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Abstract

The 3.0 series of G++ compilers and libraries
offers a new multi-vendor ABI and increas-
ing conformance to the C++ standard. The
C++ ABI offers increased efficiency for C++
idioms and interoperability with other compil-
ers. Features of the ABI that the G++ user
should be aware are described. Both additional
and deprecated features in versions 3.2, 3.3 and
3.4 are described. Using various source idioms
to aid the G++ optimizers and loading process
is shown. The process of tracking the C++
standard as both defect reports and C++0X be-
come available is outlined.

1 The 3.0 ABI

Starting with G++ 3.0 a new C++ ABI is
provided. This multi-vendor ABI [2] came
from development of an Itanium port of GCC,
which included the design of a C++ ABI for
the Itanium processor. That ABI was de-
signed by CodeSourcery, EDG, Compaq, HP,
Intel, Red Hat and SGI. Although designed for
one architecture, the C++ ABI is sufficiently
abstracted from Itanium features to allow its
use for other processors, and hence the multi-
vendor C++ ABI came about.

The 3.0 ABI is a complete redesign of the
G++ ABI, which leads to space and speed
improvements. The previous G++ ABI had
evolved over time as C++ itself stabilized. ABI
improvements include,

• Empty structures take zero size when used
as a base class.

• Tail padding can be overlaid for non-POD
bases and members.

• Derived to base conversions are constant
time for both single and multiple inheri-
tance. Conversion to a non-virtual base,
requires a fixed adjustment and a single
access of the vtable is needed to convert
to a virtual base. Having virtual base
offsets held in the vtable reduces the ob-
ject size overhead for virtual inheritance.
In most programs virtual inheritance does
not increase the size of an object, because
nearly all classes with virtual bases have
virtual functions too. Previously a virtual
base would add a pointer member to each
class that derived from it, and base con-
version involved following an inheritance
path, which could involve several member
accesses.

• Pointers to member functions are smaller,
and dispatching via them is faster, because
the vtable pointer is always at the start of
an object.

• Virtual function thunks are all emitted
with the thunked to function. This gives
better cache coherency, and permits mul-
tiple entry point optimizations for thun-
ked functions.1 These improve the per-
formance of the virtual function calling

1G++ does not currently implement multiple entry
point optimizations.
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mechanism. The thunk mechanism is
such that even overriding from a virtual
base is fast, with a single adjustment us-
ing one access into the vtable.

• Covariant return thunks are specified, and
implemented in G++. Again, these are
emitted with the overriding function that
required their emission, and so have the
cache coherency improvements and multi-
ple entry point optimization opportunities
of the simpler thunks.

• Dynamic cast hints are generated by
the compiler, and improve the speed of
dynamic_cast in common cases. In
most cases the speed ofdynamic_cast
is now linear in the number of bases be-
tween the dynamic object type and the tar-
get type of the cast.

• Runtime type comparison is constant
time, which further improvesdynamic_
cast and catch matching. Previously,
type comparison involved string compar-
ison.

• Exception handling is a two phase pro-
cess. The first phase locates a catch han-
dler, and only when one is found is the
stack unwound to that handler. If a han-
dler is not found,std::terminate
can be called in the throwing context, and
hence help debugging.

• A new mangling scheme that uses a com-
pression algorithm. This produces shorter
names, and so improves link and load
times.

Additional improvements in G++ 3.0 were,

• The std namespace became a real
namespace, rather than an alias for the
global namespace.

• A new implementation of the standard
template library, which is properly con-
tained in thestd namespace.

• Type based aliasing is enabled at opti-
mization level-O2 .

These changes effect user code to varying ex-
tents. Other than speeding up code, the new
ABI should result in no user visible changes.
Of course, all programs and libraries will need
to be recompiled. If the user relied on ABI fea-
tures, then a program might be effected.

