
Building and Using a Cross Development Tool Chain

Robert Schiele
rschiele@uni-mannheim.de

Abstract

When building ready-to-run applications from
source, a compiler is not sufficient, but li-
braries, an assembler, a linker, and eventually
some other tools are also needed. We call the
whole set of these tools a development tool
chain. Building a native tool chain to build ap-
plications for the compiler’s platform is well
documented and supported. As clusters be-
come more and more widespread, it becomes
interesting for developers to use the enormous
CPU power of such a cluster to build their ap-
plications for various platforms by using cross
development tool chains.

We describe how a development tool chain is
structured and which steps have to be taken by
its parts to build an executable from source.
We also evaluate whether the characteristics of
each step imply that a special version of this
tool is needed for the cross development tool
chain. Furthermore, we explain what has to
be done to build a complete cross development
tool chain. This is more involved than building
a native tool chain, because intrinsic dependen-
cies that exist between some parts of the tool
chain must be explicitly resolved. Finally, we
also show how such a cross compiler is used
and how it can be integrated into a build envi-
ronment on a heterogeneous Linux/Unix clus-
ter.

1 Motivation

1.1 Unix Standard System Installations

Although in recent years some Unix vendors
stopped shipping development tools with their
operating systems, it is still quite common on
most systems to have a C compiler, an assem-
bler and a linker installed. Often system ad-
ministrators use these tools to compile applica-
tions for their systems when binary packages
are not available for their platform or when the
setup of the binary package is not applicable to
their local setup. For such scenarios, the sys-
tem compiler is quite sufficient.

1.2 Development Usage

Although this so-called system compiler can
also be used by a software developer to build
the product he is developing on and is often
done, this is in most cases not the best solution.

There are several reasons for not using the sys-
tem compiler for development:

• In development you often have a large
number of development machines that
can be used in a compiler cluster to
speed up compilation. Tools for this pur-
pose are available, asdistcc by Mar-
tin Pool,ppmake from Stephan Zimmer-
mann with some improvements from my
side, or many other tools that do simi-
lar things. The problem is that when us-
ing the system compiler, you can only use

214 • GCC Developers Summit

other development machines that are of
the same architecture and operating sys-
tem because you cannot mix up object
files generated for different platforms.

• As a developer, you normally want to sup-
port multiple platforms, but in most cases,
you have a large number of fast machines
for one platform, but only a few slow
machines for another one. If you used
only the system compiler in that case, you
would end up in long compilation times
for those platforms where you only have a
few slow machines.

• Last but not least, you often also want
to build for a differentglibc release
etc. than the one installed on your sys-
tem for compatibility reasons. This is also
not possible for all cases with a system
compiler pre-configured for your system’s
binutils release and other system specific
parameters.

1.3 Compiling for a Foreign Platform

We can solve all those problems by making
clear to ourselves that a compiler does not nec-
essarily have to build binaries for the platform
it is running on. A compiler where this is the
case, like the system compiler, is called a na-
tive compiler. Otherwise, the compiler is called
a cross compiler.

We also need a cross compiler for bootstrap-
ping a new platform that does not already ship
a compiler to bootstrap a system with. But this
cannot really be a motivation for this paper, as
people that bootstrap systems most likely do
not need the information contained in this pa-
per to build a cross development tool chain.

In the following section we will show some
basic principles of a development toolchain,
how the single parts work and whether their

characteristics require them to be handled spe-
cially when used in a cross development tool
chain. In section 3, we will show what must
be done to build a complete cross development
tool chain and what are some tricks to work
around some problems. In section 4, we show
how to integrate the cross development tool
chain into build systems to gain a more effi-
cient development tool chain. Finally, we will
find some conclusions on our thoughts in the
last section.

2 How a Compiler Works

To understand how a compiler works and thus
what we have to set up for a cross compiler,
we need to have a look at the C development
tool chain. This is normally not a monolithic
tool that is fed by C sources and produces exe-
cutables, but consists of a chain of tools, where
each of these tools executes a specific transfor-
mation. An overview of this tool chain can be
found in Figure 1. In the following, I will show
those parts and explain what they do.

This section is not intended to provide a com-
plete overview on compiler technology, but
does only discuss some principles that help
us to understand why cross development tool
chains work the way they do. If you would
like to have some detailed information about
compiler technology, I recommend reading the
so-called Dragon book [ASU86].

