo-
gin, WWW HTML document transfer, etc.). However,
a service can run in a single-thread, in multiple threads,
or multiple processes, regardless of how the connection
was established.

� How to reuse existing initialization code for each new
service – The Connector and Acceptor patterns permit
key characteristics of services (such as the application-
level communication protocol and data format) to evolve
independently and transparently from the strategies used
to initialize the services. Since service characteristics
tend to change more frequently than initializationstrate-
gies this separation of concerns helps reduce software
coupling and increases code reuse.

� How to actively establish connections with large number
of peers efficiently – The Connector pattern can employ
asynchrony to initiate and complete multiple connec-
tions in non-blocking mode. By using asynchrony, the
Connector pattern enables applications to actively estab-
lish connections with a large number of peers efficiently
over long-delay WANs.

� How to make the connection establishment code
portable across platforms that contain different net-
work programming interfaces – This is important for
asynchronous connection establishment, which is hard
to program portably and correctly using lower-level net-
work programming interfaces (such as sockets and TLI).
Likewise, parameterizing the mechanisms for accepting
connections and performing services helps to improve
portability by allowing the wholesale replacement of
these mechanisms. This makes the connection estab-
lishment code portable across platforms that contain dif-
ferent network programming interfaces (such as sockets
but not TLI, or vice versa).

� How to ensure that a passive-mode I/O handle is not
accidentally used to read or write data – By strongly
decoupling the Acceptor from the Svc Handler
passive-mode listener endpoints cannot accidentally be
used incorrectly (e.g., to try to read or write data on
a passive-mode listener socket used to accept connec-
tions).

Section 4 describes the Acceptor pattern in detail. The
Connector pattern is described in [2].

4 The Acceptor Pattern

4.1 Intent

Decouples the passive initialization of a service from the
tasks performed once a service is initialized.

4.2 Also Known As

Listener

4.3 Applicability

Use the Acceptor pattern when connection-oriented applica-
tions have the following characteristics:

� The behavior of a network service does not depend on
the steps required to passively initialize a service;

� Connections may arrive concurrently from different
peers, but blocking or continuous polling for incoming
connections on any individual peer is inefficient.

4.4 Structure and Participants

The structure of the participants in the Acceptor pattern is
illustrated by the Booch class diagram [10] in Figure 3 and
described below:2

� Reactor
2In this diagram dashed clouds indicate classes; dashed boxes in the

clouds indicate template parameters; and a solid undirected edge with a
hollow circle at one end indicates a uses relation between two classes.
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Figure 3: Structure of Participants in the Acceptor Pattern

– Demultiplexes connection requests received on
one or more communication endpoints to the ap-
propriateAccector. TheReactor allows mul-
tiple Acceptors to listen for connections from
peers within a single thread of control.

� Acceptor

– Passively accepts connections from peers using
the peer acceptor endpoint, then creates and
activates a Svc Handler. The Acceptor’s
handle event method implements the strat-
egy for initializinga Svc Handler by passively
connecting it with a peer. The Reactor calls
back this method automatically when a connec-
tion arrives for the Acceptor.

� Svc Handler

– Defines a generic interface for a service. The
Svc Handler contains a communication end-
point (peer stream ) that encapsulates an I/O
handle (also known as an “I/O descriptor”).
This endpoint is used to exchange data be-
tween the Svc Handler and its connected peer.
The Acceptor activates the Svc Handler’s
peer stream endpoint by calling its open
method when a connection completes successfully.

4.5 Collaborations

Figure 4 illustrates the collaboration between participants
in the Acceptor pattern. These collaborations are divided
into three phases:

1. Endpoint initialization phase – which creates a passive-
mode endpoint that is bound to a network address (such
as an IP address and port number). The passive-mode
endpoint listens for connection requests from peers.