1.1 Shared Libraries

The ABI makes use of a link facility that
ELF [3] supports called common data. The
common data linkage is used for objects that
have no well defined object file in which to
place them. The C++ ABI relies on com-
mon data linkage to implement the constant
time comparison of types. This requires the
names of type information objects to be glob-
ally visible. Libraries are effected because the
type information objects must be visible to user
programs. Shared libraries that are resolved
at load time by the runtime loader, and those
opened explicitly withdlopen , as is com-
monly done for program plugins, are effected
in the same way. Static libraries are also ef-
fected, but the impact on real programs has
not been so great. The link and loading speed
of all three kinds of libraries can be improved
by the mechanisms described here. A library
makes available, or exports, to user programs a
set of names. It also has to specify, or import,
those names it uses from other libraries. Both
importing and exporting use the same mecha-
nisms and the remainder of this paper simply
refers to exporting. If the library wishes to
dynamic_cast or throw exceptions across
the library interface, it must export type infor-
mation names, so that the common linkage is
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achieved. More complicated export require-
ments require other types of names to be ex-
ported.

Because C++ has no module system, the li-
brary programmer cannot indicate at the source
level which types, functions and objects are to
be exported. The library is forced to export all
symbols, to ensure the user can access the ex-
ported functionality. There are proposals [5]
to add module facilities to the language. It is
desirable to indicate a subset of the names as
available to users of the library. The currently
available mechanism for doing this is symbol
versioning [4].

The simplest solution is to export all exter-
nal names from the shared library. Unfortu-
nately this has two disadvantages. Firstly pro-
gram load times are increased because the dy-
namic linker must resolve all these symbols in
order to eliminate duplicates with the already
loaded program. Secondly, it exposes the in-
ternal names of the library implementation that
have global scope. Sometimes those names can
conflict with the user’s names, or those in other
libraries used in the program.

The solution to name conflict is to put the in-
ternal names into a library specific namespace.
For instance, have the exported library func-
tionality in a ‘FooLib ’ namespace, and the
internal names in a ‘FooLib::Internal ’
namespace. Unfortunately it can be difficult to
retro fit such a solution to an existing library
that is not namespace aware.

For a simple shared library, where no runtime
type information is transfered across its inter-
face, it is simply necessary to export the library
interface functions. For a more complicated
library, it is necessary to export the type in-
formation names, and potentially some of the
internal names. This can be done by exam-
ining the names in the library object files us-
ing nm and using a pattern matcher to extract

the important ones. The G++ ABI mangles
all names with an initial ‘_Z’, followed by the
mangled name. Certain prefixes are placed be-
tween the ‘_Z’ and the mangled name, for par-
ticular kinds of names. These are,

TV Vtables. Pointed to by polymorphic ob-
jects and those with virtual bases. These
are termed dynamic classes in the ABI.

TT Vtable table. Used in constructing and de-
structing polymorphic objects with virtual
bases. Not all polymorphic classes will
need a vtable table.

TI Type information. Returned bytypeid
operator, pointed to by the vtable.

TS Type string. Returned bytype_info::
name, and used for type comparisons.

GV Guard variable. Used to guard the ini-
tialization of function scope static objects
that are dynamically initialized. The name
of the static object will be the same as the
guard variable without the ‘GV’ prefix.

Th, Virtual function thunks. These are fol-
Tv , lowed by a mangling of the thunk infor-
Tc mation, and then the mangling of the thun-

ked to function. The second prefix letter
indicates whether it is a fixed, virtual or
covariant thunk.

The vtable, vtable table, type information and
type string are not tightly bound to any partic-
ular object file by the language, and so have
common data linkage. Potentially any object
file that uses them could contain their defini-
tion. The C++ ABI has an optimization where
the class to which they belong has a non-inline
virtual function, the first of which is called a
key function. In that case, all these objects
are only emitted in the object file that contains
the definition of the key function. Other ob-
ject files will not contain these objects, as it can
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be determined that their definition will be pro-
vided elsewhere. Libraries can be effected by
this because, although it might not matter that
two instances of a particular object were used
in a program, a user program can rely on a def-
inition it knows is in the library.

The type information objects will need ex-
porting, to share type information, as user
programs which use the type fordynamic_
cast or catching, will need to refer to them.
Sometimes these are emitted with internal link-
age, in which case they refer directly or indi-
rectly to an incomplete type. Such instances
shouldnotbe exported. Type comparison itself
uses the address of the type string. It is neces-
sary for that string to be shared by all instances
of the same type. If they are not exported,
the type comparison algorithms will consider
two types with the same name to be different
types. Therefore, external names beginning
with ‘_ZTI ’ and ‘_ZTS’ should be exported
from the library.