2.1 The C Preprocessor

The C preprocessor is quite a simple tool. It
just removes all comments from the source
code and processes all commands that have
a hash mark (#) on the first column of
any lines. This means, for example, it in-
cludes header files at the position where we
placed#include directives, it does condi-
tional compiling on behalf of#if . . . direc-

GCC Developers Summit 2003 • 215

C source file

C preprocessor (cpp)

C preprocessed source file

C compiler (cc1) — frontend

intermediate language

C compiler (cc1) — backend

assembler file

assembler (as)

object file

linker (ld)

executable
?

?

?

?

?

Figure 1: tool chain

tives and expands all macros used within the C
source code. The output of the C preprocessor
is again C source code, but without comments
and without any preprocessor directive.

Note that most programming languages other
than C do not have a preprocessor. It should
be noted that preprocessor directives and espe-
cially macros make some hackers to produce
really ugly code, but in general, it is a quite
useful tool.

It can easily be seen that the C preproces-
sor itself should not be platform dependent,
as it is a simple C-to-C-translator. But in
fact, on most systems the preprocessor defines
platform-specific macros like e.g.__i386__
on an ia32 architecture, and it must be con-
figured to include the correct platform specific
header files. Apart from that, in many compil-
ers the preprocessor is integrated into the ac-

tual C compiler for performance reasons and to
solve some data flow issues. Because of these
reasons, the C preprocessor is actually not re-
ally platform-independent.

2.2 The C Compiler

The actual C compiler is responsible for trans-
forming the preprocessed C source code to as-
sembler code that can be further processed by
the assembler tool. Some compilers have an in-
tegrated assembler, i.e. they bypass the assem-
bler source code, but compile directly to binary
object code.

We can divide the compiler into a front end and
a back end, but you should note that in most
cases these two parts are integrated into one
tool.

2.2.1 The Compiler Front End

The front end is responsible for transforming
the C source code to some proprietary inter-
mediate language. This intermediate language
should be ideally designed to be independent
of both the source language and the destina-
tion platform to allow easy replacements of the
front end and the back end. Because of that
reason the front end is independent of the des-
tination platform.

2.2.2 The Compiler Back End

The back end does the translation of the in-
termediate language representation to assem-
bler code. As the assembler code is obviously
platform-dependent, the back end is as well.

This results in the fact that although the front
end is platform-independent, the whole C com-
piler is not because it is an integration of both

216 • GCC Developers Summit

the front end and the back end, where the latter
is not independent.

2.3 The Assembler

The assembler is the tool that translates assem-
bler code to relocatable binary object code. Re-
locatable means that there are no absolute ad-
dresses built into the object code, but instead,
if an absolute address is necessary, there are
markers that will be replaced with the actual
address by the linker. The object code files in-
clude a table of exported symbols that can be
used by other object files, and undefined sym-
bols that require definition in a different object
file. As both the input and the output of this
tool is platform-specific, the assembler obvi-
ously depends on the platform it should gen-
erate code for.

2.4 The Linker

The linker can be considered the final part in
the development tool chain. It puts all binary
object code files together to one file, replac-
ing the markers by absolute addresses and link-
ing function calls or symbol access to other ob-
ject files to the actual definition of the symbol.
Some of those object files might be fetched
from external libraries, for example the C li-
brary. We do not explain how linking to shared
objects works, as it just makes things a bit more
complicated, but does not make a real differ-
ence on the principles that are necessary to un-
derstand the development tool chain. The re-
sult of this tool is normally an executable. For
the same reasons as with the assembler, the
linker clearly depends on the destination plat-
form.

More detailed information on the principles of
linkers can be found in [Lev00].

3 Building the tool chain

As we now have some basic knowledge about
how a development tool chain is structured, we
can start building our cross development tool
chain. We can find both the C preprocessor and
compiler in thegcc package [GCC], which is
the most commonly used compiler for Linux
and for many other Unix and Unix-like plat-
forms.

We use the assembler and linker from the
GNU binutils package [Bin]. As an alterna-
tive linker for ELF platforms, there is the one
from the elfutils by Ulrich Drepper, but this one
is in a very early point in its life cycle, and
I would not currently recommend using these
tools for a productive environment. For the
GNU assembler, there are also various alterna-
tives available, but as changing an assembler
does only a straightforward translation job and
thus, no improvements of the results are to be
expected, it is not worth integrating another as-
sembler into the tool chain.