2. Service initialization phase – which activates a Svc
Handler. When a connection arrives the Reactor
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Figure 4: Collaborations Among Participants in the Acceptor
Pattern

calls back to the Acceptor’s handle event
method. This method performs the strategy for initial-
izing a Svc Handler. This involves assembling the
resources necessary to create a new Concrete Svc
Handler object, accept the connection into this object,
and activate the Svc Handler by calling its open
method. Theopenmethod of theSvc Handler then
performs service-specific initialization.

3. Service processing phase – Once the connection has
been established passively and the service has been ini-
tialized, the application enters into a service process-
ing phase. This phase performs application-specific
tasks that process the data exchanged between the Svc
Handler and its connected peer(s).

4.6 Consequences

The Acceptor pattern provides the following benefits:

� Enhances the reusability, portability, and extensibil-
ity of connection-oriented software – For instance, the
application-independent mechanisms for passively es-
tablishing connections are decoupled from application-
specific services. Thus, the application-independent
mechanisms in the Acceptor are reusable compo-
nents that know how to establish a connection passively
and activate its associated Svc Handler. In contrast,
theSvc Handler knows how to perform application-
specific service processing.

This separation of concerns decouples connection estab-
lishment from service handling, thereby allowing each
part to evolve independently. The strategy for active
connection establishment can be written once, placed
into a class library or framework, and reused via in-
heritance, object composition, or template instantiation.
Thus, the same passive connection establishment code
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need not be rewritten for each application. Services, in
contrast, may vary according to different application re-
quirements. By parameterizing the Acceptor with a
Svc Handler, the impact of this variation is localized
to a single point in the software.

� Improves application robustness – By strongly decou-
pling the Acceptor from the Svc Handler the
passive-mode peer acceptor cannot accidentally
be used to read or write data. This eliminates a class
of subtle and pernicious errors that can arise when pro-
gramming with weakly typed network programming in-
terfaces such as sockets or TLI [9].

The Acceptor pattern has the following drawbacks:

� Additional instructions – compared with overhead of
programming to the underlying network programming
interfaces directly. However, if parameterized types are
used, there is no significant overhead as long as the
compiler implements templates efficiently.

� Additional complexity – this pattern may add unneces-
sary complexity for simple client applications that con-
nect with a single server and perform a single service
using a single network programming interface.

4.7 Implementation

This section describes how to implement the Acceptor pattern
in C++. The implementation described below is based on
the ACE OO network programming toolkit [3]. In addition
to illustrating how to implement the Acceptor pattern, this
section shows how the pattern interacts with other common
communication software patterns provided by ACE.

Figure 5 divides participants in the Acceptor pattern into
the Reactive, Connection, and Application layers.3 The Re-
active and Connection layers perform generic, application-
independent strategies for handling events and establishing
connections passively, respectively. The Application layer
instantiates these generic strategies by providing concrete
template classes that establish connections and perform ser-
vice processing. This separation of concerns increases the
reusability, portability, and extensibility of this implementa-
tion of the Acceptor pattern.

There is a striking similarity between the structure of the
Acceptor class diagram and the Connector class diagram
shown in [2]. In particular, the Reactive layer is identical in
both and the roles of the Svc Handler and Concrete
Svc Handler are also very similar. Moreover, the
Acceptor and Concrete Acceptor play roles equiv-
alent to the Connector and Concrete Connector
classes. In the Acceptor pattern, however, these two classes
play an passive role in establishing a connection, rather than
a active role.

3This diagram illustrates additional Booch notation: directed edges in-
dicate inheritance relationships between classes; a dashed directed edge
indicates template instantiation; and a solid circle illustrates a composition
relationship between two classes.
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Figure 5: Layering of Participants in the Acceptor Pattern

4.7.1 Reactive Layer

The Reactive layer is responsible for handling events that oc-
cur on endpoints of communication represented by I/O han-
dles (also known as “descriptors”). The two participants at
this layer, the Reactor and Event Handler, are reused
from the Reactor pattern [1]. This pattern encapsulates OS
event demultiplexing system calls (such as select, poll
[7], and WaitForMultipleObjects [11]) with an ex-
tensible and portable callback-driven object-oriented inter-
face. The Reactor pattern enables efficient demultiplexing of
multiple types of events from multiple sources withina single
thread of control. An implementation of the Reactor pattern
is shown in [12] and the two main roles in the Reactive layer
are describe below.