If the library exposes inlinable constructors or
destructors of dynamic classes to users of the
library, it is necessary for the library to export
the vtable and vtable table.

If the library exports constructors to the user,
all the user callable virtual functions of the
class and its ancestors must be exported. Al-
though virtual functions are normally called
via the vtable (and therefore their names are
not needed, just the index in the vtable), by ex-
posing the constructor it might be possible to
determine the dynamic type of an expression at
compile time. Should the compiler do that, it
may elect to replace a virtual call with a direct
call, and hence require the name of the virtual
function.

Static objects in inlinable functions that are ex-
posed in library header files will cause prob-
lems. The static objects’ names must be ex-
ported, so that only one becomes live in the

final executable. Only static objects with a
dynamic initialization expression will have a
guard variable.

If the library exports types that can be inher-
ited from, then the type information object,
all user callable member functions of the class
and all virtual functions and thunks must be
exported. The class members will be man-
gled, following any applicable prefix, as a
scoped name of the form ‘N<classname>
<membername>E’. Both the classname
and membername components are mangled
as a numeric length followed by the name, such
as ‘6FooLib ’.

Here is an example library header file, showing
what needs to be exported, depending on the
functionality provided.

#include <exception>
#include <new>

namespace NMS {
namespace Internal {

// Helper we do not wish to expose
// Do not export
class Helper
{
public:

Helper () {......};
virtual int Frob () throw ();

};

} // namespace Internal

// Export type info _ZTIN3NMS5ErrorE
// Export type string _ZTSN3NMS5ErrorE
class Error

// Import std::exception typeinfo
: public std::exception

{
friend class Widget;
// Do not export, library creates
Error () throw () {}
public:
// Do not export, it is inline
virtual ~Error () throw () {};
// Do not export, called virtually
virtual char const *what () const

throw ();
};

// Export Widget if it is inheritable
class Widget

// Export direct & indirect bases,
// if Widget is inheritable.
: Internal::Helper

{
private:

// Do not export, library creates
Widget () throw ();
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public:
// Do not export, called virtually
virtual ~Widget () throw ();

public:
// Do no export, called virtually
virtual int Action () throw (Error);

public:
// Export, user can call
// _ZN3NMS6Widget3NewEv
static Widget *New ()

throw (std::bad_alloc);
};

} // namespace NMS

Because the only way of constructing a
‘NMS::Widget ’ object is by calling ‘NMS::
Widget::New ’, users of the library will
always have to use the virtual call mech-
anism to call ‘NMS::Widget::~Widget ’
and ‘NMS::Widget::Action ’, so those
two functions do not need to be exported.
Both NMS::Error ’s type information and
type string need exporting so that user pro-
grams can successfully catch such an object.

1.2 Library Compatibility

Linking C++ objects from different compilers
involves more than just the C++ ABI. If the
programs use the standard library, then the li-
brary versions must be compatible too. The
multi-vendor ABI does not specify the binary
compatibility of the library, as that would be
too constraining on implementations. The ABI
specifies a small runtime support library, nec-
essary to implement the core C++ language.
G++ provides that as a separately selectable
libsupc++ . The full library is also provided
automatically aslibstdc++ . The G++ 3.0
implementation is a complete redesign of the
library. The new library is more standard con-
formant, and this has lead to some issues with
user code,

• The ‘std ’ namespace must now
be explicitly noted. For example,
‘vector<int> foo; ’ does not

compile. ‘vector ’, along with every-
thing else, is in the ‘std ’ namespace.
Previously, G++ also found it in the
global namespace, so programs compiled
whether ‘vector<T> ’ or ‘ std::
vector<T> ’ was used. Another com-
mon instance of this problem is using
plain ‘cout « "Hello World" «
endl; ’ The solution is to recognize
the failure mode and insert ‘std:: ’
appropriately.

• IO is slower. According to the C++
standard, by default, the standard C++
streams, ‘std::cin ’, ‘ std::cout ’
and ‘std::cerr ’, have to be synchro-
nized with the standard C file streams,
‘stdin ’, ‘ stdout ’ and ‘stderr ’, so
that use of corresponding pairs of streams
can be intermixed. A clever trick al-
lowed the previous C++ library to over-
lay its stream classes on the underly-
ing C library’s file structure,but only
for one specific C library. With the
change in the G++ ABI, and better
standard conformance, that trick became
impractical to maintain. The stan-
dard allows users to explicitly decou-
ple the C and C++ file IO operations
by calling, ‘std::ios::sync_with_
stdio (false) ’ before any IO has
happened on the standard streams.