These are all tools for our tool chain, but we
are still missing something: As every C appli-
cation uses functions from the C library, we
need a C library for the destination platform.
We will useglibc [Gli] here. If we wanted
to link our applications to additional libraries,
we would need them also, but we will skip this
part here. The essential support libraries for
other gcc supported languages like C++ are
shipped and thus built withgcc anyway.

The following examples are for building a
cross development tool chain for a Linux sys-
tem with glibc on a PowerPC. The cross
compiler is built and will run itself on a Linux
system on an ia32 architecture processor. Al-
though something might be different for other
system combinations, the principles are the
same.

GCC Developers Summit 2003 • 217

3.1 The Binutils

The simplest thing to start with is the binutils
package because they neither depend on the
gcc compiler nor on theglibc of the des-
tination platform. And we need them anyway
when we want to build object files for the des-
tination platform, which is obviously done for
the glibc , but evengcc provides a library
with some primitive functionality for some op-
erations that are too complex for the destina-
tion platform processor to execute directly.

From a global point of view we have depen-
dencies between the three packages as shown
in figure 2.

binutils

gcc glibc
�

�
�

��

@
@

@
@I

-
�

Figure 2: Dependencies between the packages

So we fetch a binutils package, unpack it
and create a build directory somewhere—it
is recommended not to build in the source
directory—where we then call

../binutils-2.13.90.0.20/configure
--prefix=/local/cross
--enable-shared
--host=i486-suse-linux
--target=powerpc-linux

We set the prefix to the directory we want
the cross development tool chain to be in-
stalled into, we enable shared object support,
as we want that on current systems and we tell
configure the host platform, i.e. the plat-
form the tools are running on later, and the
target platform, i.e. the platform for which
code should be generated by the tools later.
Afterwards, we run a quickmake, make
install , and the binutils are done.

As long as there is not a hard bug in the used
binutils package, this step is quite unlikely to
fail, as there are no dependencies to other tools
of the tool chain we build. For the follow-
ing parts we should expect some trouble be-
cause of intrinsic dependencies betweengcc
andglibc .

From this point on, we should add thebin/
directory from our installation directory into
$PATH, as the following steps will need the
tools installed here.

3.2 A Simple C Compiler

Now we run into the ugly part of the story:
We need a C library. To build it, we obvi-
ously need a C compiler. The problem is now
thatgcc ships with a library (libgcc) that in
some configurations depends on parts of the C
library.

For this reason, I recommend building the C
library and all the other libraries on a native
system and copying the binaries to the cross
compiler tool chain or using pre-built binaries,
if possible. If you build a cross compiler that
compiles code for a commercial platform like
Solaris, you have to do so anyway, as you nor-
mally do not have the option to compile the
Solaris libc on your own. If you decide to
build the C library with your cross compiler,
continue here, otherwise skip to building the
full-featured compiler.

binutils gcc

simplegcc glibc

6

?HH
HHH

HHHY

-
�

�

Figure 3: Dependencies with simple C com-
piler

We cannot build a full-featured compiler now,
as the runtime libraries obviously depend on

218 • GCC Developers Summit

the C library. This cycle in the dependency
graph can be seen in figure 2. We can resolve
this cycle by introducing a simple C compiler
that does not ship these additional libraries, so
that we get dependencies as shown in figure
3. But because of the reason mentioned above,
for most configurations we cannot even build a
simple C only compiler. That means we can
build the compiler itself, but the support li-
braries might fail. So we just start by doing

CFLAGS="-O2 -Dinhibit_libc"
../gcc-3.2.3/configure
--enable-languages=c
--prefix=/local/cross
--target=powerpc-linux
--disable-nls
--disable-multilib
--disable-shared
--enable-threads=single

and then starting the actual build withmake.
The configure command disables just ev-
erything that is not absolutely necessary for
building the C library in order to limit the pos-
sible problems to a minimum amount. Some-
times it also helps to set theinhibit_libc
macro to tell the compiler that there is no libc
yet, so we add this also. In case the build com-
pletes without an error, we are lucky and can
just continue with building the C library after
doing amake install before.

Otherwise, we must install the incomplete
compiler. In this case, the compiler will most
likely not be sufficient to build all parts of the
C library, but it should be sufficient to build the
major parts of it, and with those we might be
able to recompile a complete simple C com-
piler. We have to iterate between building this
compiler and the C library, until at least the C
library is complete.

The installation of an incomplete package can
be either done by manually copying the built

files to the destination directory, by removing
the failing parts from the makefiles and contin-
uing the build afterwards, or by just touching
the files that fail to build. The last option forces
make to silently build and install corrupted li-
braries, but if we have this in mind, this is not
really problematic, as we can just rebuild the
whole thing later and thus replace the broken
parts with sane ones.