� Reactor: This class defines an interface for registering,
removing, and dispatching Event Handler objects (such
as the Acceptor and Svc Handler). An implementa-
tion of the Reactor interface provides a set of application-
independent mechanisms that perform event demultiplexing
and dispatching of application-specific event handlers in re-
sponse to events.

� Event Handler: This class specifies an interface that
the Reactor uses to dispatch callback methods defined by
objects that are pre-registered to handle events. These events
signify conditions such as a new connection request or the
arrival of data from a connected peer.
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4.7.2 Connection Layer

The Connection layer is responsible for creating a service
handler, passively connecting a service handler to its peer,
and activating the handler once it’s connected. Since all
behavior at this layer is completely generic, these classes
delegate to the concrete IPC mechanism and concrete service
handler instantiated by the Application layer. Likewise, the
Connection layer delegates to the Reactor pattern in order
to establish connections asynchronously without requiring
multi-threading. The two primary roles in the Connection
layer are described below.

� Svc Handler: This abstract class provides a generic in-
terface for processing services. Applications must customize
this class to perform a particular type of service.

template <class PEER_STREAM> // Concrete IPC mech.
class Svc_Handler : public Event_Handler
{
public:
// Pure virtual method (defined by a subclass).
virtual int open (void) = 0;

// Conversion operator needed by
// Acceptor and Connector.
operator PEER_STREAM &() { return stream_; }

protected:
PEER_STREAM stream_; // Concrete IPC mechanism.

};

The open method of a Svc Handler is called by the
Acceptor factory after a connection is established. The
behavior of this pure virtual method must be defined by a
subclass, which performs service-specific initializations. A
subclass of Svc Handler also determines the service’s
concurrency strategy. For example, a Svc Handler may
employ the Reactor [1] pattern to process data from peers
in a single-thread of control. Conversely, a Svc Handler
might use the Active Object pattern [13] to process incom-
ing data in a different thread of control than the one the
Acceptor object used to connect it. Section 4.8 illustrates
how several different concurrency strategies can be config-
ured flexibly without affecting the structure of the Acceptor
pattern.

� Acceptor: This abstract class implements the generic
strategy for passively initializing network services. The
following class interface illustrates the key methods in the
Acceptor factory:

template <class SVC_HANDLER, // Type of service
class PEER_ACCEPTOR> // Accepts connections

class Acceptor : public Event_Handler {
public:

// Initialize local_addr listener endpoint
// and register with Reactor.
virtual int open
(const PEER_ACCEPTOR::PEER_ADDR &local_addr,
Reactor *reactor);

// Factory that creates, connects, and
// activates SVC_HANDLER’s.
virtual int handle_event (void);

// Demultiplexing hooks used by Reactor
virtual HANDLE get_handle (void) const;

virtual int handle_close (void);

protected:
// Defines the handler’s creation strategy.
virtual SVC_HANDLER *make_svc_handler (void);

// Defines the handler’s connection strategy.
virtual int accept_svc_handler (SVC_HANDLER *);

// Defines the handler’s concurrency strategy.
virtual int activate_svc_handler (SVC_HANDLER *);

private:
// IPC mech. that establishes connections passively.
PEER_ACCEPTOR peer_acceptor_;

// Event demultiplexor.
Reactor *reactor_;

};

// Useful "short-hand" macros used below.
#define SH SVC_HANDLER
#define PA PEER_ACCEPTOR

Since Acceptor inherits from Event Handler, the
Reactor can automatically call back to the Acceptor’s
handle event method when a connection arrives from
a peer. The Acceptor is parameterized by a particular
type of PEER ACCEPTOR and SVC HANDLER. The PEER
ACCEPTOR provides the transport mechanism used by the
Acceptor to passively establish the connection. The SVC
HANDLER provides the service that processes data exchanged
with its connected peer. Parameterized types are used to de-
couple the connection establishment strategy from the type of
service handler, network programming interface, and trans-
port layer connection initiation protocol.