Another issue with ‘std::cin ’ and
‘std::cout ’ is that they are synchro-
nized with each other. C++ requires that,
by default, intermixed input and output
will display in the correct order. This
synchronization can be removed by call-
ing ‘std::cin.tie (0) ’. C does not
have such fine grained synchronization on
‘stdin ’ and ‘stdout ’, these are nor-
mally only synchronized at newline char-
acters.

C++ IO is more expressive than that pro-
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vided in C, and because the C++ library is
implemented on top of the C library, C++
IO will never be faster than C IO. Work is
ongoing in improving IO performance.

• Iterators do not have pointer types. Some
code presumes that iterators are imple-
mented as pointer types, and contain code
such as ‘&myIterator ’, expecting to
get a ‘T ** ’. Because the previous li-
brary implemented them as such, that
code ‘worked’, even though that imple-
mentation is neither required nor guaran-
teed by the standard. Now iterators are
implemented as templated classes, which
gives better type safety, but breaks such
erroneous code. Code which assumes
the underlying representation of an iter-
ator can be forced to work simply by
&*myIterator , as the* operator will
provide a reference to the iterated object,
whose address can be taken.

2 What is in G++ 3.3

The multi-vendor ABI is very complicated and
its first G++ implementation in G++ 3.0 turned
out to have some bugs. Several of the defects
were discovered in time for G++ 3.2. More is-
sues have been discovered since then, by test-
ing interoperation with other compilers and by
using CodeSourcery’s testsuite. It is very in-
convenient to change the ABI, as that means
that all object files and libraries need to be re-
compiled with the new compiler. Some ABI
bugs merely effect inter-operation with other
compilers, and are unimportant to a signif-
icant user base. Rather than force an ABI
change on all users, G++ implements two flags
to warn about ABI discrepancies and to select
ABI version. The-Wabi flag warns when
G++ is emitting code or data that is known to
be at variance with the multi-vendor ABI. The
-fabi-version=<n> flag allows the user

to specify which set of known ABI fixes to in-
clude. The current default version is 1. When-
ever an ABI bug is discovered, code for both
options is added to the compiler, and the warn-
ing code is backported to the previous stable
release branch, for a subsequent minor release.
Of course, because time machines are nonexis-
tent, it is not possible to backport it to the pre-
viously released version. All known ABI fixes
can be selected with-fabi-version=0 .
Which fixes that includes depends on the ver-
sion of G++, so using this value implies that the
same version of G++ must be used to compile
all the object files and libraries of a program.
When a sufficiently stable set of fixes has
been implemented, another ABI version num-
ber will be added, and-fabi-version=2
will be selectable. It is likely that G++ 3.4 will
implement such an ABI version number, but it
is undecided whether that will be made the de-
fault value. Version 0 will still be selectable,
to obtain all the subsequent fixes added after
version 2 has been stabilized.

G++’s implementation of the standard template
library has not yet stabilized. Because the li-
brary exposes much of its implementation in
header files containing class, inline function
and template definitions, it is very difficult to
improve the library without changing some-
thing that effects binary compatibility. There
are no planned library ABI changes between
the 3.2 and 3.3 releases. However, the 3.4 re-
lease will not be binary compatible, and the
shared object version number has been incre-
mented. Because it is provided as a shared
library, and the version number has changed,
users will get a link error, rather than myste-
rious runtime failures, if they attempt to mix
versions.

One of the more significant changes in G++ 3.3
is the removal of the implicit typename exten-
sion. The extension was deprecated in G++
3.2, and elicited a warning at every use. In
a template class, names from dependent bases
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are not visible when the template is defined—
they are only looked up at instantiation time.
G++ had an extension that made names visi-
ble before instantiation, so G++ knew which
were types and which were not. The standard
requires that those that name a type be referred
to using thetypename keyword and qualified
name.

template <typename T>
class Base
{

typedef int Type;
typedef int Other;

};

typedef unsigned Other;

template <typename T>
class Derived : public Base<T>
{

Type a; // Implicit typename use.
// Standard conforming way.
typename Base<T>::Type b;
Other c; // Which Other?