The simplest way of installing an incomplete
compiler when using GNUmake is calling
make and make install with the addi-
tional parameter-k so thatmake automati-
cally continues on errors. This will then just
skip the failing parts, i.e. the support libraries.

3.3 The C Library

After having built a simple C compiler, we can
build the C library. It has already been said that
this might be necessary to be part of an iterative
build process together with the compiler itself.

To build theglibc we also need some ker-
nel headers, so we unpack the kernel sources
somewhere and do some basic configuration by
typing

make ARCH=ppc symlinks
include/linux/version.h

Now we configure by

../glibc-2.3.2/configure
--host=powerpc-linux
--build=i486-suse-linux
--prefix=

/local/cross/powerpc-linux
--with-headers=

/local/linux/include
--disable-profile
--enable-add-ons

GCC Developers Summit 2003 • 219

and do the usualmake andmake install
stuff.

Note that the-host parameter is different
here to the tools, as theglibc should actu-
ally run on the target platform and not, like the
tools, on the build host. The-prefix is also
different, as theglibc has to be placed into
the target specific subdirectory within the in-
stallation directory, and not directly into the
installation directory. Additionally, we have
to tell configure where to find the ker-
nel headers and that we do not need profil-
ing support, but we want the add-ons like
linuxthreads enabled.

In case that building the fullglibc fails be-
cause building the C Compiler was incomplete
before, the same hints for installing the in-
complete library apply that where explained
for the incomplete compiler. Additionally, it
might help to touch the filepowerpc-linux/

include/gnu/stubs.h within the installa-
tion directory, in case it does not exist yet. This
file does not contain important information for
building the simple C compiler, but for some
platforms it is just necessary to be there be-
cause other files used during the build include
it.

After installation of the glibc (even the
incomplete one), we also have to install
the kernel headers manually by copying
include/linux to powerpc-linux/

include/linux within the installa-
tion directory and include/asm-ppc to
powerpc-linux/include/asm . The latest
kernels also wantinclude/asm-generic

to be copied topowerpc-linux/include/

asm-generic . Other systems than Linux
might have similar requirements.

3.4 A Full-featured Compiler

After we have a complete C library, we can
build the full-featured compiler. That means
we do now again a rebuild of the compiler,
but with all languages and runtime libraries we
want to have included.

With a complete C library, this would be no
problem any more, so we should manage to do
this by just typing

../gcc-3.2.3/configure
--enable-languages=

c,c++,f77,objc
--prefix=/local/cross
--disable-libgcj
--with-gxx-include-dir=

/local/cross/include/g++
--with-system-zlib
--enable-shared
--enable-__cxa_atexit
--target=powerpc-linux

and again doing the build and installation by
make andmake install .

4 Using the Tool Chain on a Clus-
ter

We now have a full-featured cross develop-
ment tool chain. We can use these tools by
just putting thebin/ path where we installed
them to the system’s search path and calling
them by the tool name with the platform name
prefixed, e.g. for callinggcc as a cross com-
piler for platformpowerpc-linux , we call
powerpc-linux-gcc . The tools should
behave in the same way the native tools on the
host system do, except that they produce code
for a different platform.

But our plan was to use the cross compiler on a
cluster to speed up compilation of large appli-

220 • GCC Developers Summit

cations. There are various methods for doing
so. In the following we will show two of them.

4.1 Using a Parallel Virtual Machine (PVM)

We receive most scalability by dispatching all
jobs that produce some workload to the nodes
in the cluster.make is a wonderful tool to do
so. A long time ago, Stephan Zimmermann
implemented a tool calledppmake that be-
haved like a simple shell that distributed the
commands to execute on the nodes of a cluster
based on PVM. He stopped the development of
the tool in 1997. As I wanted to have some im-
provements for the tool, I agreed with him to
put the tool under GPL and started to imple-
ment some improvements. You can fetch the
current development state from [ppm], but note
that the documentation is really out of date and
that I also stopped further development for sev-
eral reasons.

If you want to use this tool, you just have to
fetch the package, build it and tellmake to
use this shell instead of the standard/bin/sh
shell by setting themake variableSHELL to
the ppmake executable. Obviously you have
to set up a PVM cluster before make this work.
Information on how to set up a PVM cluster
can be found at [PVMa]. To gain something
from your cluster you should also do parallel
builds by specifying the parameter-j on the
make command line.