The use of parameterized types helps improve portability
by allowing the wholesale replacement of the mechanisms
used by the Acceptor. This makes the connection establish-
ment code portable across platforms that contain different
network programming interfaces (such as sockets but not
TLI, or vice versa). For example, the PEER ACCEPTOR
template argument can be instantiated with either a SOCK
Acceptor or a TLI Acceptor, depending on whether
the platform supports sockets or TLI. An even more dynamic
type of decoupling could be achieved via inheritance and
polymorphism by using the Factory Method and Strategy
patterns described in [4]. Parameterized types improve run-
time efficiency at the expense of additional space and time
overhead during program compiling and linking.

The implementation of the Acceptor’s methods is pre-
sented below. To save space, most of the error handling has
been omitted.

Network applications use theopenmethod to initialize an
Acceptor. This method is implemented as follows:

template <class SH, class PA> int
Acceptor<SH, PA>::open
(const PEER_ACCEPTOR::PEER_ADDR &local_addr,
Reactor *reactor)

{
// Store pointer to a Reactor.
this->reactor_ = reactor;

// Forward initialization to the PEER_ACCEPTOR.
this->peer_acceptor_.open (local_addr);
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// Register with Reactor.
this->reactor_->register_handler (this, READ_MASK);

}

The open method is passed the local addr network ad-
dress used to listen for connections. It forwards this address to
the passive connection acceptance mechanism defined by the
PEER ACCEPTOR. This mechanism initializes the listener
endpoint, which advertises its “service access point” (e.g., IP
address and port number) to clients interested in connecting
with the Acceptor. The behavior of the listener endpoint
is determined by the type of PEER ACCEPTOR instantiated
by a user. For instance, it can be a C++ wrapper for sockets,
TLI, STREAM pipes, etc.

After the listener endpoint has been initialized, the open
method registers itself with the Reactor. The Reactor
performs a “double dispatch” back to the Acceptor’s
get handle method in order to obtain the underlying
HANDLE, as follows:

template <class SH, class PA> HANDLE
Acceptor<SH, PA>::get_handle
{
return this->peer_acceptor_.get_handle ();

}

TheReactor stores thisHANDLE internally and uses it to
detect and demultiplex incoming connection from clients in
order to dispatch theAcceptor’shandle eventmethod,
which is the focal point of theAcceptor. As shown below,
handle event is a Template Method [4] that implements
the strategies for creating a new SVC HANDLER, accepting
a connection into it, and activating the service:

template <class SH, class PA> int
Acceptor<SH, PA>::handle_event (void)
{
// Create a new SVC_HANDLER.
SH *svc_handler = this->make_svc_handler ();

// Accept connection from client.
this->accept_svc_handler (svc_handler);

// Activate SVC_HANDLER.
this->activate_svc_handler (svc_handler);

}

This method is very concise since it factors all low-level de-
tails into the parameterized types. Moreover, all of its behav-
ior is performed by virtual functions, which allow subclasses
to extend any or all of the Acceptor’s strategies.

The Acceptor’s default strategy for creating SVC
HANDLERs is defined by themake svc handlermethod:

template <class SH, class PA> SH *
Acceptor<SH, PA>::make_svc_handler (void);
{
return new SH;

}

The default behavior uses a “demand strategy,” which creates
a new SVC HANDLER for every new connection. However,
subclasses of Acceptor can override this strategy to create
SVC HANDLERs using other strategies (such as creating
an individual Singleton [4] or dynamically linking the SVC
HANDLER from a shared library).

The Acceptor’s SVC HANDLER connection accep-
tance strategy is defined by the accept svc handler
method:

template <class SH, class PA> int
Acceptor<SH, PA>::accept_svc_handler (SH *handler);
{
this->peer_acceptor_->accept_ (*handler);

}

The default behavior delegates to the accept method pro-
vided by the PEER ACCEPTOR. Subclasses can override
the accept svc handler method to perform more so-
phisticated behavior (such as authenticating the identity of
the client to determine whether to accept or reject the con-
nection).