};

The implicit typename extension became
impossible to keep when updating G++’s
parser to be more conformant. The extension
is also problematic in itself. In the example,
when instantiating ‘Derived ’ for some par-
ticular type ‘U’, ‘ Base<U>’ might have a spe-
cialization for which ‘Base<U>::Type ’ is
not anint , or even a type. Another confusion
is shown in the example by the use of ‘Other ’
in ‘Derived ’. If the implicit typename exten-
sion is in operation, it will be ‘Base<T>::
Other ’, whereas without it, it should find
‘ ::Other ’. Having a program’s meaning
change between two valid interpretations by
changing a command line flag (-pedantic ),
is really bad—better to remove the extension.

2.1 Optimization

Previously G++ had a named return value ex-
tension to help functions that returned a class
by value. Because returning a class value re-
quires a copy of the return value into the area

provided by the caller, such functions would
invoke a copy constructor just before returning.
The idea of the named return value extension
was to allow the programmer to use that area
directly and avoid the copy. This extension did
not work with template functions, and has been
removed. In its place is the return value opti-
mization, which notices when a function is re-
turning a temporary by value, and will directly
construct the temporary in the return area.

2.2 Exception Specifications

G++ 3.2 had poorer inlining performance than
desired. It would not make sensible choices
about what to inline, and the inlining process
could lead to long compile times and large
compiler memory size. This has been fixed
by taking advantage of ‘throw () ’ exception
specifications. If none of the functions called
by a particular function can throw exceptions,
the inliner can do a better job.

Exceptions specifications can also be used to
reduce the size of a program. In the following
program,CLASS1, CLASS2, FOOand BAZ
can be defined to be empty, or ‘throw () ’.
The code and exception data sizes for various
combinations using G++ 3.2 for i686-pc-linux-
gnu producing optimized code is shown in Ta-
ble 1. The ‘Check’ column indicates whether
the-fno-enforce-eh-specs option was
used.

struct Class1
{

int m;

Class1 () CLASS1;
~Class1 () CLASS1;

};
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Exception specification
CLASS1 CLASS2 FOO BAR Check Code Data Total Overhead
throw () throw () throw () Either Either 63 0 63 -
throw () throw () None Either No 83 92 175 178%
None None throw () Either No 95 88 183 190%
None None None None Either 103 104 207 226%
None None None throw () Yes 137 113 250 296%

Table 1: Exception Overhead Example

struct Class2
{

int m;

Class2 () CLASS2;
~Class2 () CLASS2;

};

void Foo () FOO;

void Baz () BAZ
{

Class1 c1;
Class2 c2;

Foo ();
}

The worst case is a factor of 4 in program size,
however the more common case is probably
the penultimate line of the table where none
of the functions have an exception specifica-
tion. The -fno-enforce-eh-specs op-
tion tells G++ not to add code to a function
to check that it is throwing only the excep-
tions listed in its exception specification. A
correct program will only throw such excep-
tions, so such checking code is behaving as
assert macros. However it is notoriously
difficult to exercise exceptional paths in pro-
gram flow. The author has used a custom allo-
cation library to rigorously test allocation fail-
ures in a command line application, to good ef-
fect.

Such a small example might be skewed to give
large overheads—it has no real code in it, and
nothing can be inlined. Two C++ libraries of

about 30,000 lines of code each were exam-
ined. One was a low level utility library, and
the other a higher level 3D toolkit. Both li-
braries have been written with exception speci-
fications on every function, most of which were
no-throw, but many were allocation failure ex-
ceptions. Each library was compiled in three
different ways:

• With exception specifications, but with
-fno-enforce-eh-specs enabled
to remove the exception checking code.

• With exception specifications and with ex-
ception checking enabled.

• With throw defined as a varadic
‘ throw(...) ’ macro, so that the ex-
ception specifications were removed.
With no exception specifications,
checking exception specifications
would have no effect on code size,
so -fno-enforce-eh-specs would
make no difference.