For example, if you had a cluster consisting of
42 nodes configured in your PVM software and
ppmake installed in/usr/ , you call

make -j 42
SHELL=/usr/bin/ppmconnect
...

instead of just

make ...

CVS head revision replacedppmconnect by
the integrated binaryppmake.

There is also a script provided in the package
that does most of these things automatically,
but I do not like the way this script handles the
process, so I do not use it personally, and such
it is a bit out of date recently.

Note that there is a similar project [PVMb] by
Jean Labrousse ongoing which aims at in in-
tegrating a similar functionality directly into
GNU make. You may want to consider look-
ing at this project also.

You should note that it is necessary for this ap-
proach that all files used in the build process
are available on the whole cluster within a ho-
mogenous file system structure, for example
by placing them on a NFS server and mount-
ing on all nodes at the same place. Addition-
ally, it is necessary that all commands used
within the makefiles behave in the same way
on all nodes of the cluster. Otherwise, you
will get random results, which is most likely
not what you want. This means you should
always call the platform-specific compiler ex-
plicitly, e.g. by powerpc-linux-gcc in-
stead ofgcc , and the same releases of the com-
piler, the linker and the libraries should be in-
stalled on all nodes.

4.2 Using withdistcc

The biggest disadvantage of the method de-
scribed above is that it relies on central file
storage and on identical library installations on
all nodes. You can prevent these constraints
at the cost of limiting the amount of work-
load that will be distributed among the nodes in
the cluster to the compilation and assembling
step. Preprocessing and linking is done directly
on the system where the build process was
started and thus not parallelized. Only compi-
lation jobs are parallelized, all other commands

GCC Developers Summit 2003 • 221

are directly executed on the system, where the
build process was invoked. Although this lim-
its the amount of workload that really runs in
parallel, this is in most cases not a real prob-
lem, as most build processes spend most of
their time with compilation anyway.

The advantage of this approach is that you only
need to have the cross compiler and assem-
bler on each node. Include files and libraries
are necessary only on the system on which the
build is invoked.

Such an approach is implemented in Martin
Pool’s distcc package [dis]. This tool is a
replacement for thegcc compiler driver. Pre-
processing and linking is done almost in the
same way the standard compiler driver does,
but the actual compile and assemble jobs are
distributed among various nodes on the net-
work.

Although this solution obviously gives not the
same amount of scalability, as not all jobs can
be parallelized, it is for most situations a better
solution, as from my experience it seems that
many system administrators are not capable of
installing a homogenous build environment on
a cluster of systems.

5 Conclusion

Finally, we can conclude that it is not really dif-
ficult to build and use a cross development tool
chain, but in most cases, building the whole
tool chain is not as simple as described in
the compiler’s documentation because building
cross development tool chains is not as well
tested as building native tool chains are. Thus,
you should expect numerous minor bugs in the
code and in the build environment. But with
some basic knowledge about how such a sys-
tem works and, thus, what the source of those
problems is, in most cases they can be easily
fixed or worked around.

At least if you have an amount of systems for
office jobs idling almost all of their time, it is
worth investing some time for building up such
an infrastructure to use their CPU power for
your build processes.

As this is a tutorial paper, its contents are
intended for people that do not have exten-
sive konwledge on the topic described to help
them understanding it. If you think something
is unclear, some information should be added
or you find an error, please send a mail to
rschiele@uni-mannheim.de .

References

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman.
Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Read-
ing, MA, 1986.

[Bin] GNU Binutils.
http://sources.redhat.
com/binutils/ .

[dis] distcc: a fast, free distributed C and
C++ compiler.http://distcc.
samba.org/ .

[GCC] GCC Home Page—GNU Project—
Free Software Foundation (FSF).
http://gcc.gnu.org/ .

[Gli] GNU libc.
http://sources.redhat.
com/glibc/ .

[Lev00] John R. Levine.Linkers and Load-
ers. Morgan Kaufmann Publishers,
340 Pine Street, Sixth Floor, San
Francisco, CA 94104-3205, 2000.

[ppm] SourceForge.net: Project Info—
PVM Parallel Make (ppmake).
http://sourceforge.net/
projects/ppmake/ .

222 • GCC Developers Summit

[PVMa] PVM: Parallel Virtual Machine.
http://www.epm.oml.gov/
pvm/ .

[PVMb] PVMGmake. http:
//pvmgmake.sourceforge.
net/ .