The Acceptor’s SVC HANDLER concurrency strategy
is defined by the activate svc handler method:

template <class SH, class PA> int
Acceptor<SH, PA>::activate_svc_handler (SH *handler);
{
handler->open ();

}

The default behavior of this method is to activate the
SVC HANDLER by calling its open method. This allows
the SVC HANDLER to select its own concurrency strat-
egy. For instance, if the SVC HANDLER inherits from
Event Handler it can register with the Reactor. This
allows the Reactor to dispatch the SVC HANDLER’s
handle event method when events occur on its PEER
STREAM endpoint of communication. Subclasses can over-
ride this strategy to do more sophisticated concurrency acti-
vations (such as making the SVC HANDLER an “active ob-
ject” [13] that processes data using multi-threading or multi-
processing).

When an Acceptor terminates, either due to errors or
due to the entire application shutting down, the Reactor
calls the Acceptor’s handle close method to en-
able it to release dynamically acquired resources. In this
case, the handle close method simply closes the PEER
ACCEPTOR’s listener endpoint, as follows:

template <class SH, class PA> int
Acceptor<SH, PA>::handle_close (void)
{
return this->peer_acceptor_.close ();

}

4.7.3 Application Layer

The Application layer is responsible for supplying a concrete
interprocess communication (IPC) mechanism and a con-
crete service handler. The IPC mechanisms are encapsulated
in C++ classes to simplify programming, enhance reuse, and
to enable wholesale replacement of IPC mechanisms. For
example, the SOCK Acceptor, SOCK Connector, and
SOCK Stream classes used in Section 4.8 are part of the
SOCK SAP C++ wrapper library for sockets [14]. Likewise,
the corresponding TLI * classes are part of the TLI SAP
C++ wrapper library for the Transport Layer Interface [7].
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SOCK SAP and TLI SAP encapsulate the stream-oriented
semantics of connection-oriented protocols like TCP and
SPX with a efficient, portable, and type-safe C++ wrappers.

The two main roles in the Application layer are described
below.

� Concrete Svc Handler: This class implements the con-
crete application-specific service activated by a Concrete
Acceptor. A Concrete Svc Handler is instantiated
with a specific type of C++ IPC wrapper that exchanges
data with its connected peer. The sample code examples
in Section 4.8 use a SOCK Stream as the underlying data
transport delivery mechanism. It is easy to vary the data trans-
fer mechanism, however, by parameterizing the Concrete
Svc Handler with a different PEER STREAM (such as a
TLI Stream).

� Concrete Connector: This class instantiates the generic
Acceptor factory with concrete parameterized type ar-
guments for SVC HANDLER and PEER ACCEPTOR. In
the sample code in Section 4.8, SOCK Acceptor is the
underlying transport programming interface used to estab-
lish a connection passively. However, parameterizing the
Acceptor with a different PEER ACCEPTOR (such as a
TLI Acceptor) is straightforward since the IPC mecha-
nisms are encapsulated in C++ wrapper classes. Therefore,
the Acceptor’s generic strategy for passively initializing
services can be reused, while permittingspecific details (such
as the underlying network programming interface or the cre-
ation strategy) to change flexibly. In particular, note that no
Acceptor components must change when the concurrency
strategy is modified.

The following section illustrates sample code that in-
stantiates a Concrete Svc Handler and Concrete
Acceptor to implement the Peers described in Section 3

4.8 Sample Code

The sample code below illustrates how Peers described in
Section 3 use the Acceptor pattern to simplify the task of
passively initializing services whose connections are initi-
ated actively by the Gateway. The Peers play the passive
role in establishing connections with the Gateway (an im-
plementation of the Gateway using the Connector pattern
appears in [2]). Figure 6 illustrates how participants in the
Acceptor pattern are structured in a Peer.