Table 2 shows that the overhead is between
11% and 18%. The code size of a checked
exception specified library is larger than that
of the library without exception specifications,
because of the number of non-empty exception
specifications. G++ is not clever enough to no-
tice whether functions that have a non-empty
exception specification only call functions that
can throw the listed exception types—it still
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Exceptions Utility Library 3D Library
Specs Checked Code Data Total Overhead Code Data Total Overhead
Yes No 147871 23037 170908 - 219124 49422 268546 -
Yes Yes 158000 35070 193070 13% 238691 77538 316229 18%
No Either 150760 39685 190445 11% 224646 83306 307952 15%

Table 2: Library Exception Overhead

emits code to verify. A suitable optimiza-
tion will be able to remove that extra checking
code. The same is not true of the extra code
added when there are no exception specifica-
tions. That code has been added to destroy lo-
cal variables that will go out of scope, should
an exception be thrown. The compiler can-
not determine only from a function declaration
with no exception specification that the func-
tion will not actually throw an exception, so it
must presume the worst and emit appropriate
destruction code.

When the body of a function is visible, G++
can determine if it does not throw by noting
whether it calls a function that could throw,
or contains athrow expression. If it can-
not throw, G++ will optimize appropriately. In
the small example above, such analysis could
only be done on ‘Baz ’, and the specification
checking code can be deleted as unreachable,
if all the other functions have a ‘throw () ’
exception specification. Both 3.2 and 3.3 will
remove this unreachable code, but 3.3’s com-
pile time performance will be better, as it no-
tices much earlier in the translation process
that the checking code is unreachable. G++
cannot currently tell whether an exception will
be caught inside the function, so appropri-
ate ‘throw (...) ’ exception specifications
should be added to function declarations and
function definitions that contain ‘try ...
catch ’ clauses.

One final note about code size. A static
image of ‘Hello world’ is surprisingly large.
For instance, the program ‘int main ()
{return 0;} ’ has a static code size of

289,281 bytes on the author’s gnu-linux sys-
tem. Both C and C++ sources gave the same
size. The size is a glibc [8] issue, not a GCC
problem. Glibc is not designed to be used as
a static library, and embedded systems should
use an alternative library.

3 What Will be in G++ 3.4

G++ 3.42 will feature a much better parser,
which correctly deals with more ambiguous
parsing situations than G++ 3.3 does. C++ has
an ambiguous grammar where a construct can
look like both a declaration and an expression,
it is not until deep within the statement that the
parser can tell which one it is. The previous
Bison [6] based parser could not deal with sev-
eral cases that were reasonably common. Bi-
son parsers deal with LALR(1) [7] grammars,
but C++ is not such a grammar. The Bison
based parser has some C++ specific hacks to
deal with some of the ambiguities. The new
parser is a handwritten recursive descent de-
sign, with arbitrary back tracking. Here is an
example, where as G++ 3.3 fails on every line
of ‘Foo ’, G++ 3.4 will parse them all.

struct A
{

A (int = 0);
};

2This section describes the development version of
G++ as at 28th April 2003. When 3.4 is released, it
might differ from what is described here.
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struct C
{

C (A, A = A ());
void oneFish () const;

};

A Foo (int thing1, int thing2)
{

C redFish (A (), A (1));
C blueFish (A (thing1), thing2);
C (A (2)).oneFish ();
return (A ());

}

Having a better parser is good, but it is also
more picky about name lookup in template def-
initions. Names can be looked up during tem-
plate definition and during template instantia-
tion. Depending on context, a name might be
looked up only during definition, or only dur-
ing instantiation, or both. This is called two-
stage name lookup. C++ programs developed
only with G++ are more than likely to have
template name lookup problems—switching to
the new parser will produce compilation errors.
There are two cases of interest, one involving
dependent bases and the other to do with argu-
ment dependent lookup (Koenig lookup).