4.8.1 Svc Handlers for Sending and Receiving Routing
Messages

The classes shown below, Status Handler, Bulk
Data Handler, and Command Handler, process rout-
ing messages sent and received from a Gateway. Since
theseConcrete Svc Handler classes inherit fromSvc
Handler they are capable of being passively initialized by
an Acceptor. To save space, these examples have been
simplified by omitting most of the error handling code.
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Figure 6: Structure of Participants in the Peer Acceptor
Pattern

To illustrate the flexibility of the Acceptor pattern, each
open routine in the Svc Handlers implements a differ-
ent concurrency strategy. In particular, when the Status
Handler is activated it runs in a separate thread; the
Bulk Data Handler runs as a separate process; and
the Command Handler runs in the same thread as with
the Reactor that demultiplexes connection requests for
the Acceptor factories. Note how changes to these con-
currency strategies do not affect the architecture of the
Acceptor, which is generic and thus highly flexible and
reusable.

We’ll start by defining aSvc Handler that is specialized
for socket-based data transfer:

typedef Svc_Handler <SOCK_Stream> PEER_HANDLER;

This class forms the basis for all the subsequent service han-
dlers. For instance, the Status Handler class processes
status data sent to and received from a Gateway:

class Status_Handler : public PEER_HANDLER
{
public:
// Performs handler activation.
virtual int open (void) {

// Make handler run in separate thread (note that
// Thread::spawn requires a pointer to a static
// method as the entry point for the thread).

Thread::spawn (&Status_Handler::svc_run, this);
}

// Static entry point into the thread, which blocks
// on the handle_event() call in its own thread.
static void *svc_run (Status_Handler *this_) {

// This method can block since it
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// runs in its own thread.
while (this_->handle_event () != -1)
continue;

}

// Receive and process status data from Gateway.
virtual int handle_event (void) {

char buf[MAX_STATUS_DATA];
this->stream_.recv (buf, sizeof buf);
// ...

}

// ...
};

The following class processes bulk data sent to and received
from the Gateway.

class Bulk_Data_Handler : public PEER_HANDLER
{
public:
// Performs handler activation.
virtual int open (void) {
// Handler runs in separate process.
if (fork () > 0) // In parent process.
return 0;

else // In child process.

// This method can block since it
// runs in its own process.
while (this->handle_event () != -1)
continue;

}

// Receive and process bulk data from Gateway.
virtual int handle_event (void) {
char buf[MAX_BULK_DATA];
this->stream_.recv (buf, sizeof buf);
// ...

}

// ...
};

The following class processes bulk data sent to and re-
ceived from a Gateway:

// Singleton Reactor object.
extern Reactor reactor;

class Command_Handler : public PEER_HANDLER
{
public:
// Performs handler activation.
virtual int open (void) {
// Handler runs in same thread as main Reactor.
reactor.register_handler (this, READ_MASK);

}

// Receive and process command data from Gateway.
virtual int handle_event (void) {
char buf[MAX_COMMAND_DATA];
// This method cannot block since it borrows
// the thread of control from the Reactor.
this->stream_.recv (buf, sizeof buf);
// ...

}

//...
};

4.8.2 Acceptors for Creating Svc Handlers

The s acceptor, bd acceptor, and c acceptor ob-
jects shown below are Concrete Acceptor factories
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Figure 7: Object Diagram for the Peer Acceptor Pattern

that create and activateStatus Handlers, Bulk Data
Handlers, and Command Handlers, respectively.

// Accept connection requests from Gateway and
// activate Status_Handler.
Acceptor<Status_Handler, SOCK_Acceptor> s_acc;

// Accept connection requests from Gateway and
// activate Bulk_Data_Handler.
Acceptor<Bulk_Data_Handler, SOCK_Acceptor> bd_acc;

// Accept connection requests from Gateway and
// activate Command_Handler.
Acceptor<Command_Handler, SOCK_Acceptor> c_acc;

4.8.3 The main() Function

The main program initializes the concrete Acceptor facto-
ries by calling their open methods with the well-known
ports for each service. As shown in Section 4.7.2, the
Acceptor::open method registers itself with a Single-
ton [4] instance of the Reactor. The program then enters
an event loop that uses the Reactor to detect connection
requests from the Gateway. When connections arrive, the
Reactor calls back to the appropriate Acceptor, which
creates a new PEER HANDLER to perform the service, ac-
cepts the connection into the handler, and activates the han-
dler.

// Main program for the Peer.

// Singleton Reactor object.
Reactor reactor;

int main (void)
{
// Initialize acceptors with their well-known ports.
s_acc.open (INET_Addr (STATUS_PORT), &reactor);
bd_acc.open (INET_Addr (BULK_DATA_PORT), &reactor);
c_acc.open (INET_Addr (COMMAND_PORT))& reactor;

// Loop forever handling connection request
// events and processing data from the Gateway.

for (;;)
reactor.handle_events ();

}
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Figure 7 illustrates the relationship between Acceptor pattern
objects in the Peer after four connections have been estab-
lished. While the various *Handlers exchange data with
the Gateway, the *Acceptors continue to listen for new
connections.4

4.9 Known Uses

The Reactor, Svc Handler, and Acceptor classes
described in this article are all provided as reusable compo-
nents in the ACE toolkit [3]. The Acceptor pattern has been
used in the following frameworks, toolkits, and systems:

� UNIX network superservers such as inetd [7],
listen [8], and the Service Configurator
daemon from the ASX framework [3]. These super-
servers utilize a master Acceptor process that listens
for connections on a set of communication ports. Each
port is associated with a communication-related service
(such as the standard Internet services ftp, telnet,
daytime, and echo). The Acceptor pattern decou-
ples the functionality in the inetd superserver into
two separate parts: one for establishing connections
and another for receiving and processing requests from
peers. When a service request arrives on a monitored
port, the Acceptor process accepts the request and dis-
patches an appropriate pre-registered handler to perform
the service.

� The Ericsson EOS Call Center Management system [15]
uses the Connector pattern to allow application-level
Call Center Manager Gateways to actively establish
connections with passive Peer hosts in a distributed
system.

� The high-speed medical image transfer subsystem of
project Spectrum [16] uses the Acceptor pattern to pas-
sively establish connections and initialize application
services for storing large medical images. Once con-
nections are established, applications then send and re-
ceive multi-megabyte medical images to and from these
image stores.

4.10 Related Patterns

The Acceptor pattern may be viewed as a variation of the
Template Method and Factory Method patterns [4]. In the
Template Method pattern an algorithm is written such that
some steps are supplied by a derived class. In the Factory
Method pattern a method in a subclass creates an associate
that performs a particular task, but this task is decoupled from
the protocol used to create the task.

The Acceptor pattern is a connection factory that uses a
template method (handle event) to create handlers for
communication channels. The handle eventmethod im-
plements the algorithm that passively listens for connection

4This diagram uses additional Booch notation [10], where solid clouds
indicate objects and undirected edges indicate some type of link (such as a
pointer or reference) exists between two objects.

requests, then creates, accepts, and activates a handler when
the connection is established. The handler performs a service
using data exchanged on the connection. Thus, the service is
decoupled from the network programming interface and the
transport protocol used to establish the connection.

5 Concluding Remarks

This article motivates the Acceptor and Connector pat-
terns and gives a detailed example illustrating how to
use the Acceptor pattern. A subsequent issue of the
C++ Report [2] will illustrate how to implement the Con-
nector pattern. UNIX versions of the Acceptor, Con-
nector, and Reactor patterns described in this article
are freely available via the World Wide Web at URL
http://www.cs.wustl.edu/˜schmidt/. This dis-
tributioncontains complete source code, documentation, and
example test drivers for the C++ components developed as
part of the ACE object-oriented network programming toolkit
[3] developed at the University of California, Irvine and
Washington University. The ACE toolkit is currently being
used on communication software at many companies.

Thanks to Venkata-Subbarao Kandru for comments on this
paper.
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