The dependent base problem is similar to the
implicit typename issue that was removed in
G++ 3.3. Here is an example,

template<typename T>
struct Base
{

int count;
int total;

};

int count;

template<typename T>
class Derived : public Base<T>
{

// Wrong Thing
void Flangify ()
{

// 3.3 defers both to instantiation
// time and finds those in Base<T>.
// Should bind to ::count.
int ix = count;
// Error, should not be found.
int jx = total;

}

// Right Thing
void Flangicate ()
{

// Deferred to instantiation.
int ix = this->count;

}
};

As ‘Derived::Flangify ’ shows, the
compiler will give an error at template defi-
nition time, if a non-dependent name is not
found. Unfortunately, it could bind to an un-
intended object, which happens for ‘count ’.
‘Derived::Flangicate ’ shows the cor-
rect way of forcing name lookup of members
to be deferred until instantiation time. The id-
iom has the advantage of making explicit to
the programmer that the name refers to a mem-
ber. That members in dependent bases are not
searched for, unless preceded by ‘this-> ’,
is very surprising to programmers unfamiliar
with the rule. The intent is to allow more
checking and precompilation of template def-
initions, before instantiation, and only defer
to instantiation time those lookups that are
demonstrably dependent on a template param-
eter.

The other place effected by name lookup is
in function calling and argument dependent
name lookup. When a function is called us-
ing unqualified name lookup (something like
‘ foo (arg) ’, but it also happens on over-
loaded operators), the function is looked up in
the current scope as normal and in the classes
and namespaces of the arguments’ types. If the
arguments’ types are template dependent, that
part of the lookup is deferred until instantiation
time. The non-dependent part of the lookup is
done at definition time, and not repeated at in-
stantiation time. Here is an example,

namespace NMS {
class MyClass {};
void Foo (MyClass);

} // namespace NMS
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void Foo (int);

template <typename T>
void Bar (T thing)
{

Foo (1); // #1
Foo (thing); // #2

}

The first call, ‘Foo (1) ’, will find
‘ ::Foo (int) ’ at definition time. The
second call, ‘Foo (thing) ’, will find the
global ‘Foo ’ at definition time, but it will also
find ‘NMS::Foo (MyClass) ’ during the
instantiation of ‘Bar<NMS::MyClass> ’.
The two declarations of ‘Foo ’ are added
to the overload set, upon which overload
resolution is performed. Overload resolution
could be done at definition time for the first
call, as that does not contain any template
dependent expressions. At the current time,
the development version of G++ still defers
lookup for function calls until instantiation
time, and therefore does not have the correct
two-stage lookup behavior here.

Another impact of this, is that G++ will not
mangle some templated names correctly. In
some cases the mangling depends on know-
ing what is a dependent expression and what
is not. Without that knowledge, although the
manglings are unique, they do not adhere to
that specified by the ABI.

A lookup case that G++ still gets wrong is
where a name refers ambiguously to a mem-
ber of a dependent base and of a non-dependent
base. At definition time the dependent base
will be ignored and the name found unambigu-
ously in the non-dependent base. The ambi-
guity should notbe discovered at instantiation
time, as the lookup is not repeated. G++ will
repeat the lookup at instantiation time and dis-
cover an ambiguity.

template <typename T>
struct Wump
{

int zed;
};

struct Gump
{

int zed;
};

template <typename T>
struct Sneetch : Wump<T>, Gump
{

Sneetch ()
{

// Both 3.3 and 3.4 find an
// ambiguity at instantiation.
// Should bind to Gump::zed.
zed = 5;

}
};

Because G++ still does not do the correct two-
stage lookup for function call, some cases of
the first described name lookup issue can still
remain undetected. When the intent is to call
a member function of a dependent base, the
name lookup is incorrectly deferred until in-
stantiation time. Even if the function pa-
rameters are template dependent, a non-friend
member from a dependent base should not be
found—only those names found by argument
dependent lookup should be added at instanti-
ation time.

template<typename T>
struct Base
{

void Deflange ();
void Flange ();

};

void Deflange ();

template<typename T>
class Derived : public Base<T>
{
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// Wrong Thing
void Flangify ()
{

// 3.4 binds both of these to
// members of Base<T>
// Should bind to ::Deflange.
Deflange ();
// Error, should not be found.
Flange ();

}

// Right Thing
void Flangicate ()
{

// Deferred to instantiation.
this->Deflange ();

}
};

To get two stage lookup correct requires better
tracking of the symbol table so that, at instanti-
ation time, it is known what declarations are
visible at both the definition context and the
instantiation context. Whether this work will
be completed by the time 3.4 is released is un-
known.

4 Tracking the Standard

The C++ standard is an evolving document.
Since the 1998 C++ standard was released, var-
ious changes have been made. A Technical
Corrigendum 1 (TC1) is in the process of being
released. That bundles all of the accumulated
changes into single document. Issues can be
raised by anyone, and are collated via an email
list. Every six months, a global meeting of the
ANSI J16 and ISO WG21 [9] committees takes
place. These meetings are open to all interested
parties, and membership of J16 is not required.
Affiliation does effect voting rights. There are
three subgroups within those meetings,

• Core Working Group. This group deals
with issues in the core language (that doc-
umented in clauses 2 to 16). The core de-
fect reports are available [10].

• Library Working Group. This group deals
with issues in the libraries (clauses 17 to
27). The library defect reports are avail-
able [11].

• Evolution Working Group. This group
deals with extensions and other changes
to the language and library. The group
is currently considering what significant
changes should be made for the next
version of the standard, code named
‘C++0X’.

The output of the core and library working
groups are lists of defect resolutions. A re-
port may be deemed to be not a defect (the
standard requires no change). Alternatively the
standard may require clarification, or require
change. The wording of the changes is dis-
cussed and goes through a process of drafting
until it is ready to be accepted.

G++ aims to track the standard with its col-
lection of defect reports. We do not make a
distinction between the 1998 standard and the
standard plus defect reports. Active partici-
pation in the C++ standards meetings allows
the G++ maintainers to both know how defects
are likely to be resolved, and to influence that
process. When C++0X is released, G++ will
probably have a command line switch to select
which version of C++ is to be accepted (just as
either C89 and C99 can be selected between in
GCC).

Many people have suggested extensions that
G++ should accept. Often these proposals
are of the form ‘It would be neat if I could
write . . . ’, rather than a complete specifica-
tion. Such vague descriptions can prove prob-
lematical with a language as complicated as
C++—all the implications of an extension are
not apparent, even after some thought. Without
care, extensions can either silently change the
meaning of a C++ program, or fail in obscure
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ways under some circumstances. Several GCC
extensions have caused such problems when
ported to G++. Some of note are,

• It used to be possible for__PRETTY_
FUNCTION__ to participate in string
concatenation. Unfortunately this does
not fit well with templates, where the ex-
pansion of __PRETTY_FUNCTION__
depends on the instantiation, much
later than string concatenation occurs.
GCC has been changed throughout, so
that __FUNCTION__, __PRETTY_
FUNCTION__ and the C99 defined
__function__ all behave the same
way as constant arrays of characters.

• Variable length arrays have a type which
is not fixed at compile time. This causes
a problem withtypeid , because there is
no fixedstd::type_info object that
can be returned.typeid was changed to
return the type info for the array member
type. Also template deduction suffers, be-
cause the type has a size that is not fixed.
Template deduction will not deduce vari-
able length arrays by reference. They can
still be deduced as pointer types via the
normal array to pointer decay rule.

• GCC allows empty structures as a C ex-
tension, and gives them a size of zero.
C++ allows empty structures, but speci-
fies that their size is not zero. They have
a non-zero size to preserve the invariant
that no two objects of the same type have
the same address. GCC does not keep that
invariant for such empty types. Structures
that contain empty members will be laid
out differently in C and C++.

• The implicit typename extension de-
scribed above has now removed from
G++.

Because C++ extensions can have so many un-
seen consequences, the G++ maintainers re-
quire a very strong argument and implementa-
tion in favor of an extension, before accepting
it. Incompletely documented extensions lead
to problems in maintaining G++ [12].

5 Closing Remarks

C++ support in the 3.x versions of G++ has
improved considerably over that in the previ-
ous 2.x versions. Improving C++ conformance
is not without pain to users who have un-
knowingly been writing ill-formed C++. G++
aims to smooth the transition by deprecating
inappropriate features and giving a warning in
one version and then removing the feature in
the next version. When a new error message
is added, because of better standard confor-
mance, explanatory text might be added to help
the user correct their code.

Various improvements and ways that user pro-
grams can effect the quality and speed of com-
pilation have been described. Library writers
are particularly inhibited by the lack of a mod-
ule system, and workarounds are shown so that
library link time can be reduced.

There are still new optimization opportunities
in G++, for instance a multiple entry point
mechanism for thunks, so that multiple inher-
itance is even cheaper in both speed and code
size. Better exception tracking can be added to
remove unnecessary runtime checks.
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